用户名: 密码: 验证码:
黄河下游河道萎缩机理与基本输水输沙通道规模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80~90年代,黄河下游经历了一场历史上少有的河床演变过程,河道萎缩,河床严重淤积,过水断面减少,河道泄洪排沙能力降低,威胁黄河的防洪安全。本论文针对黄河下游迫切需要解决的河道萎缩问题,采用实测资料分析和数学模型计算等研究手段,分析了黄河下游水沙变异特点和河道萎缩现象,探讨了黄河下游河道萎缩机制和调控临界指标,研究了不同水沙系列对塑造黄河下游输水输沙通道的作用和影响因素,提出了未来下游可能塑造与维持的基本输水输沙通道规模和综合措施,从而为黄河水沙调控体系建设和下游萎缩河道治理提供技术支撑。取得的主要研究成果包括:
     (1)黄河下游来水来沙量及其过程从20世纪50年代以来呈明显的减小趋势,特别是1986年以后,来水来沙量及其过程发生了显著变异。主要表现为:来水来沙量显著减少,水沙关系更不协调,来水量年内分布颠倒和大流量出现几率显著减低。
     (2)黄河下游出现的河道萎缩是在特定的水沙系列条件下的河床演变现象。其基本特点是:河道严重淤积、过水断面强烈缩小、河道排洪能力降低,并伴有畸形河弯发育和驼峰现象凸显等特殊现象。黄河下游河道萎缩的成因是连续多年枯水和含沙量偏高造成的河床持续淤积,这是河道萎缩的基础;中小流量历时加长,加剧了主槽的淤积;频繁的高含沙洪水增加了嫩滩的淤积,促进了河道的萎缩。据1986~1999年资料,提出了黄河下游河道萎缩的综合条件和水沙判别关系。黄河下游河道平面河势及断面形态的不稳定性表明,只要来水来沙条件有利,萎缩河道是可以复苏的。
     (3)黄河下游花园口—利津河段冲淤相对平衡时的花园口的来沙系数约为0.012kg.s/m6、年平均流量约为1850m3/s;小浪底-利津河段冲淤相对平衡时的洪水来沙系数约为0.012kg.s/m6。黄河下游典型断面平滩面积随当年最大洪峰流量的增加而增大,平滩宽深比随汛期来沙系数(S/Q)的增加而增大,当汛期来沙系数大于0.04kg.s/m6时,各典型断面形态趋向于稳定。洪水过程中各典型断面最大过流面积随洪峰流量的增加而增大。在不漫滩洪水过程中,如果发生洪峰流量4000m3/s、最大含沙量45kg/m3的洪水,花园口断面和利津断面需要的最大过流面积分别约为1987m2和1603m2。花园口断面不漫滩洪水的最小宽深比随洪水平均来沙系数的增加而减小,高村、艾山和利津断面的最小宽深比则随着洪水平均来沙系数的增加而增大,当花园口、高村、艾山和利津断面的洪水平均来沙系数分别大于约0.04kg.s/m6、0.035kg.s/m6、0.03kg.s/m6和0.025kg.s/m6后,各断面最小宽深比变化不明显。黄河下游河道平滩流量具有随年来水量(汛期来水量)和当年洪峰流量的增加而增大的规律。若未来通过小浪底水库调节进入下游的年平均径流量维持在1986~2010年的水平,未来下游河道可能维持的平滩流量约为4000m3/s左右。
     (4)小浪底水库采用泥沙多年调节运用方式,为黄河下游塑造一个平滩流量为4000m3/s左右的基本输水输沙通道提供了可能。基本输水输沙通道的塑造是通过牺牲小浪底水库的拦沙库容得到的,维持也是以部分牺牲拦沙库容为代价的。比较理想的基本输水输沙通道塑造和维持过程应该是,前5-8年水库应采用拦沙运用,控制排沙比不大于0.3,塑造出下游河道平滩流量4000左右的基本输水输沙通道,然后水库运用方式调整为泥沙多年调节、相机排沙运用,排沙比可提高到0.7左右,以维持这个基本输水输沙通道,避免出现河槽继续扩大再萎缩的现象,这样不仅可以延长小浪底水库拦沙库容的使用年限,而且对于黄河下游河道基本输水输沙通道的稳定也是有利的。
     (5)小浪底水库拦粗排细对于增加黄河下游河道过流能力有利,还可以使塑造的下游基本输水输沙通道更窄深;河床粗化后将使塑造基本输水输沙通道要求的来水来沙条件更高,塑造的基本输水输沙通道更宽浅。黄河下游现有河道整治工程在塑造基本输水输沙通道中作用不明显,生产堤需要与河道整治工程相配合才能形成有效的排洪输沙通道,疏浚工程应与护滩工程和河道整治工程统一考虑才能有利于基本输水输沙通道的稳定。
     (6)塑造和维持黄河下游河道基本输水输沙通道,近期主要通过小浪底水库调节出库水沙过程和河道综合治理措施的配合来实现;中长期应通过在中游修建大型水利枢纽与小浪底水库联合运用,并通过跨流域调水来调节水沙过程,长期维持基本输水输沙通道。按目前黄河下游实际的来水来沙情况,黄河下游河道塑造和维持约4000m3/s左右平滩流量的基本输水输沙通道是可能的和适当的。
The rare happened river evolution process occurred in the Lower Yellow River during the periods from1980s to1990s, which resulted in channel shrinkage, heavy silting, and significant decreasing of the flow area and flood-sediment carrying capacity, which threatened to the safety of flood protection, consequently. Therefore, the channel shrinkage is becoming a complicated problem and is urgent need to be studied in depth in the Lower Yellow River. In this thesis, combined with the data analysis and mathematical modeling, the characteristics of the variation of water and sediment and the phenomenon of channel shrinkage in the Lower Yellow River are analyzed; the mechanisms of channel shrinkage and regulation critical index are discussed. Furthermore, the roles of different water-sediment series on forming the channel for water-sediment transport and their influencing factors are studied, and the rational scale and comprehensive regulation measurements to form and maintain the channel for water-sediment transport are proposed, in aim to support the construction of the water-sediment regulation system in the Yellow River and to regulate the shrunk channel in the Lower Yellow River in technique. The main contents and achievements are as follows:
