用户名: 密码: 验证码:
三峡回水变动区船舶航行路径优化及三维环境仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据三峡水库运行规则,每年汛期前水位将消落至145m,枯水期前蓄水至175m。通常将库区水位蓄涨和消落称为回水变动,受回水变动影响的航段称为回水变动区。通过近几年三峡水库的运行情况来看,根据回水变动区的水文特征,将重庆涪陵李渡长江大桥至长江重庆江津段白沙沱之间的水域称为回水变动区,航道里程的范围为长江上游547.8km至704.0km。
     三峡水库蓄水后,库区水面变宽变深,通航条件总体明显改善,但其回水变动区既具有库区航道特征又具有山区天然航道特征,回水变动区河道弯曲、跨江桥梁林立、浅滩暗礁较多,船舶通航环境较为复杂,尚不具备实行船舶航路改革的条件,船舶航行路径有待优化,船舶助导航设施或方法有待进一步提高。本文通过对三峡水库回水变动区船舶航行环境的分析和评价,得出通航水流条件是影响该区域船舶航行安全的关键因素之一,通过对三峡水库回水变动区在消落期的水流流场进行数值模拟,分析了典型河段的碍航水流特征,并运用人工智能的方法对船舶在复杂通航水流条件下的航行路径进行了优化,构建了融合数值流场的内河船舶三维航行虚拟现实系统。本文的主要研究内容有:
     (1)通过对回水变动区海事事故险情数据的时空特性进行研究,对影响船舶航行安全的关键因素进行了提取,得出了通航水流条件是影响回水变动区船舶航行安全的关键因素之一。
     (2)考虑内河航道岸线的不规则性,建立了正交曲线坐标系下二维水流数学模型并进行了验证。
     (3)利用经验证的水流数学模型对典型的桥区河段、弯曲河段、支流河口河段流场进行了数值模拟,并对各河段的通航水流条件进行了研究。
     (4)基于水流数值模拟,综合运用人工智能优化算法对内河船舶航行路径进行优化,并对内河船舶过河过程中的航行路径进行优化控制。
     (5)应用三维建模与仿真技术,建立三维船舶航行环境仿真模型,在此基础上实现水流数值模拟与三维仿真系统的交互,构建融合数值流场的三维船舶航行环境虚拟现实系统。
     本论文的创新主要体现在以下几点:
     (1)构建了三峡水库回水变动区航行环境风险评价指标体系和评价模型,并提取了回水变动区通航安全的关键因素;
     (2)综合运用水流数值模拟技术和人工智能算法,构建了航道断面的流速分布函数和符合船舶航行路径优化目标的适应度函数及控制函数,提出了一种复杂通航水流条件区域的船舶航行路径优化方法;
     (3)构建了三峡库区回水变动区融合数值流场的三维通航环境虚拟现实系统。
     优化的船舶航行路径及融合数值水流的船舶航行三维环境可为船舶驾驶员和航运管理部门提供决策参考。通过船舶航行路径的优化找出最佳的过河方案,在融合数值水流的船舶航行三维环境里直观的判断主流、缓流以及碍航水流和浅滩,使船舶航行更安全。本文的研究为实现三峡库区回水变动段船舶安全、经济的航行提供良好的技术保障,在一定程度上促进三峡库区航运事业的蓬勃发展。
According to the operating rules of Three Gorges Reservoir, water level would be degraded to 145m before flood season, while it would reach 175m before dry season, which was generally called fluctuating backwater. The channel influenced by fluctuating backwater was named fluctuating backwater area. From the operation of Three Gorges Reservoir in recent years and hydrological characteristics of fluctuating backwater area, water area from Chongqing Lidu Yangtze River Bridge,547.8km of upper reaches of the Yangtze River, to Bai Shatuo of Jiangjin section of Yangtze River,704.0km of upper reaches of the Yangtze River was called fluctuating backwater area.
     The impoundment in the Three Gorges Reservoir made the water area wide and deep, which improved its navigation condition apparently, whereas the area of fluctuant backwater in the Three Gorges Reservoir was still characterized by the natural navigation route of mountain area and the navigation environment was complex, therefore, the unreformed channel should be optimized. Besides, with a lot of channel bends, crossing-river bridges, shelves and shoals, maritime accidents frequently occurred in this area and navigational aids or methods should be improved.The flow condition was proved to be one of the crucial factors for sailing safety by the result of analysis and evaluation of navigation environment of this area. In this paper, based on numerically simulated flow field during the period of falling stage, the character of navigation-obstructing flow in the typical channel was analyzed and the navigation path under the complicated water flow was optimized with artificial intelligence and three-dimensional virtual navigation system with the fusion of numerical water flow information was established under the virtual reality technology. The main research contents were listed as follows:
     (1)Through the temporal and spatial statistics of maritime accident in the area of fluctuant backwater and extraction of the key factor influencing sailing safety, navigation flow condition was regarded as one of crucial factors influencing sailing safety.
