用户名: 密码: 验证码:
复合潜流人工湿地与生物接触氧化组合工艺处理生活污水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统潜流人工湿地污水处理工艺负荷率较低,处理效果受温度影响较大的问题,对传统潜流人工湿地结构进行了改进,并与生物接触氧化工艺相组合,用于常温较高浓度污水和低温低浓度污水的处理。试验优化了改进型潜流人工湿地的水力参数,分析了水平及垂直潜流湿地污染物去除规律及特点,对水平潜流湿地不同深度基质内污染物分布规律和自然复氧槽复氧效果进行研究,在此基础上构建了复合潜流湿地;对复合潜流湿地在常温和低温不同水力条件下的污染物去除效果进行研究,结合试验结果探讨了复合潜流湿地的反应动力学和水力学特征,计算了反应动力学参数;根据生物接触氧化和复合潜流湿地的特点,提出了生物接触氧化和复合潜流湿地不同组合次序的污水处理适用条件,并进行了生产性试验研究。
     复合潜流湿地试验表明,适宜水力停留时间不宜超过96h,否则会出现污染物去除率下降,导致占地面积过大;与水平或潜流湿地相比,复合潜流湿地可有效提高湿地水力负荷率,常温季节可提高约35%,低温季节可提高约25%;提高容积负荷率可有效提高污染物去除速率,当COD、TP、TN及NH3-N的容积负荷率分别在(5~70)g·m-3·d-1、(0.05~0.65)g·m-3·d-1、(0.5~7.5)g·m-3·d-1及(0.25~4.5)g·m-3·d-1范围内时,去除速率与容积负荷率表现出较为明显的线性关系;出水回流对提高污染物去除率效果明显,对SS和TP影响相对较小,SS和TP在R=0.5去除率达到最高值,对COD,NH3-N及TN去除率影响相对较大,在R=1时达到最高去除率,若回流比继续增大,则去除率开始下降;复合湿地污染物去除特征及离散模型Pez值的计算表明,水流流态接近推流态,返混作用与传统湿地相比较弱。
     以复合潜流湿地为基础的生物接触氧化前置和后置的组合工艺试验表明,前置工艺适用于进水污染物浓度较高,后置工艺适用于进水污染物浓度不高,但水温较低的情况。两种工艺可分别解决氮浓度较高和低温时湿地效率低下的问题,使出水水质达到GB18918-2002一级B排放标准。回流比和气水比是影响组合工艺污染物去除率的重要水力条件,其中回流比对生物接触氧化后置工艺的影响更为显著,推荐回流比R=1.0;气水比对NH3-N去除效果影响较显著,但气水比较大时能耗较高,推荐气水比为4:1;生物接触氧化前置工艺COD去除率较高,不能充分利用湿地功能,造成能耗较高;后置工艺则可以充分发挥湿地功能,仅在低温季节对NH3-N和TN强化去除,降低能耗。
     生产性试验结果表明:在平均水温8.6℃,进水COD:(128~203)mg·L-1,NH3-N:(4.83~23.88 )mg·L-1,TP:(1.08~7.29) mg·L-1,SS:(89~106 )mg·L-1条件下,生物接触氧化后置组合工艺在水力停留时间为72h,水力负荷150cm·d-1,启动生物接触氧化回流比100%,启动化学除磷,聚合氯化铝投加量10mg·L-1,出水水质指标均可达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。
As for traditional subsurface flow constructed wetlands for wastewater treatment load is low, and the treatment effect influenced by the temperature, biological contact oxidation process and improvement of subsurface flow wetland combined process were adopted to treat with high concentration waste water in normal temperature and low concentration waste water in low temperature. Optimized to improve the constructed wetland hydraulic parameters, reported the characteristics and law of horizontal and vertical subsurface flow constructed wetlands to remove pollutants. In addition, researched the horizontal subsurface flow constructed wetland substrate at different depths within the distribution of pollutants and the reoxygenation effect of natural reoxygenation tank. Based on the construction of complex subsurface flow constructed wetlands, composite subsurface flow constructed wetlands with different water at room temperature and low temperature removal of pollutants were researched. Combined with the experiment results, reaction kinetics and hydraulic characteristics of complex subsurface flow wetland were discussed, and the kinetic parameters were calculated. According to the characteristics of biological oxidation and complex subsurface flow wetland, the wastewater treatment conditions for biological oxidation and complex sequence of different combinations of subsurface flow constructed wetlands was proposed and verified in the process of pilot test.
