用户名: 密码: 验证码:
道路运输超限货物在途安全评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超限货物又称重大件货物、超限超重货物、大型物件,随着国内大型工程项目的大量开工建设,对这类货物(设备)需求的数量不断增长。由于超限货物的生产周期长、批量小、价值高等特点,因此,研究超限货物在运输过程中的安全具有重要的意义。
     常见的超限货物运输方式主要有水路运输、铁路运输、公路运输、水陆联运等几种。传统的安全评估方法主要是依靠决策者经验,对于运输过程中存在的问题很少量化表达,对问题的描述与处理缺乏足够的科学依据。为改变安全评估现状,本文基于汽车行驶理论、事故致因理论、运用有限元分析法、层次分析法、模糊综合评价法、现代测试技术,结合超限货物运输的特点对运输过程进行了系统分析和综合评价,以便获得科学的评估方法。
     本文在查阅了国内外相关文献的基础上,确定使用层次分析法——模糊综合评价法作为主要研究方法。首先根据超限货物运输的实际情况建立层次分析法所用的目标层、准则层、指标层,并通过专家打分(标度)的方式求得各项对系统安全的贡献程度,然后通过模糊综合评价法对系统的安全状态进行安全性评估。
     由于模糊综合评价法涉及到隶属度问题,而该隶属度的取得主要是基于人为评价,为尽量减少人主观因素的影响,本文结合实际运输作业环境,利用相关理论对层次分析法指标层中各个因素的隶属度进行了重新评价:
     (1)从汽车行驶安全的角度出发,分析了牵引车的配载、平板车的轴线配置情况对整体安全的影响;
     (2)结合有限元分析方法判定车辆启动、刹车时加速度对货物安全的影响,并讨论了颠簸路况、摩擦受力、恶劣天气、货物加固方式对绑扎钢丝绳的受力的影响。
     (3)结合传统的稳性计算原理,分析了在不同道路条件和绑扎方式下,货物的滑移稳定性系数与倾覆稳定性系数。
     (4)将这些因素的评价结果汇总,对模糊综合评价法中的隶属度进行修正,得到较为精确的评价值。
     针对在临时码头无浮吊设备的水陆联运卸货,极易出现事故这一现状,本文设计了一套浮态自调整的卸货系统。该系统可在不进行压舱水调节的情况下,自动提升卸货用主梁的高度,使船体逐渐上浮,避免船体突然跃起造成事故。数字数值测试分析结果验证了该系统的有效性,表明所提出的系统可对卸货过程进行有效的调节,避免船体突跃,有效保证卸货安全。
     为能够快速得到超限货物道路运输的相关信息,本文设计了一套用来测试车辆通过性的检测装置,通过该系统可以快速掌握道路倾角、最大可通行高度、最大可通行宽度、最大加速度等信息,将未知信息量化,并结合相关的理论计算与仿真结果,重新生成模糊分析中的模糊矩阵中相关评价指标的隶属度,从而得到更为精确的评估结果。
     为了验证仿真结果的有效性,设计了基于Visual Basic 6.0开发的超限货物运输安全监测系统,主要用来对在途运输的相关物理量进行监测,监测的主要内容包括道路倾角(横倾、纵倾)、钢丝绳张力、速度、加速度(前进方向、垂直方向)。2011年1月结合三峡地下电站荆门市500 kV换流站项目中的147 t重的超限货物进行了实车实验,并对评价结果中涉及的相关项目进行了验证,实验结果证明了评价有效性。
Overweight/oversize (OW/OS) cargo is also named after out-of-gauge freight, bulky and length cargo, heavy cargo, massive-product, abnormal load. The increasing demand for OW/OS cargos grows rapidly along with the construction of large-scale projects in globe. The OW/OS cargo has features of long production cycle, small batch and high value, hence research on the safety of this type of cargo during transportation is more important than other cargo.
     The most commonly used transportation modes for OW/OS cargo are waterway transportation, railway transportation, road transportation and land-and-water co-ordinated transportation. Traditional safety assessment methods for transportation mainly depend on the experience of decision-makers. It is very hard for decision-makers to achieve the accurate data and even some data can not be handled properly because of the lack of theory. After analyzing the characteristics of OW/OS cargo's transportation, one systematical, comprehensive and reasonable safety assessment method is proposed and presented in the thesis which combines with vehicle driving theory, finite element theory, analytic hierarchy process (AHP), fuzzy comprehensive evaluation method (FCE) and accident-causing theories.
