用户名: 密码: 验证码:
城市化粪池粪便污泥微生物减量技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化的发展在今后相当长一段时间内使化粪池粪便污泥造成的环境压力日益增加。人工清掏费时费力,同时粪便污泥的填埋处置也会带来二次污染问题。因此,开展化粪池粪便污泥的原位减量研究具有重要的现实意义。本论文运用厌氧消化理论和生物强化污泥减量化技术,首先探讨了复合微生物制剂EM、HBH-Ⅱ和MCMP用于粪便污泥厌氧消化减量的可行性;其次研究了其用于粪便污泥厌氧消化减量的合适投加量,进而研究了温度和初始pH对其用于粪便污泥厌氧消化减量的影响;提出单因素减量效果最好的HBH-Ⅱ用于粪便污泥减量的最优工艺条件,并运用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术探讨了加碱预处理与HBH-Ⅱ强化相结合技术对粪便污泥厌氧消化减量的微生态作用机理;最后分析了HBH-Ⅱ用于实际化粪池粪便污泥减量的作用效果和产生的效益。本研究为原位减少化粪池粪便污泥产量和提高化粪池的安全性能提供了一定的理论依据和技术支撑。论文得到如下主要研究结果:
     ①研究了EM、HBH-Ⅱ和MCMP用于粪便污泥厌氧消化减量的可行性。经过21天的厌氧消化,粪便污泥总固体(TS)、挥发性固体(VS)的减量效果、COD的去除效果及厌氧消化效率的增强作用均表现为:T1(直接投加复合微生物制剂)> T2(巴氏灭菌后投加复合微生物制剂)> CK(对照),且T1与CK和T2的TS、VS和COD去除率间的差异均达到极显著水平(p<0.01)。巴氏灭菌不会破坏粪便污泥本身的结构,各处理TS、VS和COD减量效果的差异主要是由反应器中微生物的数量和种类的不同造成的。外源EM、HBH-Ⅱ和MCMP与原粪便污泥体系中的土著微生物的联合作用更有利于粪便污泥的厌氧消化减量,直接投加EM、HBH-Ⅱ和MCMP用于粪便污泥的原位减量均是切实可行的。
     ②研究了EM、HBH-II和MCMP投加量(0~1.00%)对粪便污泥厌氧消化减量的影响。三试验组分别以投加0.01%的EM(E2)、0.05%的HBH-I(IH3)和0.01%的MCMP(M2)对TS和VS减量效果为最好。经过20天的厌氧反应,E2、H3和M2的TS和VS的去除率分别为32.51%和42.34%、36.43%和49.11%、33.74%和46.05%。用于强化粪便污泥厌氧消化减量,EM、HBH-II和MCMP的合适投加量分别为0.01%、0.05%和0.01%。至20天反应结束,投加EM、HBH-II和MCMP三试验组各处理的累积产气量分别比对照(CK)的高60.74%~214.70%、93.91%~218.83%和50.78%~254.82%。EM、HBH-Ⅱ和MCMP在强化粪便污泥厌氧消化减量的同时,也增加了厌氧消化的产气量。在相同的投加量条件下,投加HBH-II的产气量基本低于投加EM和MCMP的,所存在的安全隐患最小。EM、HBH-II和MCMP对粪便污泥厌氧消化减量的强化主要表现在投加菌种的前8天。在实际应用中可以每周补投一次复合微生物制剂以提高粪便污泥减量效率。
     ③研究了初始pH对EM、HBH-II和MCMP强化粪便污泥厌氧消化减量的影响。调节初始pH为9.0~10.0,EM、HBH-II和MCMP能极显著强化粪便污泥厌氧消化对TS和VS的去除;而调节初始pH为5.0,则极显著抑制其对TS和VS的去除。三试验组的TS和VS去除率分别以E-pH10、H-pH10和M-pH9的为最大。20天厌氧消化结束,E-pH10、H-pH10和M-pH9的TS和VS去除率分别达到36.69%和47.14%、43.03%和54.67%、40.70%和51.13%。调节初始pH为9.0~10.0均有利于EM、HBH-II和MCMP强化粪便污泥的厌氧消化减量。这一结论为加碱预处理与复合微生物强化相结合的粪便污泥厌氧消化减量提供了技术支撑。E-pH9、E-pH10、H-pH9和H-pH10达到TS和VS减量效果的同时,产气量也相对较少;而M-pH9的TS和VS减量效果虽然较好,但其产气量也明显增多,在实际应用中要考虑投加MCMP带来的沼气中毒和爆炸等安全隐患的发生。
     ④研究了温度对EM、HBH-II和MCMP强化粪便污泥厌氧消化减量的影响。分别投加EM(0.01%)、HBH-II(0.05%)和MCMP(0.01%)的三试验组的TS和VS减量效果均表现为35℃时最好,45℃时次之,25℃时最差。在同一温度水平条件下,按对TS和VS减量的增强效果大小排序为:HBH-II>MCMP>EM。在35℃条件下,各试验组的累积产气量表现为:MCMP> EM> HBH-II。
     ⑤通过正交实验,以TS、VS和COD去除率为指标,得到单因素试验中减量效果最好的HBH-Ⅱ强化粪便污泥厌氧消化减量的最佳工艺条件为:反应温度35℃、初始pH 10.0、HBH-Ⅱ投加量0.075%。在此条件下反应20天,粪便污泥厌氧消化TS、VS和COD的去除率分别达到:50.26%、65.45%和58.51%。
     ⑥利用PCR-DGGE技术,分别对不投加(A)、直接投加0.075%的HBH-Ⅱ(B)和调节初始pH为10.0后投加0.075%的HBH-Ⅱ(C)三个粪便污泥厌氧消化反应器中反应前和反应第八天的粪便污泥样品进行研究。反应前,各反应器的微生物群落间相似性指数(Cs)均较高(0.762~0.889),各反应器粪便污泥体系中的优势菌种没有发生太大变化。反应第八天,A和C以及B和C反应器的Cs相对较低(0.727~0.750),说明加碱预处理能明显改变粪便污泥的微生物群落结构。粪便污泥样品中的21种优势菌与梭状芽孢杆菌属(Clostridium)、拟杆菌属(Bacteroidetes)、不动杆菌属(Acinetobacter)、厚壁菌门(Firmicutes)、葡萄球菌属(Staphylococcus)和优杆菌属(Eubacterium)有较近的亲缘关系;其中只有4个菌种在同源性分析和系统发育树上保持在很好的一致性,其与Acinetobacter、Clostridium和Bacteroidetes同属,而其他的17个序列在系统发育树上均没有找到与其亲缘关系比较近的种。加碱预处理与HBH-II强化后,原粪便污泥和HBH-II中的专性产氢产乙酸菌Clostridium和Bacteroides在粪便污泥体系中大量繁殖进而形成优势种群,这解释了该技术强化粪便污泥厌氧消化减量且同时降低沼气产量的原因。