     (1) The amounts and processes of incoming runoff and sediment in the Lower Yellow River showed a decreasing trend since the1950s. Especially, these trends had undergone significant variation after1986, which can be characterized as reduction of the amount of runoff and sediment obviously, un-conformity of water-sediment relationship, reversion of water allocation between the flood and dry seasons, and significantly decreasing occurrence of large floods.
     (2) The Channel Shrinkage in the Lower Yellow River is one of river bed evolution processes under the particular incoming water-sediment conditions. Its main features show serious siltation, strongly reduction of cross-section, significant descent of flood carrying capacity, and always accompanied with the developing of special phenomenon, including abnormal river bends, channel hump, and so on. The channel shrinkage in the Lower Yellow River is principally caused by lower flow rate and higher sediment concentration in continuous years. Both the extending duration of small and medium flow and the frequently happened hyper-concentration floods promote the channel shrinkage, the former results in the serious siltation in the main channel, and the later increases the sedimentation in the newly-formed floodplain. the comprehensive conditions and water-sediment critical relationships were proposed based on the data from1986to1999. The instability of the river regime and the configuration of cross sections show that the shrunk channel can recover as long as the incoming water-sediment conditions are reasonable.
     (3) Analysis results show that the reach from Huayuankou to Lijin is in relatively balance of scoring and silting when the incoming sediment coefficient is about0.012kg.s/m6and the yearly-averaged discharge is about1850m3/s at Huayuankou; the reach from Xiaolangdi to Lijin will not silt when the flood incoming sediment coefficient is about0.012kg.s/m6. The bankfull area of the typical cross-sections in the Lower Yellow River increases with the maximum flood peak discharge during the year, the ratio of bankfull width to depth increases with incoming sediment coefficient during the flood season. However, the configurations of cross-section tend to be stable when the flood incoming sediment coefficient is larger than0.04kg.s/m6. The maximum flow area of each typical cross-section is getting larger with increasing of peak discharge. The required flow area to transport the non-overbank flood, with the peak flow of4000m3/s and maximum sediment concentration of45kg/m3, at Huayuankou and Lijin are1987m2and1603m2, respectively. The minimum ratio of width to depth at Huayuankou decreases with the flood-averaged sediment coefficient, and vise verse at Gaocun, Aishan and Lijin. The variations of minimum ratio of width to depth are slight when the flood-averaged sediment coefficients are larger than0.04kg.s/m6,0.035kg.s/m6,0.03kg.s/m6,0.025kg.s/m6at Huayuankou, Gaocun, Aishan and Lijin stations, respectively. The bankfull discharge in the Lower Yellow River will increase with the annual runoff (or runoff during flood season) and peak flood flow, and it is possible to keep the bankfull discharge of about4000m3/s in the future, if the incoming annual runoff gets to the averaged value from1986to2010by Xiaolangdi reservoir operation.