     Test of complex subsurface flow wetland showed that the optimal hydraulic retention time should not more than 96h, or the removal of pollutants will fall; complex subsurface flow constructed wetlands can effectively improve hydraulic loading rate of the wetlands. Normal temperature season could be increased 35%; low temperature season could be increased by 25%; increasing the volumetric loading rate can improve pollutant removal rate, when the COD, TP, TN and NH3-N volumetric loading rate are at the range of (5 ~ 70) g ? m-3 ? d-1, (0.05 ~ 0.65) g ? m-3 ? d-1, (0.5 ~ 7.5) g ? m-3 ? d-1 and (0.25 ~ 4.5) g ? m-3 ? d-1 respectively, the removal rate and the VLR show obvious took on linear relationship; Reflux has a obvious effect to improve pollutant removal efficiency of pollutants, but has a small impact of SS and TP. When R = 0.5, the removal efficiency of SS and TP could get the peak, the removal rate of COD, NH3-N and TN were relatively higher, which could get the peak when R = 1.0 If the corresponding reflux ratio continues to increase, then the removal rate started to decline; complex pollutant removal characteristics of the complex wetland showed that subsurface flow constructed wetland flow pattern close to plug-flow state.
     The test of bio-contact oxidation pre and post group technology which based on complex subsurface flow wetland showed, the pre-process can be used in the condition of high concentration of pollutants in the influent and effluent TN and NH3-N couldn’t meet the criteria. The post-process is suitable for the condition of pollutant concentration is not high, but low temperature, the effluent TN and NH3-N could not meet the criteria. The two processes can solve the low efficiency problem when the nitrogen concentration was higher and wetlands at low temperature. In normal temperature and low temperature season, effluent data can meet the "Municipal Wastewater Treatment Plant Pollutant Emission Standards" (GB18918-2002) the 1st B emission standards; reflux ratio and the gas water ratio are the important hydraulic conditions which affect the post-process of bio-contact oxidation, the reflux ratio on the impact of the removal of pollutants was even more significant, recommended reflux ratio is R = 1.0; the gas water ratio on the removal of NH3-N has a significant effect, but with high energy consumption, recommended gas water ratio was 4:1; biological contact oxidation on the front have a higher COD removal rate, but cannot achieve full use of wetland function, resulting in high energy consumption; while biological contact oxidation post-process can achieve full use of the wetland function, only in low season on the NH3-N and TN removal were enhanced, low energy consumption.
     Productive experiments indicated that on the condition that the average temperature is 8.6℃, flooding water COD :(128-203) mg·L-1,NH3-N:(4.83~23.88 )mg·L-1,TP:(1.08~7.29) mg·L-1,SS:(89~106 )mg·L-1, retention time of biological contact oxidation combined process in hydraulic is 72h, hydraulic load is 150cm?d-1, reflux ratio of activating biological contact oxidation is 100%, activating chemical dephosphorization ,dosage of PAC is 10mg?L-1, effluent quality indexes can achieve the urban sewage treatment plants standards for pollutants discharge (GB18918-2002), 1st A standard.
引文
[1]杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):96~98
    [2]中国城镇供水排水协会,中国城市供排水蓬勃发展60年,2009.10.
    [3]中华人民共和国水利部,水资源质量年报,2000~2008.