     ⑦选择HBH-II用于重庆市南坪某小区化粪池粪便污泥的原位减量。投加0.05%的HBH-II一个月后可以实现板结层厚度消减70%以上;同时原位投加HBH-II可以明显减少化粪池沼气产量。相比传统的化粪池粪便污泥清掏和填埋处理,投加HBH-II对化粪池粪便污泥的原位减量可降低成本69.44%。同时,投加HBH-II对化粪池粪便污泥的原位减量具有很好的环境效益和社会效益。
With the development of urbanization, the environmental pressure of septic tank nightsoil sludge pollution becomes increasingly pronounced. Artificial clearing will take lots of time and vigor, and also, landfill treatment of nightsoil sludge will bring secondary pollution. Therefore, the study of septic tank nightsoil sludge reduction in situ has important practical significance. In virtue of anaerobic theory and enhanced biological sludge reduction technology, the feasibility of using compound microorganisms (EM, HBH-Ⅱand MCMP) to strength nightsoil sludge anaerobic digestion reduction was investigated firstly in this paper; the proper dosage of EM,HBH-Ⅱand MCMP to aggrandize nightsoil sludge anaerobic digestion reduction was studied secondly; the effect of initial pH and temperatures on nightsoil sludge anaerobic digestion reduction aggrandized by EM,HBH-Ⅱand MCMP were discussed, the best technology condition of HBH-Ⅱto reduce nightsoil sludge was also brought forward. Moreover, the combined effect reduction mechanism of alkaline pretreatment and HBH-II bioaugmentation was discussed by using Polymerase Chain Reaction-Denature Gradient Gel Electrophoresis (PCR-DGGE) technology. The effect and the benefit of HBH-Ⅱon the reduction of septic tank nightsoil in practical applications was discussed lastly. The results of this research can offer a certain theoretical basis and useful technical support to reduce septic tank nightsoil sludge in situ and improve the security capability of septic tank. The main results were given as follows:
     ①Study the feasibility of using EM, HBH-Ⅱand MCMP for septic tank nightsoil sludge anaerobic digestion reduction. After 21 days of anaerobic digestion, the removal rates of Total solid(TS), Volatile solid (VS) and COD as well as the digestion efficiencies of nightsoil sludge of the 3 experimental groups are followed by T1 (adding 0.005% compound microorganism in the original nightsoil sludge system)> T2 (adding 0.005% compound microorganism after the nightsoil sludge was sterilized by pasteurism)> CK (without compound microorganism). There are significantly positive (p<0.01) relations between T1 and CK as well as T1 and T2 in the removal rate of TS, VS and COD. The configuration of nightsoil sludge isn’t destroyed by pasteurism; the difference of TS, VS and COD reduction effect among the treatments is mostly caused by the different quantity and species of the microorganism of the treatments. The corporate effect of EM, HBH-Ⅱand MCMP and the original microorganism of the nightsoil sludge system is more propitious to reduce septic tank nightsoil sludge; it is feasible for adding EM, HBH-Ⅱand MCMP to septic tank directly to reduce nightsoil sludge production.