     (4) The multi-annual operation of Xiaolangdi reservoir make it possible to form the channel for water-sediment transport with bankfull discharge of about4000m3/s in the Lower Yellow River. Both forming and maintaining the basic channel for water-sediment transport are the results of the loss of some sediment storage capacity. The optimal procedures to form and maintain the basic water-sediment transport channel can be concluded as:to form the channel with bankfull discharge of about4000m3/s by retaining sediment in the early5to8years after Xiaolangdi reservoir operation and controlling the sediment delivery ratio less than0.3; and then, the multi-annual operation of regulating flow and sediment and discharging sediment at proper times can be adopted, the sediment deliver ratio can increase to about0.7to maintain the water-sediment transport channel, and to avoid the channel continuous expansion firstly and shrinking after then. This optimal reservoir operation is benefit to extend the service life of sediment storage capacity and to keep the basic water-sediment transport channel in stable.
     (5) Trapping the coarser and delivering finer sediment particles in Xiaolangdi reservoir are in favor of increasing the water transport capacity and making the basic water-sediment transport channel narrow and deep in the Lower Yellow River. However, the river bed armoring brings forth higher requirement for incoming runoff and sediment conditions. Otherwise, the formed channel becomes wide and shallow. The existing river training works in the Lower Yellow River play less role on forming the water-sediment transport channel. The matching of production dikes and river training works is in need to form the effective flood draining and sediment transport channel. The engineering of dredging, flood-plain protection and river works should also be planed integrated to keep the formed water-sediment transport channel in stable.
     (6) It can be realized to form and maintain the basic water-sediment transport channel in the Lower Yellow River by regulating the delivering process of water and sediment of Xiaolangdi reservoir and co-operating with the comprehensive river training measurements in the near future. Furthermore, to maintain the channel in the medium and long term, it can be achieved by the combined water-sediment regulation of Xiaolangdi reservoir, planed large-scale hydraulic projects in the middle reach of Yellow River and inter-basin water diversion engineering. According to practical flow and sediment process in the Lower Yellow River, it is possible and advisable to form and maintain a basic water-sediment transport channel with bankfull discharge of about4000m3/s.
