用户名: 密码: 验证码:
软弱围岩隧道掌子面稳定性控制及预加固技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国各类交通土建工程如高速铁路、公路及城市地铁等建设全面展开,穿越软弱、破碎围岩等不良地质段的隧道工程不断增加。而软弱围岩隧道的修建一直是隧道设计和施工的技术难点。鉴于此,本文对软弱围岩隧道掌子面稳定性控制及预加固技术的关联性问题,开展了全面、系统、深入的研究工作。主要工作和成果如下:
     (1)采用极限平衡法,建立了掌子面稳定分析水平条分模型,该模型能有效克服垂直划分的条块与加固结构体锚杆等存在交叉的缺点,并提出了掌子面锚杆加固等效压力系数ka,该系数能方便用于水平条分模型中,能较为准确地对掌子面锚杆加固效果进行模拟,基于该模型,分析了土体参数、掌子面锚杆加固强度等因素对维持掌子面稳定所需极限支护力的影响进行研究。
     (2)基于极限分析上限定理,建立隧道掌子失稳破坏模型,该模型能考虑未支护段及掌子面锚杆加固等预加固手段对掌子面稳定性的影响。基于该模型,分析了未支护段长度、土体参数、隧道埋深、未支护段支护力、掌子面锚杆加固强度等因素,对维持掌子面稳定所需极限支护力的影响进行研究。该模型能有效模拟隧道深浅埋不同的破坏模式,并对纵向拱效应进行模拟。
     (3)以围岩与支护结构相互作用为基础,建立了掌子面前方围岩变基床系数下的管棚双参数弹性地基梁有限差分力学分析模型,系统分析了隧道开挖过程中的管棚的变形、受力特征及传递荷载特性,并研究了开挖进尺、基床系数、掌子面加固强度、隧道埋深等因素对管棚作用特性的影响。
     (4)采用GFRP筋与混凝土粘结锚固性能试验,得出钢筋与纤维筋粘结比例系数为1.2~1.5,确定了GFRP筋最小锚固长度取为20倍筋材直径。修订了GFRP筋与混凝土间粘结滑移CMR模型中的sr、β参数,该参数与试验具有较好拟合度,具有一定的可靠度及安全度。提出了GFRP筋锚杆剪切刚度求解公式,该公式对于纤维筋锚杆剪切刚度具有良好的模拟性。
     (5)采用大型室内相似模拟试验手段,研究了管棚作用机理,管棚能将荷载向掌子面前方传递1.25~3.75m,可认为管棚能将传递到掌子面上的荷载作用位置向掌子面前方转移约为0.1~0.3D,管棚传递荷载的特性主要是发挥荷载传力梁作用将荷载进行分散传递,减小荷载集中。
     (6)研究发现掌子面锚杆加固围岩稳定和控制掌子面变形机制与纵向压力拱效应密切相关。掌子面锚杆所引起的纵向压力拱的范围(0.6D)要小于管棚、小导管结果。掌子面锚杆能促进纵向拱效应在近距离内形成,充分调动和发挥围岩的自承能力,从而控制掌子面前方围岩的变形及防止围岩失稳塌方。
     (7)通过对采用不同加固措施条件下隧道未支护段围岩稳定性,得出小导管和管棚对上部围岩的位移控制属于“被动式”控制,其是通过控制下部围岩的位移而实现对上部围岩的位移限制;掌子面锚杆对未支护段上部围岩的位移控制属于“主动式”控制,掌子面锚杆通过前方“待挖核心土”的加固,可以促进开挖后地层拱的形成,抑制变形向深部岩体扩展。
     (8)研究洞内预加固(掌子面锚杆)与洞周预加固(管棚、小导管)技术联合工作特性,得出正面锚杆和超前小导管的联合使用可集合掌子面锚杆在控制掌子面挤出变形及深部岩体变形的优势和小导管在未支护段控制拱顶附近围岩变形的优势。在联合支护体系中,二者对围岩变形的控制效果不会相互抵消,正面锚杆起主要作用,小导管只起辅助作用。
     (9)对不同施工方法下软弱围岩隧道围岩应力、变形和塑性区综合分析,得出全断面预加固工法优于三台阶七步法,而三台阶七步法优于双侧壁导坑法。全断面预加固工法通过掌子面锚杆超前加固核心土,增加待挖核心土的强度和刚度,可以显著控制围岩的变形。与其他工法相比,全断面预加固工法开挖施工空间大,能引入大型施工机械,采用更大的开挖进尺,可兼顾工程造价、施工速度与施工安全,具有很高的综合优势。
With the development and upgrade of infrastructure such as high speed railway, expressway, railway, water conveyance, urban subway and many other facilities, the NATM tunnels with soft surrounding rockmass construction are gradually increasing in China. Particular attention is focused on the design and construction of NATM tunnels with soft surrounding rockmass, which are regarded as the key issues so as to determine success of the whole transportation engineering. In view of this, the stability control of tunnel face and pre-reinforcement technology in soft surrounding rock is studied systematically and deeply in this thesis. The main works and research achievements as follows:
     (1) Based on the limit equilibrium analysis theory, a new model for tunnel face stability analysis is presented by use of horizontal slice method. This model can overcome the shortcomings that the intersections between the slices and the bolt by using vertical slice method to some extent. The equivalent pressure coefficient'ka'of tunnel face bolt reinforced is put forward. With this coefficient, the reinforcement effect of tunnel face bolt is simulated conveniently and reasonably by using the horizontal slice method. Furthermore, the influence of the soil parameters and the strength of tunnel face reinforce on the tunnel face limit supporting forces are studied.