     AHP-FCE is adopted as the main safety assessment method which combines the advantages of AHP and FCE. Firstly, AHP is used to build goal layer, factor layer, index layer according to the actual transportation conditions, and contribution to layers are then obtained through expert evaluating method and AHP. Finally, the FCE is employed to assess the system safety.
     In order to avoid human factors'influence on membership-calculating in FCE, the actual transportation environment is taken into account. By using the related theory to revaluate the factors'membership in the index layer, the influence of human factors is reduced to the minimum.
     The stowage of trailer tractor and axis configuration of platform lorry are firstly calculated in view of vehicle safety. Secondly, the finite element analysis (FEA) is applied to the safety evaluation where the acceleration is existence during vehicle' starting and breaking. In addition, the influence on the lashing steel wire ropes was taken into account. The impact factors include the unevenness pavement, friction, severe weather and strengthening modes for cargo. Thirdly, the cargo stability of sliding and overturning under different strengthening ways and road condition were computed according to traditional stability calculation theory. Finally, value of membership is adjusted based on calculation results which mentioned above, thus accurate safety assessment result can be achieved.
     There would be an accident risk in the land-and-water coordinated transportation when unloading cargo on the temporary wharf without any large lifting equipment, In this study, it is the first time to develop a new floating self-adaptive unloading system to prevent the occurrence of accidents. After using of this system, the height of the unloading beam could be adjusted automatically without the ballast water regulation. Thus, the accidents caused by the sudden leaping of the ship could be avoided effectively. The numerical experiment results show that the proposed system can adaptively regulate the unloading process and keep the procedure of unloading in safe efficiently as well.
     To further enhance the accuracy of membership values, a novel measuring system for vehicle's passing ability in space is proposed in this thesis. The proposed novel system has been authorized as a national invention patent. It can quickly record the information of the road condition, such as road inclination, the maximum allowance in height, the largest allowance in width, and the maximum acceleration, etc. Through the combination of unknown information and analysis results, the membership of the related evaluation in the fuzzy matrix can be refreshed and consummated. Therefore, the accurate assessment results could be attained.
     To evaluate and validate the proposed safety methodology based on FCE, a special designed experiment is presented in this thesis. This experimental system is used to monitoring the transportation physical quantities which is developed based on Visual Basic 6.0. These physical quantities include road inclination (heel and trim), tension in lashing steel wire rope, speed, and acceleration of vehicle, etc. A series of experiments was implemented for the platform lorry with cargo which weights 147 tons in Three Gorges underground converter substation on January 2011. The test results suggest that the proposed transportation safety assessment system is feasible for practice use.
引文
[1]林敏晖,李冬梅.公路运输中超限货物运输的组织与管理[J].浙江交通职业技术学院学报.2006,7(4):20-23.
    [2]吴强.大件货物加氢反应器运输方案设计与实施[D].大连:大连海事大学,2006.
    [3]于晶.大件运输行业专题报道之二我国大件运输市场供需情况分析[J].商用汽车.2004(12):63-64.
    [4]装备制造业振兴规划被国务院常务会原则通过[J].石油和化工设备.2009(02):64.
    [5]Truck Size and Weight-FHWA Freight Management and Operations [EB/OL]. http://www.ops.fhwa.dot.gov/freight/sw/index.htm,2011.
    [6]吴丽丽.重大件公路运输若干问题的研究[D].哈尔滨:东北林业大学,2007.
    [7]道路大型物件运输管理办法.1995年12月4日交通部交公路发(1995)1154号文发布[J].
    [8]王诺.工程物流学导论[M].北京:化学工业出版社,2007.
    [9]F. Caron, G. Marchet, A. Perego. Project logistics:integrating the procurement and construction processes[J]. International Journal of Project Management.1998,16(5): 311-319.
    [10]董千里.高级物流学[M].北京:人民交通出版社,2006.
    [11]黄贤俊.重特大件货物驳运的安全控制[J].世界海运.2003,26(5):3-4.
    [12]Articles[EB/OL]. http://www.transportoversize.eu/en/articles/,2011.
    [13]杨鹏强.从空运广州地铁二号车厢谈重大件运输[J].中国储运.2008(06):60-62.