     (2)Because of the irregular inland river coastline, two-dimensional flow model under orthogonal curvilinear coordinate system was established and verified.
     (3) The verified flow mathematical model was used to simulate numerically flow field in the typical channel around bridge, bending channel and branch river estuary.
     (4) On flow numerical simulation basis, artificial intelligence optimization was comprehensively applied to optimize inland river navigation path and control navigation path of ship crossing river.
     (5) Three-dimensional navigation environment simulation model was constructed with the three-dimensional modeling and simulation technology. Based on that, three-dimensional virtual navigation system with the fusion of numerical water flow information was established under the interaction of flow numerical simulation and 3D simulation system.
     The innovation points in this paper were listed as followed:
     (1) Navigation environment risk estimation index system in the area of fluctuant backwater of the Three Gorges Reservoir was proposed based on the analysis of temporal and spatial statistics of maritime accident and accident-causing theory. Navigation environment risk assessment model was established through information entropy theory and unascertained theory. Besides, the key factors influencing traffic safety in this area were extracted.
     (2) Fitness function according with optimized goal of navigation path was designed with comprehensive application of flow numerical simulation technique and Artificial Intelligence Algorithms. Vessel crossing river were affected by different water pressures, therefore, velocity distribution function of channel section was constructed and control function of navigation path optimization was designed and optimal control of navigation path of ship crossing river was proposed.
     (3) Three-dimensional virtual navigation system with the fusion of numerical water flow information was constructed for flow condition of navigation intuitively.
     The optimizing navigation route and three-dimensional navigation environment fused with numerical water flow information provided pilot and shipping management department with decisive reference. The optimized navigation channel help confirm the best crossing river point. Besides, pilot can judge main and slow flow as well as avoid shoals intuitionally through three-dimensional virtual navigation system with the fusion of numerical water flow information. The research provided a good technical support for rapid, safe and economic sailing the area of fluctuant backwater of Three Gorge Reservoir and stimulates the prosperity of Marine Shipping Industry in Three Gorge Reservoir.
引文
[1]邱云明,陈伟炯,陈锦标.临海港口航道航行环境安全综合评价模型[J].中国航海,2005,64(3):42-46.
    [2]陈伟炯,郝育国,秦庭荣,等.港口航行环境安全组合评价模式[J].交通运输工程学报,2005,5(1):75-78.
    [3]张侃,赵仁余.模糊综合评判中零关系指标对船舶航行环境安全评价结果的影响[J].上海海事大学学报,2007,28(3):16-18.
    [4]陈伟炯,郝育国,秦庭荣,等.港口航行环境安全组合评价模式[J].交通运输工程学报,2005,5(1):75-78.
    [5]郑中义,李红喜.通航水域航行安全评价的研究[J].中国航海,2008,31(2):130-134.
    [6]汤旭红,范耀天,蔡存强.海上交通风险网格化分析和预测研究[J].应用基础与工程科学学报,2008,16(2):425-434.
    [7]胡甚平,方泉根,张锦朋.沿海水上交通安全的风险评估研究[J].中国航海,2010,33(1):50-55.
    [8]刘强,王凤武,岳兴旺.模糊变权法在船舶综合安全评估中的应用[J].大连海事大学学报,2010,36(4):52-54.
    [9]吴建军,肖英杰.基于集对分析的定线制水域航行环境的综合安全评价[J].上海海事大学学报,2011,32(1):30-34.
    [10]王再明.长江干线大桥水域通航环境安全评价的研究[D].武汉:武汉理工大学,2005.
    [11]韩延胜.长江水上交通安全评价指标体系研究[D].武汉:武汉理工大学,2006.
    [12]李根.长江张南水道通航环境安全评价研究[D].武汉:武汉理工大学,2006.
    [13]许银甲.湘江航运安全状况评价与趋势分析[D].武汉:武汉理工大学,2007.
    [14]牟小平.三峡库区通航环境安全评价和研究[D].大连:大连海事大学,2009.
    [15]曹智.长江干线重庆段水上交通安全风险识别与评价[D].大连:大连海事大学,2010.
    [16]张细兵,龙超平,李线纲.可视化数学模型及动态演示系统的初步研究与应用[J].长江科学院院报,2003,20(4):21-23.