     (2) According to the limit analysis method, the tunnel face failure model considering the factors of unsupported section and tunnel face bolt and pre-consolidation measures is established. In order to investigate the tunnel face limit support forces, the paper studies the factors such as soil parameters the length and support force of unsupported section, tunnel depth and tunnel face bolt reinforce strength. Thus, the failure modes of shallow and deep buried tunnels with longitudinal arching effect are obtained.
     (3) Based on the interaction between support structure and ground, a double-parameter elastic foundation beam model with variable coefficients of coefficient of subgrade reaction for pipe roof is presented and the solution of this model is given by finite difference method. The research of the mechanical behavior, deformation characteristics and load transferring effects of pipe roof are carried out. In addition, the influence of excavation length, tunnel face reinforce strength and tunnel depth on pipe roof action are studied.
     (4) Through the tests of bond behavior between GFRP rebar and concrete, the paper draw conclusions that the bond proportional coefficient of steel to GFRP reinforcement approximately equal to1.2~1.5and minimum anchorage length is20times diameter. The CMR model of bond-slip relationship of GFRP rebars in concrete parameters sr and P are modified. These parameters have not only high fitting degree in comparison with test results, but also have certain degree of reliability and safety. The formula for calculating shear stiffness of GFRP bolt with high degree of reliability is put forward.
     (5) By means of large-scale similarity model test, the mechanism of pipe roof pre-support is studied. It is found that the load can be transferred to the distance between1.25m and3.75m (i.e.0.1~0.3D) in front of tunnel face. In short, the mechanism of pipe roof pre-support is regarded as the action of load transferring with beam effect and dispersing load and decreasing stress concentration.
     (6) The pre-reinforcing mechanism of face bolt improving the stability of surrounding rook by controlling deformation of tunnel face is closely related to the effect of longitudinal pressure arch. In addition, the range of longitudinal pressure arch by face bolt reinforced is about0.6D, which is less than the results of small pipe reinforced and pipe roof reinforced. By face bolt promoting the formation of longitudinal pressure arch in short distance, the stability of tunnel face can be effectively improved and prevent surrounding rock collapse.
     (7) Though analysing of the stability of soft surrounding rockmass in unsupported section, the result shows that the deformation of the upper rock mass of tunnel is controlled by limiting the loosening ground deformation around tunnel in cases of supporting by pipe roof or small pipe, the effects of pipe roof or small pipe are regarded as the passive-control. Comparing the difference of the effects above, the deformation of surrounding rock mass of tunnel in case of face bolt supporting is effectively controlled by enhancing the rockmass strength of the core zone in front of tunnel face with forming longitudinal pressure arch, the effect is regarded as the active-control.
     (8) Base on the analysis of work characteristics of all kinds of the pre-reinforcement measures around face, we can benefit from the combination action of face bolt support together with small pipe, making use of face bolt advantage in controlling deformation of face extrusion and in limiting the deformation of rock mass in unsupported section around tunnel. In the combination supporting system, their controlling effects can not be counteracted. The face bolt pre-reinforcing measure is seen as the major load bearing component of the pre-support system, and the small pipe supporting measure is relatively seen as a partial load bearing component of the pre-support system.
     (9) By comprehensive analysing surrounding rockmass stress, deformation and plastic zone, the different tunnel construction methods in soft surrounding rockmass are studied. The result shows that the full face method with tunnel face bolt pre-reinforcing is much better than three-bench seven-step method, and the three-bench seven-step method has an advantage over the double side drifts method. Through enhancing the rockmass strength of the core zone in front of tunnel face by bolt, the surrounding rock deformation can be controlled effectively by the full face method with tunnel face bolt pre-reinforcing. In contrast with other methods, the full face method with tunnel face bolt pre-reinforcing is more competitive in terms of cost and excavation speed and construction safety, and allows the use of a large excavation area, using large construction machinery with deeper excavated length.