    [14]陈忠达.中国道路大件运输的回顾及展望[J].上海公路.1999(S1):175-179.
    [15]中国远洋物流有限公司[EB/OL]. http://www.cosco-logistics.com.cn.2011.
    [16]王治国.浅谈大件物流的发展[J].中国储运.2009(01):85-87.
    [17]韩梅.货物装载时加固方法的配合使用[J].铁道货运.2001(06):43-44.
    [18]陈团宁.阔大货物装载加固决策系统[D].成都:西南交通大学,2009.
    [19]侯栋梁.大件货物运输方案制定研究[D].成都:西南交通大学,2009.
    [20]李浩.大型石化设备工程物流项目的方案设计[D].大连:大连海事大学,2009.
    [21]路亚妮.大件公路运输研究综述[J].孝感学院学报.2008(03).
    [22]张俊鸿.工程物流运输方案优化模型研究[D].大连:大连海事大学,2008.
    [23]王心磊.大件运输车辆外观通过性仿真研究[D].吉林:吉林大学,2007.
    [24]许少白.大件设备公路运输中有关问题的探讨[J].福建电力与电工.2001(04):26-30.
    [25]周爱莲,李旭宏,胡列格.公路大件运输计算机决策系统的研制与开发[J].公路交通科技.2004,21(02):106-108.
    [26]杨春兰,黄东胜,张雨等.公路大件运输计算机决策系统建模与软件开发[J].武汉理工大学学报(交通科学与工程版).2003(01):106-108.
    [27]欢迎访问重庆大学研究生院[EB/OL].http://graduate.cqu.edu.cn/newsDetail.do?newsinfoid=16429,2009.
    [28]Julian J. Ray. A web-based spatial decision support system optimizes routes for oversize/overweight vehicles in Delaware[J]. Decision Support Systems.2007,43(4): 1171-1185.
    [29]Roberto Osegueda, Alberto Garcia-Diaz, Suleiman Ashur, et al. GIS-based network routing procedures for overweight and oversized vehicles[J]. Journal of Transportation Engineering. 1999,125(4):324-331.
    [30]Florent Lamiraux, Jean-Paul Laumond, Carl Van Geem, et al. Trailer-truck trajectory optimization: The transportation of components for the airbus A380[J]. IEEE Robotics and Automation Magazine.2005,12(1):14-21.
    [31]BSI 12195-1:2003. Load restraint assemblies on road vehicles -Safety- [S]. Part 1: Calculation of lashing forces.
    [32]BSI 12195-3:2001. Load restraint assemblies on road vehicles -Safety- [S]. Part 3: Lashing chains.
    [33]M. G Sachez-Torrubia, C. Torres-Blanc, M. A. Loez-Martiez. PathFinder: A Visualization eMathTeacher for Actively Learning Dijkstra's Algorithm[J]. Electronic Notes in Theoretical Computer Science.2009,224:151-158.
    [34]彭辉.综合交通运输系统理论分析[D].西安:长安大学,2006.
    [35]严青.基于联合运输的大宗货物货运物流化发展探讨[D].北京:北京交通大学,2010.
    [36]赵颖.多式联运流程设计与仿真研究[D].吉林大学,2006.
    [37]王代林:四川大件运输创两项世界纪录[N],四川日报,2011-01-26.
    [38]赵玉菊.大型设备的水、陆联合运输[J].石家庄铁路工程职业技术学院学报.2003(03):44-49.
    [39]田锋.简述化肥项目中大件设备运输应注意的问题[J].化学工业.2007,25(07):29-35.
    [40]雷雨顺,金嘉晨,黄玲波等.重大件货物的装卸工艺及其发展[J].中国水运(下半月).2010(03):80-82.
    [41]缪吉伦,张绪进,王召兵.山区河流重大件码头装卸工艺设计[J].水运工程.2009(3):80-84.
    [42]马红涛.船舶机舱状态监测与安全评估方法的探讨[D].上海:上海海事大学,2003.
    [43]袁昌明.实用安全管理技术[M].北京:冶金工业出版社,1998.
    [44]Risk Analysis, Perception and Management[M]. London UK: The Royal Society,1992.
    [45]姚雁.石油化工危险系统安全评价的软件开发[D].大连:大连理工大学,2005.