     ②Study the effect of EM, HBH-Ⅱand MCMP adding dose on anaerobic digestion reduction of nightsoil sludge. After 20 days of anaerobic digestion, the maximum removal rates of TS and VS of the 3 experimental groups appear in E2, H3 and M2 treatment under 0.01%, 0.05% and 0.01% dosing quantity of EM, HBH-II and MCMP, respectively. The removal rates of TS and VS of E2 are 32.51% and 42.34%, respectively; that of H3 are 36.43% and 49.11%, respectively; and that of M2 are 33.74% and 46.05%, respectively. In this experiment, adding 0.01% EM, 0.05% HBH-II and 0.01% MCMP have the best reduction effect of nightsoil sludge.
     After 20 days of anaerobic digestion, the cumulative biogas yield of E1~E6, H1~H6 and M1~M6 are 60.74%~214.70%, 93.91%~218.83% and 50.78%~254.82% higher than that of the control (CK). EM, HBH-II and MCMP can improve the anaerobic digestion reduction efficiencies of nightsoil sludge as well as increase the gas production. The gas production of the treatments which adding HBH-II is slightly lower than that of the treatments which adding EM and MCMP correspondingly, thus the chance of biogas poisoning and blasting of the treatments adding HBH-II is least. The strengthen effect of EM, HBH-II and MCMP on anaerobic digestion reduction of nightsoil sludge displays mainly in the former 8 days. So, it is necessary to add compound micro-organisms once a week to improve the reduction effect in practical applications.
     ③Study the effect of initial pH on anaerobic digestion reduction of nightsoil sludge which were biologic enhanced by EM, HBH-II and MCMP. The bioaugmentation effect of EM, HBH-Ⅱa nd MCMP on the removal rate of TS and VS can be very significant improved when adjust the initial pH to 9.0~10.0, whereas the strengthen effect on the removal rate of TS and VS can be very significant suppressed when adjust the initial pH to 5.0.The maximum removal rates of TS and VS of the 3 experimental groups appear in E-pH10, H-pH10 and M-pH9, respectively. After 20 days anaerobic digestion, the removal rates of TS and VS of E-pH10、H-pH10 and M-pH9 reach to 36.69% and 47.14%, 43.03% and 54.67%, 40.70% and 51.13%, respectively. Adjusting the initial pH to 9.0~10.0 is propitious to the anaerobic digestion reduction of nightsoil sludge biologic enhanced by EM, HBH-II and MCMP. This conclusion can offer a technical support to anaerobic digestion reduction of nightsoil sludge aggrandized by bioaugmentation and alkaline pretreatment jointly.
     E-pH9, E-pH10, H-pH9 and H-pH10 have the best reduction of TS, VS and COD; meanwhile the gas production of these 4 treatments is relatively less. M-pH9 has the best reduction of TS, VS and COD; while the gas production of these 2 treatments is obviously increased; so it is necessary to prevent hidden safety dangers such as biogas poisoning and blasting in the real application of using MCMP to reduce septic tank nightsoil sludge in practical application.
     ④Study the effect of temperature on anaerobic digestion reduction of nightsoil sludge which were biologic enhanced by EM, HBH-II and MCMP. When the temperature is 35℃, the removal rates of TS, VS and COD of the 3 experimental groups, ie. adding 0.01%EM, adding 0.05%HBH-II and adding 0.01% MCMP, is the highest , secondly at 45℃, and thirdly at 25℃. Under the same temperature, the enhancement on TS and VS reduction are followed by: HBH-II>MCMP>EM; the cumulative biogas yield of the 3 experimental groups under 35℃are followed by: MCMP> EM> HBH-II.
     ⑤Through orthogonally experiment, TS, VS and COD removal rates were taken as the index for investigation, the optimum conditions for anaerobic digestion nightsoil sludge reduction biologic enhanced by HBH-Ⅱare as follows: temperature is 35℃, initial pH is 10 and the dose of HBH-Ⅱis 0.075%. Under this condition, after 20 days anaerobic digestion, TS, VS and COD removal rates of nightsoil sludge reach to 50.26%, 65.45% and 58.51%; respectively.
     ⑥The microbial communities in 6 nightsoil sludge samples taken from the beginning and the 8th days of the 3 anaerobic digestion reactors, ie. the original nightsoil sludge (A), adding 0.0075% HBH-II (B) and adding 0.075% HBH-II under initial pH 10(C), were studied using PCR-DGGE technique. At the beginning of reaction, the microbial communities of the 3 reactors are not changed greatly and the Dice coefficient (Cs) of microbial populations of different nightsoil sludge samples are 0.762~ 0.889. On 8th day, Cs of microbial populations of A and C reactors as well as that of B and C reactors are relatively low (0.727~0.750), it show that alkaline pretreatment can change the microbe community structure of nightsoil sludge system clearly. The 21 kinds of dominant bacterium in the 6 nightsoil sludge samples have near genetic relationship with Clostridium, Bacteroidetes, Acinetobacter, Firmicutes, Staphylococcus and Eubacterium .They are only 4 of them keeping good coherence between homology analysis and phylogenetic tree, and they are same generic microbe with Acinetobacter, Clostridium and Bacteroidetes; it can not find the contiguous kind in the phylogenetic tree of the rest 17 kinds of dominant bacterium. The combined augmentation effect of alkaline pretreatment and HBH-II can let Clostridium and Bacteroides propagate largely and then become the dominant population in the nightsoil sludge system, and this conclusion explain the reason why the combined effect of alkaline pretreatment and HBH-II can reduce the nightsoil sludge production as well as the marsh gas production of anaerobic digestion nightsoil sludge.