引文
[1]关宝树.隧道施工的技术特性、理念及其发展[J].铁道建筑技术,2003.3.
    [2]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1):7-9.
    [3]郭陕云.论我国隧道和地下工程技术的研究和发展[J].隧道建设,2004.(5):1-5
    [4]蒋树屏.在2008年全国公路隧道学术会议开幕式上的讲话.2008.10
    [5]王建红.浅谈软弱围岩隧道施工技术[J].铁道建筑,2006(12):54-55
    [6]周建富.软弱围岩隧道施工技术[硕士学位论文D].四川成都:西南交通大学,2005
    [7]王建宇.隧道工程的技术进步[M].北京:中国铁道出版社,2004:50-51
    [8]何满潮,黄福昌,阎吉太.软岩工程技术现状与展望[M].世纪之交软岩工程技术现状与展望.北京:煤炭工业出版社,1999
    [9]黄成光.公路隧道施工[M].北京:人民交通出版社,2001.
    [10]常艄东.管棚超前预支护机理研究[D].西南交通大学博士学位论文.1999.
    [11]关宝树,赵勇.软弱围岩隧道施工技术[M].北京:人民交通出版社,2011.
    [12]皇甫明,孔恒,王梦恕等.核心土留设对隧道工作面稳定性的影响[J].岩石力学与工程学报,2005,24(3):521-525.
    [13]郭桃明,李德武,宋妍.核心土对软弱围岩隧道掌子面稳定性的影响[J].兰州交通大学学报(自然科学版),2007,26(6):34-37.
    [14]郭迎平,孙志杰.核心土对隧道围岩变形的时空效应分析[J].公路交通科技(应用技术版),2011,11:192-197.
    [15]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [16]杨其新,王明年.地下工程施工与管理[M].成都:西南交通大学出版社,2005.
    [17]彭立敏,刘小兵.交通隧道工程[M].长沙:中南大学出版社,2003.
    [18]蒋礼明, 邓刚.超前小导管双液注浆预支护的施工技术[J].四川水力发电,2004,23增刊:41-42.
    [19]裴巧玲,薛鑫.小导管注浆技术在浅埋暗挖法施工中的探索与应用[J].长春工程学院学报(自然科学版),2010,11(1):23-25.
    [20]许建云.小导管预注浆加固软弱围岩的隧道施工[J].铁道建筑,2001,10:34-36.
    [21]徐哲文.破碎围岩隧道开挖小导管高压注浆机理及效果分析[J].北京交通 大学学报,2008,32(4):132-137.
    [22]孙星亮,刘勇,王朝建.国内外水平旋喷注浆加固技术的应用发展[J].探矿工程(岩土钻掘工程),2001,1:8-11
    [23]Sebast ino Pelizza, Daniele Peila. Soil and Rock Reinforcements in Tunnelling [J]. Tunnelling and Underground Space Technology,1993, 8(3):223-233.
    [24]王圣涛,邓敦毅.水平旋喷桩在深圳地铁超前预加固中的应用[J].铁道建筑,2003,6:29-31.
    [25]Johnson. Jet Grouting Aids Driveage in Loose Rock[J]. Tunnels and Tunnelling,1989, (10):53-54.
    [26]程桦,姚直书,张经双等.人工水平冻结法施工隧道冻胀与融沉效应模型试验研究[J].土木工程学报,2007,40(10):80-85.
    [27]陶德敬,王明年,刘大刚.冻结法隧道施工引起的地表移动及变形预测.现代隧道技术,2006.43(6):45-50.
    [28]岳丰田,张水宾,李文勇,等.地铁联络通道冻结加固融沉注浆研究[J].岩土力学,2008,29(8):2283-2286.
    [29]B.Cazenave, Y.Le.Goer.机械预切槽法.世界隧道.1997(2):30-36.
    [30]E.Van.Walsum. The mechanical Pre-cuting tunneling method. Rapid Excavation Tunnelling Conference Proceeding.1993
    [31]郭金敏,李永生.注浆材料及其应用[M].徐州:中国矿业大学出版社,2008.
    [32]郝哲,王来贵,刘斌.岩体注浆理论与应用[M].北京:地质出版社,2006.
    [33]王建亚.地表注浆法处治软弱围岩效果分析[J].湖南交通科技,2010,36(2):172-175.
    [34]刘杰,赵成江.注浆法在黄土地区公路隧道陷穴处理中的应用[J].建筑设计,2008,37(4):141-143.
    [35]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [36]赵建平.浅埋暗挖隧道管棚预支护机理及其效果研究[D].中南大学硕士学位论文.2005.
    [37]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报,2005,14(14):2565-2570.