引文
[1]钱意颖,叶青超等,黄河干流水沙变化与河床演变,中国建材工业出版社,1993年。
    [2]赵业安,周文浩等.黄河下游河道演变基本规律.黄河水利出版社,1998年。
    [3]胡春宏,陈建国,郭庆超等,黄河水沙调控与下游河道中水河槽塑造,科学出版社,2007年。
    [4]胡春宏等,黄河水沙过程变异及河道的复杂响应,科学出版社,2005年。
    [5]胡春宏,陈绪坚,陈建国,黄河水沙空间分布及其变化过程研究,水利学报,2008,39(5)。
    [6]王兆印,周静,李昌志,黄河下游水沙变化及河床纵横断面的演变,水力发电学报,2006,25(5)。
    [7]杨忠敏,任宏斌,黄河水沙浅析及宁蒙河段冲淤与水沙关系初步研究,西北水电,2004(3)。
    [8]曹文洪,黄河下游水沙复杂变化与河床调整的关系,水利学报,2004(11)。
    [9]刘成,何耘,张红亚,水沙动态图法分析中国主要江河水沙变化,水科学进展,2008,19(3)。
    [10]胡春宏等,黄河泥沙优化配置研究,科学出版社,2012年。
    [11]吕曼,张敏,王学金,黄河山东段1986~1996年水沙变化特点,山东水利,2000(3、4)。
    [12]胡春宏,我固江河治理与泥沙研究展望,水利水电技术,2001,32(1)。
    [13]Long Yuqian, etc.,Impacts of Management of Water of Sediment in the Reservoirs of Sedimentation in Lower Yellow River, Proceeding of the Ninth International Symposium on River Sedimentation, Volume I,2004年。
    [14]Dawen Yang, Chong Li, etc., Analysis of water resources variability in the Yellow River of China during the last half century using historical data,Water Resour. Res.,2004 (40)。
    [15]刘昌明等,黄河干流下游断流的径流序列分析.地理学报,2000,55(3)。
    [16]朱厚华等,黄河流域降水演变规律研究,人民黄河,2005,27(11)。
    [17]张建云等,近50年来中国六大流域年际径流变化趋势研究,水科学进展,2007,18(2)。
    [18]张国罡,三门峡水库出库水沙过程变化及下游河道的响应,中国水利水电科学研究院硕士论文,2008年。
    [19]李梦楚,黄河下游河道断面形态变化及河道萎缩的分析与评价,中国水利水电科学研究院硕士论文,2012年。
    [20]钱宁,周文浩,黄河下游河床演变,科学出版社,1965年。
    [21]赵业安,潘贤娣等,黄河下游河道淤积情况及近期发展趋势估计,黄河的研究与实践,1986年
    [22]钱宁,张仁,周志德,河床演变学,科学出版社,1989年。
    [23]赵业安,潘贤娣,对80年代黄河下游特性与河道冲淤演变的基点认识,人民黄河,1992年。
    [24]黄河水利委员会水利科学研究院,“八五”国家重点科技攻关项目子专题报告“三门峡水库不同运用期对水沙的调节及对下游河道冲淤的影响”,1995年。
    [25]黄河水利委员会水利科学研究院,“八五”国家重点科技攻关项目子专题报告“黄河干流现有大型水利水电工程队水沙条件的改变及对下游的影响”,1995年。
    [26]曾庆华,梁志勇等,中国水利水电科学研究院报告“水沙条件与断面形态关系探讨”,1994年。
    [27]师长兴,许炯心,黄河下游河槽横断面调整规律及治理方式探讨,地理研究,1997,16(2)。
    [28]尹学良,梁志勇等,河型成因研究及其应用,泥沙研究,1999(2)。
    [29]韩其为,对小浪底水库修建后黄河下游游荡性河段河型变化趋势的几点看法,人民黄河,2002(4)。
    [30]许炯心,孙季等,黄河下游游荡性河道萎缩过程中的河床演变趋势,泥沙研究,2003(2)。
    [31]姚文艺,常温花,夏修杰,黄河下游游荡性河段清水下泄期河道断面形态的调整过程,水利学报,2003(10)。
    [32]王卫红,崔长江等,水沙变异条件下黄河下游游荡性河段河势变化特性,泥沙研究,2004(4)。
    [33]姚文艺等,黄河下游河道萎缩模式研究,泥沙研究,2004(5)。
    [34]冯普林,梁志勇等,黄河下游河槽形态演变与水沙变化关系研究,泥沙研究,2005(2)。
    [35]申冠卿,张原峰等,不同时期黄河下游河道泥沙沉积与纵横断面调整,泥沙研究,2005.(3)。
    [36]孙高虎,水沙变化条件下黄河下游河道纵横剖面的响应,中国水利水电科学研究院硕士论文,2006年。
    [37]胡春宏,陈建国等,水沙变异条件下黄河下游河道横断面形态特征研究,水利学报,2006(11)。
    [38]吴保生,李凌云,黄河下游河道横断面的若干特点,人民黄河,2008,30(2)。
    [39]张国罡,胡春宏,陈建国,黄河下游河道断面形态参数变化趋势及变异点分析,水利学报,2009(9)。
    [40]Jiongxin Xu, Dongsheng Cheng, Relation between the erosion and sedimentation zones in the Yellow River, China; Geomorphology,2002,48 (4)。
    [41]Jiongxin Xu, River sedimentation and channel adjustment of the lower Yellow River as influenced by low discharges and seasonal channel dry-ups, Geomorphology,2002,43 (1-2).