     ⑦HBH-II is choosed to apply in septic tank nightsoil reduction of a certain district in Nanping, Chongqing. The depth of harden layer of the septic tank can decrease more than 70% after adding 0.05% HBH-II a month later. At the same time, adding HBH-II in the septic tank onsite can decrease biogas output. Comparing to cleaning and landfill treatment of nightsoil sludge, the onsite nightsoil soil reduction by adding HBH-II can reduce 69.44% of the treating cost. And also, the onsite nightsoil soil reduction by adding HBH-II has good environmental and social benefit.
引文
[1]王士芬,夏群.城市粪便处理技术及方法[J].环境卫生工程, 2000, 8(1): 14-16.
    [2]陈朱蕾.国内外城市粪便处理系统模式比较的研究[J].武汉城市建设学院学报, 2000 17(1): 48-51.
    [3]李国玉.四起硫化氢急性中毒死亡分析[J].职业卫生与应急救援, 2003, 21(3): 146.
    [4]刘天亮.浅议化粪池[J].中外房地产导报, 2000, (10): 4-5.
    [5]王希林,谢荫芳.对化粪池改造的一点设想[J].铁道劳动安全卫生与环保, 2000, 27(4): 229-231.
    [6]张宝军.生态节能型化粪池的工艺过程与应用前景[J].给水排水技术动态, 2004, (3): 18-24.
    [7]汤克敏,李传国.化粪池改型与沼气利用的研究[J].环境卫生工程, 1994, (4): 14-17.
    [8]韩生健.集成式生物化粪池[J].环境卫生工程, 2002, 10(4): 167-169.
    [9]王绍康.关于城市生活粪便处理工艺方案的探讨[J].城市管理与科技, 2003 5(3): 121-122,128.
    [10]胡纪萃,周孟津,左剑恶.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社, 2003.
    [11]周玲.有机废弃物厌氧发酵特性的研究[D].长春:东北农业大学,硕士学位论文, 2003.
    [12]何志刚,孙军德.复合微生物菌剂在牛粪堆肥中的试验研究[J].安徽农业科学, 2007, 35(16): 4922 ,4933.
    [13]李庆康,王志明,袁灿生,等.利用有效微生物菌群进行鸡粪处理的研究[J].农业环境保护, 2001, 20(4): 217-220.
    [14]张陇利,刘青,徐智,等.复合微生物菌剂对污泥堆肥的作用效果研究[J].环境工程学报, 2008, 2 (2): 266-269.
    [15] Wei Y. S.,Van Houtenb Renze T. ,Borgerb Arjan R., et al. Minimization of excess sludge production for biological wastewater treatment[J]. Water Research, 2003, 37(18): 4453-4467
    [16]李俊,朱臻,朱国政,等.利用MCMP微生物制剂减少剩余污泥产量的研究[J].环境工程学报, 2007, 1(12): 92-95.
    [17]王敏,王里奥,包亮,等.多功能微生物制剂用于污泥减量的研究[J].中国给水排水, 2007, 23(7): 16-19.
    [18]邵青. EM对生活污水常见污染物的去除效果[J].中国给水排水, 2001, (3): 10-13.
    [19] Li T. G., Liu J. X., Bai R. B., et al. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms[J]. Water Research, 2007, (41): 3465-3473.
    [20]王建芳,赵庆良,张雁秋.投加有效微生物强化SBR和SBBR除污效果的研究[J].中国给水排水, 2007, 23 (9): 56-63.
    [21]李捍东,王庆生,张国宁,等.优势复合菌群用于城市生活污水净化新技术的研究[J].环境科学研究, 2000, 13(5): 14-16.
    [22]周先锋.复合菌群处理高浓度城市生活污水的技术研究[D].天津:天津大学,硕士学位论文, 2005.
    [23]林静.复合微生物制剂在人工湿地污染降解中的应用研究[D].上海:华东师范大学,硕士学位论文, 2006.
    [24]庞金钊,杨宗政,孙永军,等.投加优势菌净化城市湖泊水[J].中国给水排水, 2003,19(6): 51-52.
    [25]李英军,刘忠林. EM有效微生物技术在我国的应用研究进展[J].环境与开发, 2001, 16(3): 12-13.
    [26]梁立伟,赵兴龙,林李娟,等.生物强化技术在污水处理中的应用[J].油气田环境保护, 2006, 16(1): 1-3, 56.
    [27]牛明芬,赵明梅,何随成,等.微生物菌剂对有机废弃物堆肥发酵的影响[J].沈阳建筑大学学报(自然科学版), 2008, 24(3): 468-471.
    [28]上海市政工程设计研究院.污泥处理处置技术研究进展[M].北京:化学工业出版社2005.
    [29]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学, 2005, 26(1): 68-71.
    [30]陆卫亚.厌氧发酵技术在有机垃圾处理方面的应用[J].城市环境与城市生态, 2002, 15(6): 55-57.
    [31]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社, 2005.