    [4]中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部, 2007年度第一次全国水污染普查公报,2010.2
    [5]胡康萍.一种经济、有效、简便、可靠的污水处理技术--人造湿地系统[J].环境工程,1991,9(2):128~136.
    [6]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28~31
    [7] Block A, Kelana Center Point Jalan. The use of constructed wetland for wastewater treatment[M]. Wetland International-Malaysia Office, Malaysia, 2003
    [8] EPA. Constructed wetlands treatment of municipal wastewaters[M]. Office of Research and Development, 2000
    [9] Zaini U, Mogens H.发展中国家城市污水管理[M].崔成武译.北京:中国环境科学出版社, 2008
    [10]刘远金,张新明,李华兴,等.天然沸石对鱼塘水及生活污水的氮磷去除效应[J].农业环境宝华, 2002, 21(4):331~333
    [11]徐国兴.天然沸石用于蒸馏水生产中除氟[J].水处理技术, 1990, 16(6):456~459
    [12]权新军,金为群,李群,等.改性天然沸石处理富营养化公园水样的试验研究[J].非金属矿, 2002, 21(1):48~49
    [13] Koon J H, Kaufmann W J. Ammonia removal from municipal wastewater by ion exchange [J]. Journal of Water Pollution Control Fed, 1975, 47(3): 448~464
    [14]徐丽花,周琪.不同填料人工湿地处理系统净化能力研究[J].上海环境科学, 2002, 21(10):275~277
    [15]成水平,况其军.香蒲、灯芯草人工湿地研究[J].湖泊科学, 1997, 9(4):352~356
    [16]吴振斌,陈辉蓉,雷腊梅,等.人工湿地去除藻毒素研究[J].长江流域资源与环境, 2000, 9(2):242~247
    [17]白晓慧,王宝贞,余敏,聂梅生.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报, 1999,32(6):88~92
    [18] Li Xianfa, Jiang Chuncai. Constructed Wetland Systems for Water Pollution Control in North China [J]. Wat.Sci.Tech. 1995, 32(3): 349~356
    [19]沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技, 1997, 10(3):1~6
    [20] Madigan M T, Martinko L M, Parker J. Brock Biology of Microorganisms [M]. 8th ed. Prentice Hall , Upper Saddle River, NJ, 1997:986
    [21]项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学, 2004, 30(124):35~38
    [22]沈耀良,杨铨大.复合废水处理技术-人工湿地[J].污染防治技术, 1996, 9(1-2):1~8
    [23]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83~87
    [24] Hans Brix. Use of constructed wetland in water pollution control: Historical development, present status, and future perspectives [J]. Wat.Sci. Tech, 1994, 30(8): 209~223
    [25] Hiley P D. The reality of sewage treatment using wetland [A].ICWS, 94 Pro, 1994: 68~83
    [26]高拯民,李宪法,等.城市污水土地利用设计手册[M].北京:中国标准出版社, 1991
    [27] Kichuth R. Degradation and incorporation of nutrients from rural wastewaters by plants rhizosphere under liminic conditions[G]. In:Utilizatipon of Manture By Land Spreading. London:Comn. Of the Euro. Communitiess,1997
    [28] Seidel, K.. Happel, H. and Graue, G. Contributions to revitalisation of waters 2nd edn. [A]. Stiftung Limnologische Aebeit sgruppe Dr. Seidel e. V., Krefeld (Germany), 1978: 1~62
    [29] Seidel, K. Abbau von bacterium coli durch hohere wasser pflanzen [J] . Naturwiss. 1964, 1: 395~ 395
    [30] Seidel, K. Reingung von Gewassern durch hohere pflanzen [J]. Naturwiss, 1996, 53: 289~297
    [31] Kichuth S K. Macrophytes and water purification [G].In:Biological Control of Water Pollution. PhiladelpHia:Pensylvanai University Press,1976