    [38]王在仁.管棚法在地下工程中的应用[J].铁道工程学报,1993(3):82-86.
    [39]董新平,周顺华.管棚法在东部城市软弱地层中应用前景综述[J].现代隧道技术,2004,增刊:212-215.
    [40]W.L.Tan, P.G. Ranjith. Numerical Analysis of Pipe Roof Reinforcement in Soft Ground Tunnelling[A].In:Proc. of the 16th International Conference on Engineering Mechanics[C].ASCE, Seattle, USA,2003.(in CDRom)
    [41]P. Lunard. Cellular arch Technique for Large-Span Stalion Carern. Tunnels & Tunnelling.罗富荣,肖龙鸽(译).铁道工程学报,1994,1:115-122.
    [42]R. Abraham Ellstein. Heading failure of lined tunnels in soft soils.Tunnels&Tunneling,1986,18(6):51-54.
    [43]R. Hara, K. Hatayama, Y. Matsumoto. New tunneling technique prelining method, Proceedings of International Congress on Progress and Innovation in Tunneling, Canada,1989, (2):979-984.
    [44]Peila, D. A theoretical study of reinforcement influence on the stabiliy of a tunnel face. Geotechnical and Geological Engineering.12:pp.145-168.
    [45]Dias, D., Kastner. R, et al. Behavior of a tunnel face reinforced by bolts: Comparison between models. Proc. The Geotechnics of Hard Soils-Soft Rocks.(eds Evangelists& Picarelli).Balkenra.pp.961-972
    [46]Henry Wong. Didier subrin. et al. Extrusion movement sofa tunnel bead reinforced by finite length bolts-a closed-form solution using homogenization approach. Int. J. Numer. Anal.Meth.Geomech.,2000,24:533-565
    [47]符华兴,朱智.南岭隧道用长管棚法通过严重岩溶地段[J].铁道工程学报,1987,4:96-101.
    [48]杨维武,文桂录,田维金等.八盘岭隧道富水断层破碎带预注浆[C].全国首届岩石锚固与注浆学术会议,1995
    [49]陈家纯.锚喷支护在八盘岭隧道中的应用.东北水利水电[J],2003,21(8):36-36.
    [50]张溶.中梁山隧道不良地质地段大断面施工[J].公路,1994,(9):29-32.
    [51]李志雄,章立峰,祁世亮.地铁南京站过站区隧道大管棚施工技术[J].隧道建设,2003,23(4):33-35,38.
    [52]陈浩,姜景山,姚海波.崇文门车站过既有线管棚施工及变形分析[J].隧道建设,2006,26(1):78-80.
    [53]李强,欧阳院平,王明年.软弱围岩隧道洞口段超前支护的三维数值分析[J].铁道建筑,2005,(3):32-34.
    [54]郭雪莽,汪伦焰.隧道洞口超长管棚效应分析[J].隧道建设,2004,24(1):3-5.
    [55]伍振志,傅志锋,等.浅埋松散地层开挖管棚注浆法的加固机理及效果分析[J].岩土力学与工程学报,2005,24(6):1025-1029.
    [56]C.O. Aksoy, T. Onargan. The role of umbrella arch and face bolt as deformation preventing support system in preventing building damages[J].Tunnelling and Underground Space Technology,2010,25(5):553-559.
    [57]庄丽,雷震宇.软弱地层管棚施工中失水引起的地表沉降计算[J].地下空间与工程学报.2005,1(3):383-385.
    [58]Kotake, N., Yamamoto, Y, et al.(1992).A study on applieability of horizontal jet-grouting in very large tunnel.proc.Annual Conf.JSCE:PP.692-693.
    [59]Koizumi, M., Imamura, O, et al. (1990).Construction of 3-lane tunnel with thin earth coving Shoryou No.1 Tunnel on Tokyo-Nagoya Expressway-(part2):Tunnels and Underground.Vol.21. (6).PP.463-471.
    [60]SIG 1992.Soil and rock improvement in underground works.Proe.Ini.Cong.Towards New worlds in Tunneling. (Acapulco).Vol.2.PP.865-872.
    [61]毕俊丽,王伟锋,刘昌林.浅埋双连拱隧道进洞口管棚预支护参数分析[J].隧道建设,2008,28(4):438-445.
    [62]张红卫,任建喜,李振.隧道管棚注浆超前支护在特殊条件下的应用[J].西安科技大学学报,2009,29(2):165-169.
    [63]G. J. Bae, H. S. Shin, C. Sicilia, et al. Homogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunneling. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(1):1-24.
    [64]A.M. Hefny, W.L. Tan, P. Ranjith, et al. Numerical analysis for umbrella arch method in shallow large scale excavation in weak rock. Tunnelling and Underground Space Technology,2004, (19):500.