    [32]任南琪,王爱杰.厌氧生物处理原理与技术[M].北京:化学工业出版社, 2004.
    [33]柯益华,方治华,孙学梅.厌氧消化过程微生物生态系统的建模与生态规律的研究[J].中国沼气, 1994, 12(2): 10-14.
    [34]张学才,陈明功.城市有机生活垃圾的生物气化[J].湖南工业学院学报, 2000, 20(2): 34-37.
    [35]蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素[J].环境科学, 2005, 26(2): 98-101.
    [36]李军,杨秀山.微生物与水处理工程[M].北京:化学工业出版社, 2002.
    [37] Ward A., Stensel H. D., Ferguson J. F., et al. Effect of autothermal treatment on anaerobic digestion in the dual digestion process[J]. Water Science Technology, 1998, (38): 435-442.
    [38] Bolzonella D., Pavan P., Battistoni P., et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process[J]. Process Biochemistry, 2005, 40(3-4): 1453-1460.
    [39]曾光明,乔玮,袁兴中,等.完全混合厌氧消化处理城市垃圾的特性研究[J].湖南大学学报(自然科学版), 2003, 30(5): 51-54.
    [40]乔玮,曾光明,袁兴中.厌氧消化处理城市垃圾多因素研究[J].环境科学与技术, 2004, 27(2): 3-4.
    [41]陈坚.环境生物技术[M].北京:中国轻工业出版社, 1999.
    [42]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社, 1996.
    [43] Lebrato J.. Domestic solid waste and sewage improvement by anaerobic digestion:a stirred digester[J]. Resources Conservation and Recycling, 1995, (13): 83-88.
    [44]赵由才,牛冬杰,柴晓利,等.固体废物处理与资源化[M].北京:化工出版社, 2006.
    [45] Borja R.,Rincon B.,Raposo F., et al. Assessment of kinetic parameters for the mesophilic anaerobic biodegradation of two-phase olive pomace[J]. International Biodeterioration and Biodegradation, 2004, 53(2): 71-78.
    [46]孙国朝,邵廷杰,郭学敏.沼气新技术应用研究[M].成都:四川科学技术出版社, 1988.
    [47]幽景元,肖波,杨家宽,等.生活垃圾厌氧发酵条件的正交试验[J].能源工程, 2003, (2): 28-30.
    [48]张爱军,陈洪章,李佐虎.有机固体废物固态厌氧消化处理的研究现状与进展[J].环境科学研究, 2002, 15(5): 52-54.
    [49]潘云霞,李文哲.接种物浓度对厌氧发酵产气特性影响的研究[J].农机化研究, 2004, (1): 187-189.
    [50]于晓章,彭晓英,周朴华.温度对厌氧嗜热菌群产甲烷能力的影响[J].湖南农业大学学报(自然科学版), 2005, 13 (4): 422-426.
    [51]吴满昌,孙可伟,李如燕,等.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程, 2005, (9): 28-30.
    [52]吴满昌,孙可伟,李如燕,等.温度对城市生活垃圾厌氧消化的影响[J].生态环境, 2005, 14(5): 683-685.
    [53] Bolzonella D., Innocenti L., Traverso P., et al. Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase[J]. Bioresource Technology, 2003, (86): 123-129.
    [54]张翠丽,杨改河,任广鑫,等.温度对4种不同粪便厌氧消化产气效率及消化时间的影响[J].农业工程学报, 2008, 24(7): 209-212.
    [55]张翠丽,李轶冰,卜东升,等.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报, 2008, 19(8): 1817-1822.
    [56] Sosnowski P. A., Ledakowicz W. S.. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid waste[J]. Advance in Environmental Research, 2003, (7): 609-616.
    [57] Vlyssides A. G., Klarlis P. K.. Thermal-alkaline solubilization of waste activated sludge as apretreatment stage for anaerobic digestion[J]. Bioresource Technology, 2004, (91): 201-206.
    [58]何品晶,潘修疆,吕凡,等. pH值对有机垃圾厌氧水解和酸化速率的影响[J].中国环境科学, 2006, 26(1): 57-61.
    [59]金杰,吴克,蔡敬民,等. BMW厌氧消化过程中产气性能影响因素研究[J].包装与食品机械, 2006, 24(5): 8-12.
    [60]沈伯雄,梁材,周元驰,等.生活垃圾厌氧发酵制沼气研究[J].环境卫生工程, 2006, 14 (3): 24-27.
    [61]苑宏英,张华星,陈银广,等. pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学, 2006, 27(7): 1358-1361.
    [62]张碧波,曾光明,张盼月,等.高温厌氧消化处理城市有机垃圾的正交试验研究[J].环境污染与防治, 2006, 28(2): 87-90.
    [63]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社, 1988.
    [64] Tanaka Y., Kaga H.. Influence of pH on UASB treatment of swine wastewater [A]. in 8th International Conference On Anaerobic Digestion[C]. Japan: Sendi, 1997.
    [65]周洪波, Cord-RuwischRal,丘陈坚,等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J].中国沼气, 2000, 18(4): 20-23.
    [66]李刚,杨立中,欧阳峰.厌氧消化过程控制因素及pH和Eh的影响分析[J].西南交通大学学报, 2001, 36(5): 518-522.