    [32] US EPA.Guiding principles for constructed treatment wetlands: providing for water quality and wildlife habit [A].Washington 13C: US EPA, Office of Wetlands, Oceans and Watershed, 2000
    [33]吴亚英.人工湿地在新西兰的应用[J].江苏环境科技,2000,13(3):32~34
    [34]陈长太,王雪,祁继英.国外人工湿地技术的应用及研究进展[J].中国给水排水, 2003, 19(12): 105~106
    [35]汤显强黄岁樑.人工湿地去污机理及其国内外应用现状[J].水处理技术, 2007, 33(2): 290~292
    [36]刘超翔,胡洪营,张健,盛建武等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1~4
    [37] Vonxperling. M. Comparison among the most frequently used systems for wastewater treatment in developing countries [J].Wat.Sci.Tech, 1996, 33: 59~72
    [38]朱彤,等.人工湿地污水处理系统应用研究[J].环境科学研究, 1991,4(50):12~22
    [39]郑任宏邓仕槐李远伟等,表面流人工湿地硝化和反硝化强度研究[J].环境污染与防治, 2007, 29(1):37~39
    [40]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境, 2004,13(1):98~101
    [41]尹军,崔玉波,韩相奎,等.潜流人工湿地对污染物的降解特型[J].中国给水排水, 2004,20(6):47~49
    [42]崔玉波,李相猛,赵可.潜流人工湿地废水处理技术的效能[J].吉林建筑工程学院学报, 2002,19(2):7~9
    [43]籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制[J].环境污染治理技术与设备, 2004,5(6):71~75
    [44]刘佳,王泽民,李亚峰,等.潜流人工湿地系统对污染物的转化和去除机理[J].环境与生态, 2005,31(2):53~54
    [45]蒋玲燕,周琪.潜流人工湿地降解受污染水体中有机物研究[D].上海:同济大学,2007.3
    [46]雒维国,王世和.潜流型人工湿地对氮污染物的去除效果研究[D].南京:东南大学,2005.9
    [47]张晟,吴振斌.复合垂直流人工湿地系统除磷研究[D].武汉:中国科学院水生生物研究所,2007.6
    [48]赵桂瑜,周琪.人工湿地除磷基质筛选及其吸附机理研究[D] .上海:同济大学,2007.1
    [49]李现坡,余兆祥.人工湿地去除重金属动力学研究[M] .上海:同济大学,2008.3
    [50]李今,吴振斌.人工湿地与城市水体中生物膜特型及功能研究[D].武汉:中国科学院水生生物研究所,2005.6
    [51]张翔凌,吴振斌.不同基质对垂直流人工湿地处理效果及堵塞影响研究[D].武汉:中国科学院水生生物研究所,2007.6
    [52]钟秋爽,王世和.强化供氧对人工湿地净化效果的影响[M].南京:东南大学,2005.9
    [53]陆琦,郭宗楼.人工湿地系统水力学优化设计研究[M].杭州:浙江大学,2005.2
    [54]闻岳,周琪.水平潜流人工湿地净化受污染水体研究[D] .上海:同济大学,2007.1
    [55]叶建锋,徐祖信.垂直潜流人工湿地中污染物去除机理研究[D] .上海:同济大学,2007.1
    [56]付融冰,顾国维,杨海真.强化人工湿地对富营养化水体的修复机作用机理研究[D] .上海:同济大学,2007.1
    [57]付国楷,周琪.活性污泥法-人工湿地联合处理城市污水研究[D] .上海:同济大学,2007.7
    [58]肖恩荣,吴振斌.膜生物反应器-人工湿地复合系统净化工艺研究[D].武汉:中国科学院水生生物研究所,2007.6
    [59]张承芳,吕锡武,李先宁.自回流生物转盘与人工湿地组合技术处理农村生活污水[M].南京:东南大学,2006.4
    [60]蟠凡,周健.生物絮凝-多级人工湿地渗滤床处理小城镇污水试验研究[M].重庆:重庆大学,2007.4
    [61] Rogers K H, et al. Nitrogen removal in experiment wetland treatmengt system:evidence for the role of aquatic plants [J]. Res. Journal of WPCF, 1991, 63(7): 934~941
    [62] Breen P F. A mass balance method for assessing the potential of artificialwetland for wastewater treatment[J]. Wat. Res. 1990, 24(6): 689~697
    [63] IWA. Constructed wetland for pollution control: processes, performance, design and operation [M]. Scientific and Technical Report No.8. London: IWA Publishing, 2000
    [64] Kadlec R H, Knight R L. Treatment Wetland[M]. Boca Raton: CRC Press, 1996
    [65]史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水, 2002, 33(6):12~15
    [66]张兵之,吴振斌,徐光来.人工湿地发展概况和面临的问题[J].环境科学与技术2003,26(12):87~90
    [67] Werker A.G, Dougherty J.M, McHenry J.L, et al. Treatment Variability for wetland wastewater treatment design in cold climates. Ecol Eng, 2002, 19(1):1~11.