    [65]G. Volkmann, W. Schubert. Optimization of excavation and support in pipe roof supported tunnel sections. Tunnelling and Underground Space Technology, 2006,21:404.
    [66]T. Okawa, J. Yokoyama, H. Ishihara, et al. Effect of pipe-roof in tunneling method. Proceedings of the Japan Society of Civil Engineers,1985,3:100-107.
    [67]邢厚俊,徐祯祥.大管棚在超浅埋暗挖大跨度隧道工程中的应用[J].岩石力学与工程学报,1999,18(增刊):1059-1061.
    [68]武建伟,宋卫东.浅埋暗挖管棚超前预支护的受力分析[J].岩土工程技术,2007,21(3):116-121.
    [69]姚海波.大断面浅理暗挖法下穿既有地铁构筑物施工技术研究[D].北京交通大学博士学位论文.2005.
    [70]M.Hisatake, S.Ohno. Effects of pipe roof supports and the excavation method on the displacements above a tunnel face. Tunnelling and Underground Space Technology,2003,23:120-127.
    [71]苟德明.既有公路下连拱隧道管棚变形测试与作用机理研究[D].长沙理工大学硕士学位论文.2007.
    [72]郑俊杰等.浅埋隧道变基床系数下管棚的力学机制分析[J].岩土工程学报,2009,31(8):1165-1171.
    [73]Jong-Ho Shin, Yong-Ki Choi, Oh-Yeob Kwon. Model testing for pipe-reinforced tunnel heading in a granular soil. Tunnelling and Underground Space Technology,2008,23:241-250.
    [74]董新平,周顺华.软弱地层管棚荷载传递作用分析[J].现代隧道技术,2005,42(6):24-29.
    [75]董新平,周顺华,胡新朋.软弱地层开挖荷载引起管棚内力敏感度分析[J].同济大学学报(自然科学版),2006,34(8):1016-1020.
    [76]董新平,胡新朋,周顺华.软弱地层管棚作用特性判别与分析[J].地下空间与工程学报,2006,2(4):631-634.
    [85]Y. Goto, A. Yamashita, Y. Takase. Field observation of load distribution by joint in pipe beam roof. Proceedings of the Japan Society of Civil Engineers,1984, 387-390.
    [86]Y. Goto, A. Yamashita, T. Iida. Load distribution by joint in pipe beam roof. Japan Society of Civil Engineers,1984:243-252.
    [87]翟进营,杨会军,王莉莉.新意法隧道设计施工概述[J].隧道建设,2008,28(1):46-50,55.
    [88]梅志荣,陈涛.高速铁路隧道全断面预加固技术的应用研究[J].隧道建设,2008,28(5):542-547.
    [89]王正松,孙铁成,高波.全断面预加固隧道施工工法(新意法)[J].铁道标准设计,2007(S1):170-173.
    [90]K.Date, R.J.Mair, K.Soga. Reinforcing effects of forepoling and facebolts in tunnelling In:6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Sep 2008, Shanghai, China.
    [91]Pierre Chambon, Jean -Francois Corte. Shallow tunnels in cohesionless soil stability of tunnel face. Journal of Geotechnical Engineering,1994.
    [92]D PEILA. A theoretical study of reinforcement influence on the stability of a tunnel face.Geotechnical and Geological,1994,12:145-168.
    [93]Chungsik Yoo, Hyun-Kang Skin.Deformation behaviour of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation.Tunnelling and Underground Space Technology,2003,
    [94]Broms B B, Bennermark H. Stability of clay at vertical openings[J]. Journal of the Soil Mechanics and Foundations Division,1967,93(1):71-94.
    [95]Attewell P B, Boden J B. Development of stability ratios for tunnels driven in clay[J]. Tunnels and Tunnelling,1971 (3):195-198.
    [96]Atkinson J H, Potts D M. Stability of a shallow circular tunnel in cohesionless soil[J].G'eotechnique,1977,27(2):203-215.
    [97]Davis E H, Gunn M J, Mair R J, et al.. The stability of shallow tunnels and underground opening in cohesive material [J]. Geotechnique,1980,30 (4): 397-416.
    [98]Leca E, Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique,1990, 40(4):581-606
    [99]Soubra A H. Three-dimensional face stability analysis of shallow circular tunnels[C]. International Conference on Geotechnical and Geological Engineering,19-24 November 2000. Melbourne, Australia
    [100]Soubra A H. Kinematical approach to the face stability analysis of shallow circular tunnels[C].8th International Symposium on Plasticity,443-445. Canada, British Columbia.
    [101]项兆池,楼如岳,傅德明.最新泥水盾构技术[R].上海:上海隧道工程股份有限公司,2001.