    [67]吴满昌.城市有机生活垃圾高温厌氧消化工艺及沼渣综合利用研究[D].昆明:昆明理工大学,博士学位论文, 2005.
    [68]乔玮,曾光明,袁兴中.厌氧消化技术在城市垃圾处理应用中的制约因素[J].江苏环境科技, 2002, 15(4): 28-30.
    [69] Lay J. J., Li Y. Y., Noike T., et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Water Science and Technology, 1997, 36(6-7): 493-500.
    [70]陈朝猛.城市有机垃圾厌氧消化及其营养调控技术研究[D].长沙:湖南大学,硕士学位论文, 2005.
    [71] Salminen Esa A., Rintala Jukka A.. Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading [J]. Water Research, 2002, 36(13): 3175-3182.
    [72] Li Y. Y., Ko I. B., Noike T., et al. Comparison of ammonia inhibition between the mesophilic and thermophilic anaerobic digestion of municipal solid wastes[A]. in The Proceedings of 10 thWorld Congress on Anaerobic Digestion[C]. 2005.
    [73]韩芸,李玉友,任勇翔,等.城市污水处理厂预热处理混合污泥的高温厌氧消化特性研究[J].环境科学学报, 2007, 27(7): 1174-1180.
    [74] Han Y., Sung S., Richard R. D.. Temperature phased anaerobic digestion of wastewater sludges[J]. Water Science and Technology, 1997, 36(6-7): 367-374.
    [75] Song Y. C., Kwon S. J., Woo J. H.. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single stage mesophilic and thermophilic digestion of sewage sludge[J]. Water Research, 2004, 38(7): 1653-1662.
    [76]张少辉,华玉妹.污泥厌氧消化的强化处理技术环境保护科学[J].,2004, 30(125): 13-15.
    [77] Kepp U., Machenbach L., Weisz N.. Enhanced stabilization of sewage sludge through thermal hydrolysis-three years of experience with full scale plant[J]. Water Science and Technology,, 2000, 42(9): 89-96.
    [78] Appels L., Baeyens J., Degrève J., et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781.
    [79] Pahl O., Firth A., MacLeod I., et al. Anaerobic co-digestion of mechanically biologically treated municipal waste with primary sewage sludge -A feasibility study[J]. Bioresource Technology, 2008, (99): 3354-3364.
    [80] Hwang K. Y., Shin E. B., Choi H. B.. A mechanical pretreatment of waste activated sludge for improvement of an aerobic digestion system[J]. Water Science and Technology, 1997, 36(12): l11-l16.
    [81]龙腾锐,蒋洪波,丁文川.不同工况的低强度超声波处理对活性污泥活性的影响[J].环境科学, 2007, 28(3): 392-396.
    [82] Tiehm A., Nickel K., Zellhom M.. Ultrasonic waste activated sludge disintegration for improving an aerobic stabilization[J]. Water Research, 200l, 35(8): 2003-2009.
    [83] Onyeche T. I.,Schlafer O.,Bormann H., et al. Ultrasonic cell disruption of stab ilized sludge with subsequent an aerobic digestion[J]. Ultrasonics Sonochemistry, 2002, (40): 31-35.
    [84]沈劲锋,殷绚,谷和平,等.超声分解剩余活性污泥实验研究[A]. in第二届全国化学工程与生物化工年会论文集[C].北京:北京化工大学, 2005.
    [85]刘春红,苏春江,杨顺生,等.超声波处理的污泥厌氧消化能量效率[J].武汉大学学报(理学版), 2008, 54(2): 188-192.
    [86]陈文花,刘常青,张江山,等.热处理对污泥厌氧发酵产氢的影响[J].可再生能源, 2007, 25(2): 56-59.
    [87] Bougrier C., Delgenes J. P., Carrere H.. Impacts of thermal pre-treatments on thesemi- continuous anaerobic digestion of waste activated sludge[J]. Biochemical Engineering 2007, (34): 20-27.
    [88] Zhang R. H., Zhang Z. Q.. Biogasification of rice straw with an anaerobic phased solidsdigester system[J]. Bioresource Technology, 1999, (68): 235-245.
    [89] Weemaes M., Grootaerd H., Simoens F.. Anaerobic digestion of ozonized biosolids[J]. Water Research, 2000, 34(8): 2330-2336.
    [90] Neyens E.,Baeyens J.,Dewil R. , et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, (106B): 83-92.
    [91] Neyens E., Baeyens J., Weemaes M., et al. Pilot-scale peroxidation (H202) of sewage sludge[J]. Journal of Hazardous Materials, 2003, (B98): 91-106.
    [92]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水, 1997, 23(1): l0-l5.
    [93]杨洁,季民,韩育宏,等.碱解预处理对污泥固体的破解及减量化效果[J].中国给水排水, 2007, 23(23): 93-100.
    [94]李敏,郭静,罗境.化学前处理--改善城市污水污泥厌氧消化处理的有效途径[J].城市环境与城市生态, 1997, 10(4): 60-62.