    [68]戴春雷,刘晓艳,张雷,等.寒冷地区运用人工湿地处理污水研究进展[J].油气田环境保护,2008, 18(4):53-56
    [69]黄翔峰,谢良林,陆丽君等.人工湿地在冬季低温地区的运用研究进展[J].环境污染与防治,2008, 30(11):84-89
    [70]晏再生,王世和.基质对于人工湿地净化磷素潜能的探讨.生态环境, 2007, 16(2):661~666.
    [71] Douglas J. Spieles, William J. Mitsch. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetland: a comparison of low- and high-nutrient riverine system. Ecol Eng, 2000, 14(1):77~91.
    [72]何强,万杰,翟俊,等.复合型人工湿地及其在小城镇污水处理中的应用[J].土木建筑与环境工程,2009, 31(5):122-126
    [73] Armstrong J, Armstrong W, Wu Z, et al. A role for phytotoxins in the phragmites die back syndrome[J]. Folia Geobot Phytotax, 1996, 31(1):127-142.
    [74]王东,李岚波,王磊.北方地区人工湿地系统去除氨氮、总磷试验研究[J].环境保护科学,2008, 34(3):86-88
    [75]聂志丹,年跃刚,李林锋,等.水力负荷及季节变化对人工湿地处理效率的影响.给水排水, 2006, 23(11):28~31.
    [76]周健,王继新,张勤,等.序批式人工湿地冬季低温脱氮的效能研究.环境科学学报,2007, 27(10):1652~1656
    [77]尹连庆,谷瑞华.人工湿地去除氨氮机理及影响因素研究.环境工程2008, 26(1):151-155
    [78]李晓晨,吴成强,杨敏,等.用于生物接触氧化工艺的填料特型比较研究[J].环境污染治理技术与设备, 2005,6(1):45~47
    [79]梅翔.微污染水源水生物接触氧化处理工艺中几种填料处理效果的初步比较[J].给水排水, 1999, 25 (5) :1~3
    [80]侯德,孟庆义廖日红,等.新型填料在生物接触氧化工艺中的应用研究[J].北京水务, 2009 (1): 22~23
    [81]刘翔,高廷耀.生物接触氧化法处理污水的一种新型填料—悬浮填料[J].重庆环境科学, 1999,21(2):42-44
    [82]杨东明,自充氧多层生物接触氧化工艺研究[M].大连:大连交通大学.2008.6
    [83]赖万东,杨卓如.接触氧化污水处理技术的研究现状和展望[J].四川环境,2005,24(1):74~77
    [84]缪晶广.微污染源水生物接触氧化处理技术[D].西安:西安建筑科技大学,2004.5:8~9
    [85] Gander M, Jeverson B, Judd S. Aerobic MBRs for domestic sewage treatment:a review with cost considerations[J].Separation and Purification Technology,2000,18:119~130
    [86]张锦荣.生物接触氧化法处理生活污水[J].油气田环境保护,1997,7(4):22~25
    [87] R.Grommen, W.Verstraete.Environmental biotechnology: the ongoing quest.Journal of Biotechnology [J], 2002, 98:113~123
    [88] Walter H Zachritz. Performance of an artificial wetland filter treating facultative lagoon effluence at Carville, Louisiana[J]. Wat. Eenviron. Res., 1993, 65(1): 46~52
    [89] Burgoon P S. Performance of subsueface flow wetland with batchload and continuous flow conditions[J]. Wat. Eenviron. Res., 1995, 67(5): 855~862