    [46]孙平.我国危险化学品道路运输安全评价[D].北京:北京交通大学,2006.
    [47]李静.车辆运行状态安全评估方法与应用研究[D].北京:北京交通大学,2008.
    [48]Bruce K. Hope. An examination of ecological risk assessment and management practices[J]. Environment International.2006,32(8):983-995.
    [49]Maohua Zhong, Xingkai Zhang, Tiemin Liu, et al. Safety evaluation of engineering and construction projects in China[J]. Journal of Loss Prevention in the Process Industries.2003, 16(3):201-207.
    [50]陈德海.真实环境下车辆行驶安全性综合评价及防碰撞系统研究[D].南昌:江西理工大学,2007.
    [51]Hu-Chen Liu, Long Liu, Qi-Hao Bian, et al. Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory[J]. Expert Systems with Applications.2011, 38(4):4403-4415.
    [52]Adrian V. Gheorghe, Jurg Birchmeier, Dan Vamanu, et al. Comprehensive risk assessment for rail transportation of dangerous goods: a validated platform for decision support[J]. Reliability Engineering & System Safety.2005,88(3):247-272.
    [53]S. F. Galan, A. Mosleh, J. M. Izquierdo. Incorporating organizational factors into probabilistic safety assessment of nuclear power plants through canonical probabilistic models[J]. Reliability Engineering & System Safety.2007,92(8):1131-1138.
    [54]Ping Jiang, Bo Guo, Jae-Hak Lim, et al. Group judgment of relationship between product reliability and quality characteristics based on Bayesian theory and expert's experience[J]. Expert Systems with Applications.2010,37(10):6844-6849.
    [55]康士虎.优化AHP法在公路隧道机电系统评价中的应用[D].西安:长安大学,2007.
    [56]Ludovic-Alexandre Vidal, Franck Marle, Jean-Claude Bocquet. Using a Delphi process and the Analytic Hierarchy Process (AHP) to evaluate the complexity of projects[J]. Expert Systems with Applications.2011,38(Compendex):5388-5405.
    [57]Dempster A P. A Generalization of bayesian inference[J]. Journal of the Royal Statistical Society.1968(30):205-247.
    [58]Shafer G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
    [59]朱承治,郭创新,孙旻等.基于改进证据推理的变压器状态评估研究[J].高电压技术.2008,34(11):2332-2337.
    [60]焦锋利.阔大货物运输安全综合评价研究[D].成都:西南交通大学,2009.
    [61]李江涛.大件货物运输绑扎安全监测系统研究[D].武汉:武汉理工大学,2010.
    [62]孙丽娜.大型构件海上运输安全性分析[D].大连:大连理工大学,2006.
    [63]冯卫娜.危险货物水路与公路运输协调性评价研究[D].北京:北京交通大学,2009.
    [64]赵永平.道路勘测设计[M].北京:高等教育出版社,2004.
    [65]Turner M J, Clough R W, Martin H C, et al. Stiffness and Deflection Analysis of Complex Structures[J]. Aero.1956,23:805-823.
    [66]Clough R W. The Finite Element Method in Plane Stress Analysis[C]. Proc. 2nd ASCE Conference on Electronic Computation..1960, Vol:345-378.
    [67]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [68]G Pugliese, S. M. O. Tavares,E. Ciulli, et al. Rough contacts between actual engineering surfaces:Part Ⅱ. Contact mechanics[J]. Wear.2008,264(11-12):1116-1128.
    [69]王进堂.基于印刷机滚筒轴承接触问题的有限元分析[D].西安:西安理工大学,2009.
    [70]冯登泰.接触力学的发展概况[J].力学进展.1987,17(4):431-446.
    [71]王晓春,孔祥安.接触力学及其计算方法[J].西南交通大学学报.1996(03):230~233.
    [72]Antonio Pantano, Ronald C. Averill. A penalty-based finite element interface technology [J]. Computers & Structures.2002,80(22):1725-1748.
    [73]Per Heintz, Peter Hansbo. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction[J]. Computer Methods in Applied Mechanics and Engineering.2006, 195(33-36):4323-4333.
    [74]S. C. Shyu, T. Y. Chang, A. F. Saleeb. Friction-contact analysis using a mixed finite element method[J]. Computers & Structures.1989,32(1):223-242.