    [95]金春姬,赵振焕,彭刚,等.添加碱渣对污泥厌氧消化的影响研究[J].中国给水排水, 2008, 24(11): 30-33.
    [96] Lin J. G., Chang C. N., Chang S. C.. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization [J]. Bioresource Technology, 1997, 6(2): 85-90.
    [97] Gupta A. B., Gupta S. K.. Simultaneous carbon and nitrogen removal from high strength domesticated wastewater in an aerobic RBC biofilm[J]. Water Research 2001, 35(7): 1714-1722.
    [98]赵宗升,刘鸿亮,李炳伟,等.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水, 2001, 17(5): 24-28.
    [99] Chiu Y. C.,Chang C. N.,Lin J. G., et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion [J]. Water Science and Technology, 1997, 36(11): 155-162.
    [100]杨洁,季民,韩育宏,等.污泥碱解和超声破解预处理的效果研究[J].环境科学, 2008, 29(4): 1002-1006.
    [101] Ann K. H.,Yeom I.T.,Park K.Y., et al. Reduction of sludge by ozone t reatment and production of carbon source for denitrification[J]. Water Science & Technology, 2002, 46(11): 121-125.
    [102] Scheminske A., Krull R., Hempel D. C.. Oxidative treatmen of digest sewage sludge with ozone[J]. Water Science and Technology, 2000, 42(9): 151-158.
    [103] Bunning G., HemPel D.C..Vital-fluorochreomizaiton of microorgan isms using 3', 6' -diacetyl-fluoreseein to determine damages of cel membran es and loss of metabolic activity by ozonation[J]. Ozone Scice Eengineering, 1996, (18): 173-l81.
    [104]肖本益,阎鸿,魏源送.污泥热处理及其强化污泥厌氧消化的研究进展[J].环境科学学报, 2009, 29(4): 673-682.
    [105] Appels L.,Baeyens J.,Degreve J., et al. Principles and potential of the anaerobic digestion of waste activated sludge [J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781.
    [106] Anderson N. J., Dixon D. R., Harbour P. J., et al. Complete characterization of thermally treated sludges [J]. Water Science and Technology, 2002, 46(10): 51-54.
    [107] Shanableh A., Jomaa S.. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment [J]. Water Science and Technology, 2001, 44 (10): 129-135.
    [108] Bougrier C., Delgenès J. P., Carrère H.. Effects of thermal treatment on five different waste activated sludge samp le solubilisation, physical p roperties and anaerobic digestion[J]. Chemical Engineering Journal, 2008, 139 (2): 236-244.
    [109]王治军,王伟.剩余污泥的热水解试验[J].中国环境科学, 2005, 25((Supply)): 56~60.
    [110]张洪林,范丽华,曹春艳,等.高温预处理对污泥厌氧消化影响的研究[J].辽宁师范大学学报(自然科学版), 2007, 30(3): 336-338.
    [111]赵田甜,陆少鸣,陶光华.污泥加热预处理对中温厌氧消化的影响[J].环境工程学报, 2 0 0 8 2(9): 1243-1246.
    [112] Van L.H., Top E. M., Verstraete W.. Bioaugmentation in activated sludge:current features and future perspectives[J]. Applied Microbiology and Biotechnology, 1998, (50): 16-23.
    [113]朱亮,朱雪诞. EM菌液在活性污泥系统中的实验研究[J].工业水处理, 2001, 21(10): 13-15.
    [114]朱亮,汪岁羽,朱雪诞,等. EM菌富集培养及降解污水试验研究[J].河海大学学报, 2002, 30(2): 6-8.
    [115]王艳红,田永淑,孙俊芹.复配优势菌用于污水处理及污泥减量的研究[J].工业水处理, 2007, 27(4): 75-77.
    [116]李俊.微生物菌剂对污水处理厂污泥减量的影响研究[D].重庆:西南大学,博士学位论文, 2008.
    [117] Hung Y. T., Zachopoulus S. A., Horsfall F. L.. Effect of bioaugmentation process on sludge production in activated sludge reactors formunicipal wastewater treatment [A]. in Western Canada Water And wastewater Assoc.Proc,39th Ann, Conf [C]. Saskatoon:Saskatchewan, 1987.
    [118]梁鹏,黄霞,钱易,等. 3种生物处理方式对污泥减量效果的比较及优化[J].环境科学, 2006, 27(11): 2339-2343.
    [119] Ratsak C. H., Kooi B. W., Verseveld H. W. van. Biomass reduction and mineralization increase due to the ciliate Tet rahymena pyrif ormis grazing on the bacterium Pseudomonas fluorescens [J]. Water Science and Technology, 1994, 29(7): 119-128.
    [120] Lee N. M., Welander T.. Use of protoza and metazoan for decreasing sludge production in aerobic wastewater treatment [J]. Biotechnology Letters 1996, 18(4): 429-434.
    [121] Ghyoot W., Vertraet W.. Reduced sludge production in a two stage membrane assisted bioreactor [J]. Water Research, 2000, (34): 205-215.
    [122] Guo X. S.,Liu J. X.,Wei Y. S., et al. Sludge reduction with Tubificidae and the impact on the performance of the wastewater treatment process[J]. Journal of Environmental Sciences, 2007, (19): 257-263.