    [42]Jiongxin Xu, CATENA, Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration:the Yellow River basin, China,2002 (4)。
    [43]Baosheng Wu, Guangqian Wang, Junqiang Xia, Xudong Fu, Yuanfeng Zhang, Response of bankfull discharge to discharge and sediment load in the Lower Yellow River, Geomorphology,2008,100 (3-4)。
    [44]Baosheng Wu, Guangqian Wang, Jiming Ma, Ren Zhang, Case Study:River Training and Its Effects on Fluvial Processes in the Lower Yellow River, China, Journal of Hydraulic Engineering,2005,131(2).
    [45]胡春宏,张治昊,黄河口尾闾河道横断面形态调整及其与水沙过程的响应关系,应用基础与工程科学学报,2011,19(4)。
    [46]谢鉴衡,关于黄河下游河床演变问题,黄河建设,1957(6、7)。
    [47]谢鉴衡,黄河下游会继续游荡吗,黄河建设,1960(3)。
    [48]谢鉴衡,论黄河下游纵剖面形态及其变化,人民黄河,1980(1)。
    [49]钱宁,张仁,The Flood and River Sedimentation Problems of the Lower Yellow River in China, Irrigation and Power Journal,1982,26(2)。
    [50]王恺忱,黄河河口与下游河道的关系及治理问题,泥沙研究,1982(2)。
    [51]周文浩,范昭,黄河下游河床近代纵剖而的变化,泥沙研究,1983(4)。
    [52]张仁,黄河的淤积形态和黄河下游持续淤积的重要原因,泥沙研究,1985(3)。
    [53]谢鉴衡,黄河下游纵剖面变化及其治理问题,人民黄河,1986(6)。
    [54]谢鉴衡,黄河下游纵剖面变化规律及河道治理,当代治黄论坛,科学出版社,1990年
    [55]谢鉴衡,黄河下游悬河现状与治理刍议,泥沙研究,1999(2)。
    [56]庞家珍,司书亨,黄河河口演变Ⅲ—河口演变对黄河下游的影响,海洋与湖沼,1982,13(3)。
    [57]庞家珍,黄河三角洲流路演变及对黄河下游的影响.海洋湖沼通报,1994(3)。
    [58]尹学良,黄河下游平衡纵剖面的塑造,黄河流域环境演变与水沙运行规律文集,地质出版社,1991年。
    [59]陆中臣,冲积河流下游河床持续抬升的数学解释,地理系统研究文集,大连出版社,1991年
    [60]叶青超,陆中臣等,黄河下游河流地貌,科学出版社,1990年
    [61]乐培九,乐培九论文集,水利电力出版社,1999年
    [62]陆中臣,周金星,陈浩,黄河下游河床纵剖面形态及其地文学意义,地理研究,2003,22(1)。
    [63]陆中臣,李忠艳等,黄河下游河流下凹型纵剖面成因分析,泥沙研究,2003(5)。
    [64]姚文艺等,黄河下游河槽萎缩致灾机理探讨,水利学报,2005(3)。
    [65]陈东,曹文洪,胡春宏,河床枯萎的临界闽研究,水利学报,2002,(2)。
    [66]陈建国等,黄河下游河槽萎缩的特点及其水文学背景,泥沙研究,2003(4)。
    [67]陈界仁,夏爱平,黄河下游河槽萎缩与水沙条件关系初步分析,水文,22(6)。
    [68]张治吴,胡春宏,黄河口水沙变异及尾闾河道的萎缩响应,泥沙研究,2005(5)。
    [69]申冠卿,张晓华,赵业安等,黄河下游河道萎缩的特点及其对防洪的影响,黄河水利科学研究院报告(黄利技第96024号),1996年。
    [70]许炯心,陆中臣,刘继详,黄河下游河床萎缩过程中畸形河湾的形成机理,泥沙研究,2000(3)。
    [71]黄金池,黄河下游河槽萎缩与防洪,泥沙研究,2001(4)。
    [72]许炯心,中国江河地貌系统对人类活动的响应,科学出版社,2007年
    [73]许炯心,宽变幅水沙两相流的冲淤双临界现象及其地貌学意义,泥沙研究,2003(4)。
    [74]申冠卿,翟家瑞,曲少军,黄河下游滩区生产堤对防洪影响的研究报告,黄河水利科学研究院,黄科技第ZX-2002-10-18(N11)号,2002年。