    [75]秦飞,陈立明.叶根尺寸误差对叶片固有频率的影响[J].机械工程学报.2006(06):235-238.
    [76]顾永明.面板堆石坝面板脱空问题分析方法研究[D].南京:河海大学,2006.
    [77]葛建立.车载炮动态非线性有限元仿真研究[D].南京:南京理工大学,2007.
    [78]曹骏.HTM850G数控加工中心主轴系统的热特性研究[D].杭州:浙江大学,2008.
    [79]陈宗帖.基于ANSYS的磨床参数化分析系统[D].桂林:广西大学,2007.
    [80]徐飞英.非局部摩擦的数值模拟及相关实验[D].南昌:南昌大学,2008.
    [81]孙海清,伍鹤皋,郝军刚等.接触滑移对不同埋设方式蜗壳结构应力的影响分析[J].水利学报.2010(05):619-623+629.
    [82]涂书栋.基于ANSYS的压铸机合模机构有限元分析研究[D].武汉:武汉大学,2005.
    [83]Thomas L. Saaty. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology.1977,15(3):234-281.
    [84]Fei-Hu Hu, Jie Jiang, Le Liu, et al. A new multi-perspective framework for multi-attribute decision making[J]. Expert Systems with Applications.2010,37(12):8575-8582.
    [85]刘江.基于层次分析法的企业运输方式的选择[D].北京:对外经济贸易大学,2006.
    [86]Yucheng Dong, Yinfeng Xu, Hongyi Li, et al. A comparative study of the numerical scales and the prioritization methods in AHP[J]. European Journal of Operational Research.2008, 186(1):229-242.
    [87]Thomas Saaty. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas.2008,102(2):251-318.
    [88]罗鑫.公路隧道健康状态诊断方法及系统的研究[D].上海:同济大学,2007.
    [89]薛晓锋,刘健新,张敏红.斜拉索阻尼器层次分析法与模糊综合评价法组合的评价研究[J].公路.2010(03):52-55.
    [90]骆正清,杨善林.层次分析法中几种标度的比较[J].系统工程理论与实践.2004(09):51-60.
    [91]冯耕中.现代物流规划理论与实践[M].北京:清华大学出版社,2005.
    [92]韩本刚,董敏周,于云峰等.用基于指数标度的层次分析法评估红外导弹导引头抗干扰性能[J].西北工业大学学报.2008(01):69-73.
    [93]王雪琴.大型泵站技术经济指标体系及综合评价方法研究[D].扬州:扬州大学,2008.
    [94]杨振林.特种设备风险管理研究[D].天津:天津大学,2009.
    [95]Luciano Stefanini, Laerte Sorini, Maria Letizia Guerra. Parametric representation of fuzzy numbers and application to fuzzy calculus[J]. Fuzzy Sets and Systems.2006,157(18): 2423-2455.
    [96]吴冰,李朋.基于模糊数学的绿色建筑评价方法研究[J].河北建筑科技学院学报(社科版).2006(04):27+34.
    [97]叶珍.基于AHP的模糊综合评价方法研究及应用[D].广州:华南理工大学,2010.
    [98]张丽娜.AHP-模糊综合评价法在生态工业园区评价中的应用[D].大连:大连理工大学,2006.
    [99]卢宝亮.仓库安全管理与技术[M].北京:中国物资出版社,2004.
    [100]李全东.液态危险货物道路运输风险分析[D].北京:北京交通大学,2010.
    [101]Jamin Koo, Seunghyok Kim, Hyosuk Kim, et al. A systematic approach towards accident analysis and prevention [J]. Korean Journal of Chemical Engineering.2009,26(6): 1476-1483.
    [102]郝勇.事故致因理论及其在水上交通安全管理中的应用[D].武汉:武汉理工大学,2003.
    [103]陈国宏,李美娟,陈衍泰.单一方法评价结论漂移性的测度研究[J].中国工程科学.2004(03):58-63.
    [104]陈国宏,李美娟.基于方法集的综合评价方法集化研究[J].中国管理科学.2004(01).
    [105]谭燕瑜.山区少数民族农民素质的评价指标体系研究[D].桂林:广西师范大学,2008.
    [106]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社,2005.
    [107]Welcome to ANSYS, Inc_-Corporate Homepage[EB/OL]. http://www.ansys.com/,2011.