    [102]秦建设.盾构施工开挖面变形与破坏机理研究.[D].南京:河海大学,2005.
    [103]黄正荣,朱伟,梁精华,秦建设.盾构法隧道开挖面极限支护压力研究[[J].土木工程学报,2006,39(10):112-116.
    [104]周小文,蹼家骆,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究[[J].长江科学院院报,1999,16(4):9-14.
    [105]Hirohisa Kamata, Hideto Mashimo. Centrifuge model test of tunnel face reinforcement by bolting. Tunnelling and Underground Space Technology,2003, 18:205-212.
    [106]Young-Zoo Lee, Wulf Schubert. Determination of the round length for tunnel excavation in weak rock. Tunnelling and Underground Space Technology, 2003,23:221-231.
    [107]C.J.Lee, B.R.Wu, H.T.Chen, K.H.Chiang. Tunnel stability and arching effects during tunneling in soft clayey soil. Tunnelling and Underground Space Technology,2006,21:119-132.
    [108]Daniel Dias, M. ASCE, Jean-Pierre Janin, Abdul-Hamid Soubra.Three-dimensional face stability analysis of circular tunnels by numerical simulations, GeoCongress 2008, Denver, pp.1-8.
    [109]彭亚萍,刘增夕,徐新生.GFRP在土木工程结构中的应用形式[J].高科技纤维与应用,2007,27(5):21-24.
    [110]陈德伍.FRP筋的性能及其在土木工程中的应用[J].山西建筑,2008,34(6):190-191.
    [111]裴卿.纤维增强塑料锚杆研究[J].公路与汽运,2008,(2):109-112.
    [112]Charles W Dolam. FRP Prestressing in the USA. Concrete International, 1999(10):21-24.
    [113]Charles W.Dolan, P.E. FRP Development in the United States.Fiber Reinforced-Plastic(FRP)
    [114]Luc R, Taerwe, Stijn Watthys. FRP for concrete construction:Activities in Europe [J]. Concrete Intenational,1999(10):33-36.
    [115]Reinforcement for Concrete Structures:Properties and Applications. Vol.42, A. Nanni, ed., Elsevier, Amsterdam,1993.129-161
    [116]Hiroshi Fukuyama. FRP Composites in Japan. Concrete International,1999 (10):29-32.
    [117]Yasuhisa Sonobe. An overview of R&D in Japan. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures:Properties and Applications. Vol.
    42, A. Nanni, ed., Ft-vier, AmsrPrdam,1993.115-128 [118] Hiroshi Fukuyama. FRP composites in Japan. Concrete International, ACI,1999
    [119]薛伟辰.混凝土结构中新型配筋FRP的试验研究.河海大学博士后研究工作报告,1998
    [120]薛伟辰,康清梁.纤维塑料筋FRP在混凝土结构中的应用.工业建筑,1999,29(2):19-21
    [121]高丹盈,李趁趁.朱海堂.纤维增强塑料筋的性能与发展.纤维复合材料,2002(4):37-42
    [122]高丹盈,B.Brahim纤维聚合物筋与混凝土粘结机理及锚固长度的计算方法[J]水利学报2000,(11):70-78
    [123]高丹盈,B.Brahim纤维聚合物筋与混凝土粘结性能的影响因素[J]工业建筑2001,31(2):9-14
    [124]高丹盈,谢晶晶,李趁趁纤维聚合物筋混凝土粘结性能的基本问题[J].郑州大学学报(工学版)2002,23(1):1-5
    [125]高丹盈,朱海堂,谢晶晶纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑2003,23(7):41-43.
    [126]吕志涛.高性能材料FRP应用与结构工程创新.建筑科学与工程学报[J].2005.22(1):1-5
    [127]郭恒宁.FRP筋与混凝土粘结锚固性能的试验研究和理论分析[D].南京:东南大学.2006.
    [128]钱洋.预应力AFRP筋混凝土梁受弯性能试验研究[D].南京东南大学土木学院,2004
    [129]梅葵花.CFRP筋拉索斜拉桥的研究[D].南京:东南大学.2005
    [130]薛伟辰.不同试验方法对GFRP筋粘结强度的影响研究[J],玻璃钢/复合 材料,2003,(5):10-13.
    [131]贾新.玻璃纤维增强塑料锚杆锚固机理研究[D].上海:同济大学.2005.
    [132]李志业,张志强.玻璃纤维(GFRP)筋在盾构端头井维护桩中的应用研究报告[R].成都:西南交通大学土木工程学院.2007.
    [133]唐协.玻璃纤维(GFRP)筋混凝土构件正截面承载力设计方法研究[D].成都:西南交通大学土木工程学院.2007.