    [17]张尚弘.都江堰水资源可持续利用及三维虚拟仿真研究[D].北京:清华大学,2004.
    [18]姚仕明.三峡葛洲坝通航水流数值模拟及航运调度系统研究[D].北京:清华大学,2006.
    [19]赵万星.长江、嘉陵江重庆主城区段的环境流体动力学模拟[D].重庆:重庆大学,2005.
    [20]张绪进,母德伟,陈贤祎.上游来水来沙变化及对三峡水库回水变动区泥沙淤积的影响[J].水运工程,2009(8):94-98.
    [21]曹民雄,蔡国正,黄海龙,胡佳.变动回水区河段的设计最低通航水位确定[J].水运工程,2006(1):64-68.
    [22]刘万利,李一兵,崔喜凤,张波.安康枢纽回水变动区航道整治数学模型研究[J].水道港口,2007(3):173-175.
    [23]范勇,卢金友.变动回水区二维泥沙数学模型研究[J].武汉理工大学学报,2009(10):81-85.
    [24]R.R.Murphy.Introduction to AI Robotics, MIT Press.2002:143-165.
    [25]H.Choset, K.Nagatani. Topological simultaneous location and mapping:toward exact localization without explicit localization. IEEE Trans. On Robotics and Automation.2001, 17(2):125-137.
    [26]T.Lazano-Perez. Automatic planning of transfer movements. IEEE Trans On Sys, Man and Cyb.1981,11(10):681-689.
    [27]Perez. Automatic planning of manipulator movements. IEEE Trans. On Sys,Man and Cyb. 1981,11(11):681-698.
    [28]H.Weber. A motion planning and execution system for mobile robots driven by stepping motors. Robotics and Autonomous Systems.2000,33(4):207-221.
    [29]O.Khatib. Real-time obstacle avoidance for manipulators and mobile robots.The International Journal Robotics Research.1986,5(1):90-98.
    [30]王则胜.基于遗传算法的船舶避碰决策研究[D].上海:上海海事大学,2005.
    [31]程细得,刘祖源.基于遗传算法的内河船舶避碰路径优化研究[J].中国航海,2006(2):38-40.
    [32]李魁星.基于信息熵遗传算法的舰船导航路径规划技术研究[D].哈尔滨:哈尔滨工程大学,2010.
    [33]谭伟,陆百川,黄美灵.神经网络结合遗传算法用于航迹预测[J].重庆交通大学学报:自然科学版,2010,29(1):147-150.
    [34]谭伟,陆百川,李政,等.基于遗传粒子群算法的船舶航迹融合研究[J].重庆交通大学学报:自然科学版,2010,29(5):828-831.
    [35]杨鑫,柳晓鸣,徐婷婷.基于遗传算法的船舶避浅航线的设计[J].上海交通大学学报,2010,44(6):774-777.
    [36]Ford, S.F. The first three-dimensional nautical chart. In:Under Sea with GIS.ESRI Press: Wright, D.,2002. pp 117-138.
    [37]Information Design for a 3D Nautical Navigational Visualization System. The Eighth International Conference on Distributed Multimedia Systems Workshop Visual Computing i Redwoods, San Francisco, California September 2002.
    [38]Gold, C., Chau, M., Dzieszko, M. and Goralski, R.3D geographic visualization:the Marine GIS. In:Developments in Spatial Data Handling. Springer,Berlin:Fisher, P.,2004. pp. 17-28.
    [39]Stroh, B., Schuldt, S., Integration of an AIS transponder into the PC-based marine simulator 'Marine GIS' using NMEA interface (University of Glamorgan),2006.
    [40]Ricardo N. Fernandes Vasilis D. Valavanis.A GIS-based tool for storage, selection and visualization of time series 4D marine datasets, Hydrobiologia (2008) 612:297-300.
    [41]Rafal Goralski, Christopher Gold.Marine GIS:Progress in 3D Visualization for Dynamic GIS. Headway in Spatial Data Handling,13th International Symposium on Spatial Data Handling.2008,401-416.
    [42]Christopher Gold,Rafal Goralski.3D Graphics Applied to Maritime Safety. Information Fusion and Geographic Information Systems Proceedings of the Third International Workshop.2007,286-300
    [43]辛海霞.基于OpneGL的三维河床地形实时可视化技术研究与实现[D].南京:河海大学,2005.
    [44]张安超.基于组件技术的船舶三维导航系统的研究[D]大连:大连海事大学,2008.