    [108]Erdogan Madenci, Ibrahim Guven. The Finite Element Method And Applications In Engineering Using Ansys[M]. New York: Springer,2005.
    [109]周于海.基于APDL的甲板吊臂架结构参数化建模及动态响应研究[D].武汉:2006.
    [110]孙雪.某履带式装甲车悬挂系统的滚针轴承分析[D].沈阳:沈阳理工大学,2009.
    [11 1]solid45-百度文库[EB/OL]. http://wenku.baidu.com/view/feeb28d3240c844769eaee8b.html,2011.
    [112]GB7031-2005.机械振动——道路路面谱测量数据报告[S].
    [113]项忠霞.基于振动舒适性的山地自行车后悬架系统优化设计[D].天津:天津大学,2008.
    [114]S. Sp Pappas, L. Ekonomou, P. Karampelas, et al. Modeling of the grounding resistance variation using ARMA models[J]. Simulation Modelling Practice and Theory.2008,16(5): 560-570.
    [115]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.
    [116]常志权,罗虹,褚志刚等.谐波叠加路面输入模型的建立及数字模拟[J].重庆大学学报(自然科学版).2004(12):5-8.
    [117]杨叔子,吴雅.时间序列分析的工程应用:上册[M].武汉:华中理工大学出版社,1991.
    [118]施晓丽,徐怀海ANSYS在处理带摩擦接触问题中的应用[J].中国科技论文在线.2009:1-7.
    [119]何锋,张军,曹龙田等.基于ADAMS的重型汽车道路友好性仿真研究[J].拖拉机与农用运输车.2010(04):54-56.
    [120]陈轶杰,孟强,王亚军等.8×8轮式车辆半主动油气悬挂振动测试研究[J].振动与冲击.2009(09):25-29+211-212.
    [121]JTG B01-2003.公路工程技术标准.
    [122]Ruifang Mou. The Mode of Safety Assessment on Larger Cargo during Transportation[C]. International Conference on Transportation Engineering 2009.2009, Vol(345):576-576.
    [123]李清波,符锌砂.道路规划与设计[M].北京:人民交通出版社,2002.
    [124]吴育俭,郭维鸿,刘东岭.铁路货运技术[M].北京:中国铁道出版社,2000.
    [125]陈浩.大件货物顶升平移系统卸船技术的研究[D].武汉:武汉理工大学,2009.
    [126]盛振邦,刘应中.船舶原理(上册)[M].上海:上海交通大学出版社,2003.
    [127]张伟.大型结构物滑移装船过程仿真研究[D].天津:天津大学,2006.
    [128]韩云辉.万吨级舰船横倾补偿控制及虚拟仿真研究[D].哈尔滨:哈尔滨工程大学,2007.
    [129]蒋维清.船舶原理[M].北京:人民交通出版社,1979.
    [130]王杰德,杨永谦.船体强度与结构设计[M].北京:国防工业出版社,1992.
    [131]GB/T 2884.3-1996.长江水系分节驳船型尺度系列——长江中下游干支直达和水运网1000吨级分节驳船型尺度[S].
    [132]GB/T2884.2-1996.长江水系分节驳船型尺度系列——长江2000吨级分节驳船型尺度[S].
    [133]单勇.实时半实物仿真平台关键技术研究与实现[D].长沙:国防科学技术大学,2010.
    [134]刘天豪,左茂文,李恒等.基于(?)(?)MESim和MATLAB的液压缸位置同步控制问题仿真的比较研究[J].液压气动与密封.2010(06):32-34.
    [135]梁利华.液压传动与电液伺服系统[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [136]李战利.钢线绳张力在线检测原理及应用研究[D].重庆:重庆大学,2004.
    [137]张维胜.倾角传感器原理和发展[J].传感器世界.2002(08):18-21.
    [138]产品规格书SCA126T串口输出双轴倾角传感器[EB/OL]. http://www.rion-tech.net/uploadfile/20100413110640625.pdf,2011
    [139]RS232-C接口_百度百科[EB/OL]. http://baike.baidu.com/view/280565.html?fromTaglist, 2011.
    [140]Moxa C168H-PCI 8口聪明型RS-232 PCI多串口卡[EB/OL]. http://www.moxa.com.cn/product/C168HPCI.htm,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700