    [134]崔强.玻璃纤维(GFRP)筋混凝土构件斜截面抗剪性能及工程设计研究[D].成都:西南交通大学土木工程学院.2007.
    [135]邹永威.玻璃纤维(GFRP)筋在盾构端头井围护桩中的应用研究[D].成都:西南交通大学土木工程学院.2008.
    [136]锚杆喷射混凝土支护技术规范GB50086-2001
    [137]岩土锚杆(索)技术规程,CECS22,2005
    [138]张海霞,朱浮声,孙丽,等.FRP筋与混凝土粘结滑移试验研究[J].沈阳建筑大学学报(自然科学版),2008,24(6):989-992.
    [139]郝庆多,张志春,王言磊,等.GFRP变形筋粘结性能试验研究[J].武汉理工大学学报(交通科学与工程版),2007,31(5):784-787.
    [140]郝庆多,王言磊,侯吉林,等.GFRP带肋筋粘结性能试验研究[J].工程力学,2008,25(10):158-179.
    [141]张海霞,朱浮声,王凤池.FRP筋与混凝土粘结滑移数值模拟[J].沈阳建筑大学学报(自然科学版),2007,23(2):231-23.4.
    [142]张鹏,江世永,熊晔,等.芳纶纤维塑料筋混凝土的粘结性能试验研究[J].四川建筑科学研究,2007,33(3):95-98.
    [143]Ehab A. Ahmed, Ehab F. El-Salakawy, Brahim Benmokrane. Tensile Capacity of GFRP Postinstalled Adhesive Anchors in Concrete[J].Journal of Composites for Construction,12(6):596-607
    [144]Burong Zhang, Brahim Benmokrane.Pullout Bond Properties of Fiber-Reinforced Polymer Tendons to Grout[J] Journal of Materials in Civil Engineering,2002,14(5):399-408.
    [145]O. CHAALLAL, B.BENMOKRANE. Pullout and bond of glass-fibre rods embedded in concrete and cement grout[J].MATERIALS AND STRUCTURES, 1993,26(3):167-175.
    [146]B. Tighiouart, B.Benmokrane, D. Gao. Investigation of bond concrete member with fiber reinforced polymer (FRP) bars. Construction and Building Materials,1998 (12):453-462
    [147]Marta Baena, Lluis Torres, Albert Turon, Cristina Barris. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test[J]. Composites Part B:Engineering,2009,40(8):784-797.
    [148]Pecce M, Manfredi G, Realfonzo R. Experimental and Analytical Evaluation of Bond Properties of GFRP Bars[J].Journal Materials in Civil Engineering, ASCE2001,13 (4):282-290.
    [149]E. Cosenza, G. Manfredi, R. Realfonzo. Development length of FRP straight rebars[J]. Composites Part B:Engineering,2002,23(7):493-504.
    [150]M.R.E hsani, H.Saadatmanesh, S.Tao, Design recommendation for bone of G FRP rebars to concrete, JOURNAL OF STRUCTURAL ENGINEERING March,1996(2):47-25
    [151]Ehsani M R, Saadatmanesh H, Tao S. Design recommendations for bond of GFRP rebars to concrete[J].Journal of Structural Engineering,1996:247-254.
    [152]Brahim B, Zhang B, Adil C. Tensile properties and pullout behavior of AFRP and CFRP rods for grouted anchor applications. Construction and Building Materials 2000(14):157-170
    [153]Al-Zahrani Mesfer M., Al-Dulaijan Salah U., Nanni Antonio, Bakis Charles E.&Boothby Thomas E., Evaluation of bond using FIRP rods with axisymmetric deformations.Construction and Building Materials,1999, 13(6):299-309
    [154]Focacci F, Nanni A, Bakis C E. Local Bond-slip Reinforcement in Concrete [J].Journal of Composites Relationship for FRP for Constructiong ASCE,2000,4(1):24-31.
    [155]Russo G, Zingone G, Romano F. Analytical Solution for Bond-Slip of Reinforcing Bars in R. C. Joints [J].Structural Engineering, ASCE,1990, 116(2):336-355.
    [156]Sakai T, Kanakubo T, Yonemaru K et al. Bond Splitting Behavior of Continuous Fiber Reinforced Concrete Members in Fiber Reinforced Polymer for Reinforced Concrete Structures[J].ACl-SP 188,1999:1131-1144.
    [157]Ehsani M R, Saadatmanesh H. TAO S. Design Recommendations for Bond of GFRP Rebars to Concrete[J].Materials and Structural Engineering, 1996:247-254.
    [158]Brahim Benmokrane, Burong Zhang, Kader Laoubi et al. Mechanical and Bond Properties of New Generation of Carbon Fibre Reinforced Polymer Reinforcing Bars for Concrete Structures[J].Can. J. Civ. Eng.29 (2002):338-343.