    [45]兰培真,张大勇.船舶航行三维显示系统的地形建模[J].集美大学学报(自然科学版).2009,14(2).145-149.
    [46]邢胜伟.内河航道三维显示与分析系统的设计与实现.[D]大连:大连海事大学,2008.
    [47]邢胜伟,张英俊,游晓霞.三峡库区航运安全虚拟现实仿真系统研究[J].中国航海.2010,33(4).18-21.
    [48]眭海刚,王娟,张安民,万大斌.基于三维GIS的数字航道若干关键技术研究[J].武汉大学学报(信息科学版),2006,(8),713-715.
    [49]陈界仁,刘云,杨涛.数字航道构建研究-以赣江樟树南昌河段为例[J].人民长江,2006,(7),57-59.
    [50]霍风霖,贾艾晨.基于DEM的河道地形三维可视化研究[J].水科学与工程技术,2006,(2),32-34.
    [51]眭海刚,张安民,万大斌,王娟.三峡航道三维可视化与分析系统的设计与实现[J].人民长江,2005,(11),10-13.
    [52]Shiau, Liang. Real-Time Network Virtual Military Simulation System, ⅳ,11 th International Conference Information Visualization (Ⅳ07),2007,807-812
    [53]Peng Guo-Jun, Ke Ran-Xuan,Shao JinXing. Research on 3D simulation technology applied in navigation-aid management. International Conference on Cyberworlds, CW 2008, September 22,2008-September 24,2008
    [54]Liu Jingxian, Xu Haixiang, Deng Jian. Research of ship navigation virtual reality system and its application.1st International Workshop on Education Technology and Computer Science, ETCS 2009, March 7,2009-March 8,2009
    [55]Czernuszenko W,Rylov A A.,A generalization of Prandtl's model for 3D open channel flows.J.of Hydraulic Research,2000,38(2):133-139
    [56]Dollner J. (2007), Non-Photorealistic 3D Geovisualization, in Multimedia Cartography (2nd Edition). Springer-Verlag.229-239
    [57]Songxin Shi, Xiuzi Ye, Zhaoxia Dong et al. Real-time Simulation of Large-scale Dynamic River water, Simulation Modeling Practice and Theory,2007.15(6):635-646
    [58]黄仕祥.三峡水库回水变动区水上交通安全风险分析与对策[J].中国水运,2010.7:31-32.
    [59]吴修广,沈永明,郑永红.非正交曲线坐标下二维水流计算的SIMPLEC算法[J].水利学报,2003(2):25-35.
    [60]Chou P Y.On velocity correlations and the solutions of the equations of turbulent fluctuation.Quart[J].Applied Mathematics.1945(3):38-54.
    [61]Davidov B I.On the statistic dynamics of an incompressible turbulent fluid.Dokl.ANNSSER.1961,136:47-50.
    [62]Johns W P,Launder B E.Predictions of low-Reynolds-number phenomena with a 2-equation model of turbulence[J].International Journal of Heat and Mass Transfer.1973,16:1119-1134.
    [63]杨斌,杨胜发.重庆地维长江大桥对长江行洪能力影响研究[J].重庆交通学院学报,2002.21(3):98-103.
    [64]杨胜发,赵志舟,杨斌.汉道水流数值模拟[J].重庆交通学院学报,2002,32(1):116-121.
    [65]刘健,邓一平.青草背大桥行洪数学模型研究[J].中国水运,2010,10(3):119-123.
    [66]Metropolis N, Rosenbluth AN, Teller AH. Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics,1953(21):1087-1092.
    [67]郭茂祖,王亚东,孙华梅,等.基于Metropolis准则的Q.学习算法研究[J].计算机研究与发展,2002,39(6):684-688.
    [68]Maozu Guo,Yang Liu,Jacek Malec.A New Q-Learning Algorithm Based on the Metropolis Criterion[J]. IEEE Transactions on System Man and Cybernetics,2004,34(5):2140-2143.
    [69]Lin F T, Kao C Y, Hsu C C.Applying the genetic approach to simulated annealing in solving some NP-hard[J].IEEE Trans actions on SMC,1993.23 (6):1752-1767
    [70]Holland J H. Adaptation in Nature and Artificial Systems [M]. MIT Press,1992
    [71]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M].Adison-Wesley,1989
    [72]谢胜利,董金祥,黄强.基于遗传算法的车间作业调度问题求解[J].计算机工程与应用,2002,35(10):79-83.
    [73]Woong Gie H, Seungmin B, Taeyong K. Genetic Algorithm Based Path Planning and Dynamic Obstacle Avoidance of Mobile Robots [C]. Proc of the IEEE International Conference on Computational Cybernetics and Simulation, Orlando,FL, USA,1997, 2747-2751.