    [75]中冠卿,张晓华,李勇等,1986年以来黄河下游水沙变化及河道演变分析,人民黄河,2000,22(9)。
    [76]赵业安,潘贤娣,攀左英等,黄河下游河道冲淤情况及基本规律,黄河水利委员会水利科学研究所科学研究论文集(第一集,泥沙.水土保持),河南科学技术出版社,1989年。
    [77]申冠卿,张晓华,赵业安等,黄河下游河道萎缩的特点及其对防洪的影响,黄河水利科学研究院,黄科技第96024号,1996年
    [78]冯相明,许珂艳,黄河河道萎缩及其对洪水演进的影响,人民黄河,1997,19(7)。
    [79]邵学军,王光谦,黄河上游水能开发对下游水量及河道演变影响初析,水力发电学报,2002(E01)。
    [80]陈志清,50年代以来黄河下游河道的萎缩及其原因,地理研究,1995,14(03)。
    [81]石伟,王光谦,邵学军,流量变化对黄河下游河道演变影响,水利学报,2003(5)。
    [82]张治吴,戴清,李敬义等,黄河口尾闾河道断面形态的萎缩调整规律研究,水道港口,2010(005)。
    [83]张原锋,申冠卿,黄河下游维持主槽不萎缩的输沙需水研究,泥沙研究,2009(3)。
    [84]姚文艺,高航,冷元宝等,黄河下游河道萎缩成因分析,自然灾害学报,2007,16(4)。
    [85]陈东,胡春宏,张启舜等,河床枯萎疏浚浅论,泥沙研究,2000(1)。
    [86]陈界仁,官学文,黄河下游河道萎缩过程初步分析,河海大学学报,2003,31(5)。
    [87]陈建国,胡春宏,戴清,渭河下游近期河道萎缩特点及治理对策,泥沙研究,2002,(6)。
    [88]陈东,张启舜,河床枯萎论,泥沙研究,1997(4)。
    [89]胡一三,曹常胜,黄河下游“96.8”洪水及河势工情,人民黄河,1998,19(5)。
    [90]周景芍,曹常胜,赵银亮,黄河下游“96.8”洪水河势变化特点及险情灾情分析,人民黄河,1998,20(5)。
    [91]李勇,侯素珍等,黄河下游主槽宽度变化对洪水水位涨率的影响,人民黄河,2002,22(11)。
    [92]李文学,李勇等,黄河下游河道行洪能力对河道萎缩的响应关系,中国科学E辑,2004(增刊)。
    [93]陈东等,河床枯萎疏浚浅论,泥沙研究,2000(1)。
    [94]胡春宏,陈建国等,论维持黄河健康生命的关键技术与调控措施,中国水利水电科学研究院学报,2005(1)。
    [95]胡春宏,陈建国等,黄河水沙过程调控与塑造下游中水河槽,人民黄河,2005(9)。
    [96]郭庆超、胡春宏、陈建国、曹文洪,三门峡及黄河下游泥沙关键问题研究,中国水科院第八届青年学术交流会,2005年。
    [97]郭庆超,胡春宏,陈建国,Application of numerical simulation in solving key sediment problems in the Yellow River, US-CHINA Workshop on Advanced Computational Modeling in Hydroscience & Engineering, August 2-5,2005, Oxford, Mississippi, USA。
    [98]胡春宏,郭庆超,陈建国等,塑造和维持黄河下游中水河槽措施研究,水利学报,2006(4)。
    [99]胡春宏,陈绪坚,陈建国,黄河水沙合理配置研究,中国科技论文在线,2007,2(7)。
    [100]胡春宏,陈建国等,论维持黄河健康生命的关键技术与调控措施,中国三峡,2007(4)。
    [101]胡春宏,陈建国,郭庆超,黄河水沙过程调控与下游河道中水河槽塑造,天津大学学报,2008,41(9)。
    [102]胡春宏,陈建国,孙雪岚等,黄河下游河道健康状况评价与治理对策,水利学报,2008(10)。
    [103]胡春宏,陈建国,陈绪坚,论古贤水库在黄河治理中的作用,中国水利,2010(18)。
    [104]胡春宏、陈建国、郭庆超,Shaping and maintaining a medium-sized main channel in the Lower Yellow River, International Journal of Sediment Research,2012,.27(3)。
    [105]李国英,黄河第三次调水调沙试验,人民黄河,2004(10)。
    [106]刘继祥,郜国明等,黄河下游河道冲淤特性研究,人民黄河,2000(8)。
    [107]刘晓燕,张原锋,侯素珍,黄河冲积性河段洪水塑槽机理初步研究,人民黄河,2006,28(4)。
    [108]刘继祥,安催花,曾芹,张厚军,林秀芝,小浪底水库拦沙初期调控流量分析论证,人民黄河,2000,22(8)。