    [159]Faoro M. Bearing and deformation behaviour of structural components with reinforcements comprising resin bonded glass fiber bars and conventional ribbed steel bars [C]. Proceeding International Conference on Bond in Concrete,1992.
    [160]Alunno Rossetti V, Galeota D, Giammatteo M M. Local bond stress-slip relationships of glass fiber reinforced plastic bars embedded in concrete [J]. Materials and Structures,1995,28(180):340-344.
    [161]Cosenza E, Manfredi G, Realfonzo R. Analytical modeling of bond between FRP reinforcing bars and concrete [C]. Proceedings of the Second International RILEM Symp. (FRPRCS-2), Taerwe L,1995.
    [162]Eligehausen R, Popov E P, Bertero V V. Local bond stress-slip relationships of deformed bars under generalized excititations [C]. Berkeley: Report No.83/23, EERC,1983.
    [163]Malvar L Javier.Tensile and bond properties of GFRP reinforcing bars [J]. ACI Materials Journal,1995,92(3):276-285.
    [164]Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete [J]. Journal of Composites for Construction,1997,1(2): 40-51.
    [165]薛伟辰.纤维塑料筋粘结锚固性能的试验研究[J].工业建筑,1999,29(12):5-7.
    [166]高丹盈,B. Brahim.纤维聚合物筋混凝土的粘结机理及锚固长度的计算方法[J].水利学报,2000,(11):70-78.
    [167]朱浮声,张海霞.影响FRP筋与混凝土黏结性能的主要因素[J].沈阳建筑大学学报(自然科学版),2006,33(3):397-401.
    [168]郝庆多,王言磊,欧进萍.拉拔条件下GFRP筋与混凝土粘结强度试验研究[J].建筑结构学报,2008,29(1):103-111.
    [169]郑乔文,薛伟辰.粘砂变形GFRP筋的粘结滑移本构关系[J].2008,25(9):162-169.
    [170]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [171]Chungsik Yoo. Finite-element analysis of tunnel face reinforced by longitudinal pipes[J].Computers and Geotechnics,2002,28(1):73-94.
    [172]陈惠发.极限分析与土体塑性[M].北京:人民交通出版社,1995.
    [173]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.[174] Ali Porbaha, Aigen Zhao, Masaki Kobayashi, et al.Upper bound estimate of scaled reinforced soil retaining walls [J]. Geotextiles and Geomembranes, 2000, (18):403-413.
    [175]杨峰,阳军生,赵炼恒.浅埋隧道工作面破坏模式与支护反力研究[J].岩土工程学报,2010,32(2):279-284.
    [176]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.
    [177]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [178]杨位洗.地基与基础[M].北京:中国建筑工业出版社,1998.
    [179]徐景茂,顾雷雨.锚索内锚固段注浆体与孔壁之间峰值抗剪强度试验研究[J].岩石力学与工程学报,2004,23(22):3765-3769.[180]钟善桐.钢管混凝土刚度的分析[J].哈尔滨建筑大学学报,1999,32(3):13-18
    [181]中华人民共和国铁道部.TB 10003-2005铁路隧道设计规范[S],北京:中国铁道出版社,2005.
    [182]李光京.高速铁路隧道管棚超前支护作用机理研究[D].成都:西南交通大学土木工程学院,2010.
    [183]American Concrete Institute.ACI440.1R-03 Guide for the design and construction of concrete reinforced with FRP bars[S].Detroit:American Concrete Institute,2003.
    [184]彭伟,张杰,荣国能,等.钢结构设计原理[M].成都:西南交通大学出版社2004.
    [185]刘次华.概率论与数理统计[M].武汉:华中科技大学出版社,2009.
    [186]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2008.
    [187]中华人民共和国建设部.GB50152-92混凝土结构试验方法标准[S].北京:中国标准出版社,1992.
    [188]Zenon Achillides, Kypros Pilakoutas. Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions[J].Journal of Composites for Construction,2004,8(2):173-181.
    [189]丁秀丽,盛谦,韩军,等.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报,2002,21(7):980-988.
    [190]St. John, C.M., D. E. Van Dillen. "Rockbolts:A New Numerical Representation and Its Application in Tunnel Design, " in Rock Mechanics-Theory-Experiment-Practice (Proceedings of the 24th U.S. Symposium on Rock Mechanics, Texas A&M University, June 1983), pp.13-26. New York:Association of Engineering Geologists,1983.
    [191]中冶集团建筑研究总院.CECS 22:2005岩土锚杆(索)技术规程[S].北京:中国计划出版社,2005.
    [192]GNILSEN R. Underground Structures Design and Instrumentation, Amsterdam, Elsevier,1989:84-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700