    [90] Reddy K R, Patrick W H. Nitrogen transformations and loss in flooded soils and sediments[J]. CRC Critical Reviews in Environental Control, 1984, 13: 273~309
    [91]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报, 2005,24(2):353~356
    [92]王圣瑞,年跃刚,侯文华,等.人工湿地植物的选择[J].湖泊科学, 2004,16(1):91~96
    [93]时应征,王晓,强艳艳,等.人工湿地植物的选择驯化研究综述[J].技术创新与管理, 2008,29(1):90~94
    [94]陈长太,阮晓红,王雪.人工湿地植物的选择原则[J].中国给水排水, 2003,19(3):65
    [95] Gersberg R M, Elkins B V, Lyon S R, et al. Role of aquatic plants in wastewatertreatment by artificial wetland [J]. Wat. Res., 1986, 20(3): 363~368
    [96]李志炎,唐宇力,杨在捐,等.人工湿地植物研究现状[J].浙江林业科技, 2004,24(4):56~59
    [97] Bailey J A. Principles of wild life management[M]. New York: John Wiley & Sons Inc., 1984
    [98] Joan G, Jordi C, Paula A, et al. Hydraulic behavior of horiental subsurface flow construtedwetland with different aspect ratio and granular media size [J]. Eco. Engi., 2004, 23: 177~187
    [99] Characklis W.G. Fouling bioflim development: a process analysis [J]. Biotechnol. Bioeng., 1981, 23:1923~1960
    [100]王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版), 2003,33(3):359~362
    [101] Bennett J P, Rathbum R E. reaeration in open channel flow[R]. U.S. geological survey open-file report, Bay St. Louis, Miss, 1972
    [102] Peter A K, Gerald T O. Turbulent diffusion and the reaeration coefficient[J].Sani. Engi.Division,ASCE,1963,128(3):293~323
    [103]崔理华,郑离妮,楼倩,等.不同回流比对无植物垂直流人工湿除氮效果的影响[J].环境工程学报, 2009, 3(7):1170~1174
    [104]张勤,周兴伟,周健.强化生物絮凝/三级人工湿地处理高浓度生活污水[J].中国给水排水, 2009, 25(1):1~4
    [105]王湛,万佳静,陈晓东,等.寒冷地区人工湿地污水处理技术研究进展[J].环境保护科学, 2009, 35(2):30-33
    [106]刘学燕,代明利,刘培斌.人工湿地在我国北方地区冬季应用的研究.农业环境科学学报, 2004, 23(6):1077~1081.
    [107]海热提,范立维,谢涛,等.两级潜流人工湿地在中国东北高寒地区的应用研究.环境科学, 2007, 28(11):2442~2447.
    [108]申欢,胡洪营,潘永宝.潜流式人工湿地冬季运行的强化措施研究.给水排水, 2007, 23(5):44~46.
    [109] S.华莱士, G.帕金, C.考思.寒冷地区污水处理的人工湿地设计与运行[J].中国环保产业, 2003, (6):40-42.
    [110]翟俊,何强,肖海文.凉山州泸沽湖镇污水处理厂工程设计[J].中国给水排水, 2006,22(2): 39~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700