    [109]Long Yuqian, et al, Range survey of deposition in the lower Yellow River, International Journal of Sediment Research,2002,17(2)。
    [110]胡春宏,张治吴.水沙过程变异条件下黄河口拦门沙的演变响应与调控,水利学报,2006(5)。
    [111]张治吴,黄河口尾闾河道萎缩过程中水沙条件的关系,水电能源科学,2010(012)。
    [112]胡春宏,张国罡,黄河下游河道主河槽萎缩特征及其判别参数研究,中国科学:技术科学,2010(10)。
    [113]黄委会规划设计院,水利科学研究所,黄河下游河道的基本情况,1978年。
    [114]胡春宏,陈绪坚,陈建国,黄河干流泥沙空间优化配咒研究,水利学报,2010(3)。
    [115]潘贤娣等,三门峡水库修建后黄河下游河床演变,黄河水利出版社,2006年。
    [116]黄河水利科学研究院,年度咨询及跟踪报告(2006~2007),2007年。
    [117]黄河水利科学研究院,小浪底水库拦沙初期运用分析评估报告,2007年
    [118]陈先德,李雪梅,吕光圻,黄河断流及水资源变化特点,水利水电科技进展,1999,19(1)。
    [119]黄河水利会员会编,黄河首次调水调沙试验,黄河水利出版社,2003年。
    [120]廖义伟,赵成榕,2003年黄河调水调沙试验,人民黄河,2003(11)。
    [121]李国英, Keeping the Yellow River Healthy,第九次河流泥沙国际学术讨论会论文集,2004年。
    [122]潘贤娣等,对黄河水沙特性变化的主要认识,人民黄河,1999(8)。
    [123]尹学良,黄河下游冲淤特性及其改造问题,泥沙研究,1980(复刊号)。
    [124]严军,胡春宏,黄河下游河道输沙水量的计算方法及应用,泥沙研究,2004(4)。
    [125]胡春宏等,论维持黄河健康生命的关键技术与调空措施,中国水利水电科学研究院学报,2005(3)。
    [126]胡春宏,郭庆超,黄河下游河道泥沙数学模型及动力平衡临街阈值探讨,中国科学,E辑,技术科学,2004,34(增刊1)。
    [127]韩其为,水库淤积,科学出版社,2003年
    [128]韩其为,何明民,水库淤积与河床演变的(一维)数学模型,泥沙研究,1987(3)。
    [129]He M M, Han Q W, Mechanism and Characteristics of Nonuniform Sediment Transport, Proceedings of the 3rd Int. Symp. On River Sedimentation, University of Mississippi,1986 年。
    [130]武汉水利电力学院水流挟沙能力研究组,长江中下游水流挟沙能力研究,泥沙研究,1959(2)。
    [131]张瑞瑾,河流泥沙动力学,中国水利水电出版社,1998年
    [132]Guo Qingchao, Jin Yee-Chung, Estimating the Adjustment Coefficient Used in Non-equilibrium Sediment Transport Modeling, Proceedings of 14th Hydrotechnical Specialty Conference, CSCE, Regina, Canada, Vol.11,1999年。
    [133]Guo Q C, Jin Y C, Modeling sediment transport using depth-averaged and moment equations, Journal of Hydraulic Engineering,1999,125 (12)。
    [134]Guo Qingchao, Jin Yee-Chung, Estimating coefficients in one-dimensional depth-averaged sediment transport model, Canadian Journal of Civil Engineering,2001 (28).
    [135]陈绪坚,胡春宏,基于最小可用能耗原理的河流水沙数学模型,水利学报,2004(8)。
    [136]陈绪坚,胡春宏,河床演变的均衡稳定理论及其在黄河下游的应用,泥沙研究,2006(3)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700