    [74]Kennedy J, Eberhart R.Particle swarm optimization[C].In:IEEE Int'l Conf on Neural Networks, Perth, Australia,1995:1942-1948.
    [75]Eberhart R, Kennedy J.A new optimizer using particle swarm theory[C].In:Proc of the sixth international symposium on Micro Machine and Human Science, Nagoya, Japan,1995: 39-43.
    [76]Shi Y, Eberhart R.A modified particle swarm optimizer[C].In:IEEEWorld Congress on Computational Intelligence,1998:69-73
    [77]Clerc M.The swarm and the Oueen:Towards a deterministic and adaptive particle swarm optimization[C].In:Proc of the Congress of Evolutionary Computation,1999:1951-1957
    [78]Shi Y, Eberhart R.C Fuzzy Adaptive particle swarm optimization[C].In:Proc of the Congress on Evolutionary Computation, Seoul Korea,2001
    [79]Angeline P J.Evolutionary optimization versus particle swarm optimization:Philosophy and performance differences[C].In:Evolutionary programmingⅦ,1998:601-610
    [80]Lovbjerg M, Rasmussen T K, Krink T.Hybrid particle swarm optimization with breeding and subpopulations[C].Proc. of the third Genetic and Evolutionary computation conference,San Francisco,USA,2001
    [81]Natsuki Higasshi, Hitoshi Iba Particle swarm optimization with Gaussian mutation[C].In: Proc of the Congress on Evolutionary Computation,2003:72-79
    [82]Van den Bergh F, Engelbrecht A P.Training product unit networks using cooperative particle swarm optimizers[C].In:Proc of the third Genetic and Evolutionary computation conference,San Francisco,USA,2001
    [83]Van den Bergh F, Engelbrecht A P.Effects of swarm size cooperative particle swarm optimizers[C].In:Proc of the third Genetic and Evolutionary computation conference, San Francisco,USA,2001
    [84]Kennedy J, Eberhart R.Discrete binary version of the particle swarm algorithm[C].In:IEEE Int'l Conf on computational Cybernetics and Simulation,1997:4104-4108
    [85]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
    [86]刘华蓥,林玉娥,齐名军.求解约束优化问题的改进粒子群算法[J].大庆石油大学学报,2005,29(4):73-75.
    [87]Kennedy J, Eberhart R C. Particle Swarm Optimization[C].IEEE International Conference on Neural Networks.Perth,Piscataway,NJ,Australia:IEEE Server Center,1995,Ⅳ,1942-1948
    [88]李爱国,覃征,鲍复民.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3.
    [89]姚尧,潘峰,张福斌,等.融入粒子群优化的UPF算法研究及其导航应用[J].火力与指挥控制,2010,35(5):69-72.
    [90]范晓飚,刘元丰.航道与引航[M].大连:大连海事大学出版社,2006.
    [91]刘明俊.航道与引航[M].北京:人民交通出版社,1999.
    [92]熊勇.粒子群优化算法的行为分析与应用实例[D].杭州:浙江大学,2005.
    [93]徐言民,马国勤.大幅波浪中船舶非线性运动与波浪载荷仿真[J].系统仿真学报,2008(05):2458-2461.
    [94]李杰.利用虚拟场景预测的传感器图像配准方法研究[D].长沙:国防科学技术大学,2008.
    [95]李楠.基于Creator的塔台管制模拟训练系统建模[J].计算机工程,2005,31(z):226-229.
    [96]贾欣乐,杨盐生.船舶运动数学模型一机理建模与辨识建模[M].大连:大连海事大学出版社,1999:349-358.
    [97]吴秀恒,刘祖源.船舶操纵性[M].北京:国防工业出版社,2005
    [98]宋友历,李辉,王丹霞,等.大规模地形三维可视化系统设计与关键技术方案[J].四川大学学报(自然科学版),2002,39(3):439-442.
    [99]李凤霞,王尚洋,黄都培.大规模地形模型的多分辨率显示技术研究[J].计算机工程与应用,2002,15:244-246.
    [100]尼建军,张学宏Surfer7.0嵌入VB6.0编程实现水文数据快速可视化[J].海洋测绘,2005(1):64-66.
    [101]马占良,戴升,白彦芳.VB与FORTRAN混合编程的实现[J].青海气象,2007(04):66-67.
    [102]姜国强,李炜,那宇彤.利用混合语言编程实现计算流体动力学计算结果可视化[J].武汉大学学报(工学版),2003,36(1):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700