    [123] Chena Guang-Hao ,An Kyoung-Jin ,Sabyb Sebastien , et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process(OSA process)[J]. Water Research, 2003, (37): 3855-3866.
    [124]翟小蔚,潘涛, Ghyoot W,等.利用原生动物削减剩余活性污泥产量[J].中国给水排水, 2000, 16(11): 6-9.
    [125] Rocher M., Goma G., Begue A. P.. Towards a reduction in excess sludge production in activated sludge process: biomass physicochemical treatment and biodegradation[J]. Applied Environmental Microbiology, 1999, 51(3): 883-890.
    [126]梁鹏,黄霞,钱易.利用红斑颗体虫减少剩余污泥产量的研究[J].中国给水排水, 2004, 20(1): 13-17.
    [127]魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究[J].环境科学学报, 2005, 25(6): 803-808.
    [128]周可新,许木启,曹宏,等.利用微型动物消减剩余污泥量的研究[J].环境污染治理技术与设备, 2003, 4(1): 1-5.
    [129]林山杉,金玉花,付丽丽,等.生物砾间接触氧化反应器中原核生物多样性及其对剩余污泥减量化的贡献[J].自然科学进展, 2006, 16(10): 1245-1250.
    [130]杨艳红,王伯初,时兰春,等.复合微生物制剂的综合利用研究进展[J].重庆大学学报, 2003, 2(6): 81-85.
    [131] Liu K.,Tang Y. Q.,Matsui T., et al. Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure [J]. Journal of Bioscience and Bioengineering, 2009, 107(1): 54-60
    [132] Khalida A., Muhammad A., Crowley D. E.. Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater [J]. Water Research, 2009, 43(4): 1110- 1116.
    [133] Liang P., Huang X., Qian Y.. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi [J]. Biochemical Engineering Journal, 2006, 28(2): 117-122
    [134] Paul E., Debellefontaine H.. Reduction of Excess Sludge Produced by Biological Treatment Processes: Effect of Ozonation on Biomass and on Sludge[J]. Science and Engineering, 2007, 29(6): 415-427.
    [135] Machnicka A.. Filamentous microorganisms in phosphorus removal from wastewater[J]. Environment Protection Engineering, 2005, 31(1): 13-21.
    [136]袁冬海,席北斗,魏自民,等.微生物—水生生物强化系统模拟处理富营养化水体的研究[J].农业环境科学学报, 2007, 26(1): 19-23.
    [137] Sahlstrom L.. A review of survival of pathogenic bacteria in organic waste used in biogas plants [J]. Bioresource Technology, 2003, 87(2): 161-166.
    [138]孙玉焕,骆永明.污泥中病原物的环境与健康风险及其削减途[J].土壤, 2005, 37(5): 474-481.
    [139] Zibilske L. M., Clapham W. M., Rourke R. V.. Multiple applications of paper mill sludge in an agricultural system:Soil effects[J]. Journal of Environmental Quality, 2000, (29): 1975-198l.
    [140]赵嘉平,唐明,李堆淑,等.有效微生物群(EM)的研究进展[J].西北林学院学报, 2003, 18(3): 50-53.
    [141]陈丽媛,张翠霞,谢玺文,等.有效微生物群EM的应用及研究现状[J].微生物学杂志, 2000, 20(2): 54-57.
    [142]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版) [M].北京:中国环境科学出版社, 1989.
    [143]王寿权,严群,缪恒锋,等.接种比例对猪粪与蓝藻混合发酵产甲烷的影响[J].农业工程学报, 2009, 25(5): 172-176.
    [144]周富春.基于VS的有机固体废物厌氧消化的趋势分析[J].环境科学与技术, 2009, 32(6): 121-122,129.
    [145]戴前进,李艺,方先金.城市污水处理厂剩余污泥厌氧消化试验研究[J].中国给水排水, 2006, 22(23): 95-98.
    [146]宋珍霞,王里奥,谷伟,等.复合微生物制剂HBH-II用于化粪池污泥减量的可行性试验研究[J].重庆大学学报, 2009,32(11) :1339-1344.
    [147]李捍东,王强,田禹,等.投菌法处理高浓度焦化废水的研究[J].哈尔滨工业大学学报, 2006, 38(10): 1801-1805.
    [148]夏吉庆,李文哲,田晓峰.牛粪工业化厌氧发酵生产工艺实验研究[J].环境工程学报,2008, 2(9): 1274-1280.
    [149]马磊,王德汉,谢锡龙,等.接种量对餐厨垃圾高温厌氧消化的影响[J].农业工程学报, 2008, 24 (12 ): 178-182.
    [150]比嘉照夫.拯救地球大变革[M].北京:中国农业大学出版社, 1996.
    [151]毕东苏,郑广宏.富磷剩余污泥厌氧贮存过程中的释磷规律与计量关系[J].环境科学学报, 2008, 28(10): 2024-2028.
    [152]毕东苏,郑广宏,陆烽.硝酸盐对富磷剩余污泥厌氧消化的影响试验[J].环境工程学报, 2008, 2(9): 1255-1259.
    [153]蒋建林,周权能,车志群,等. PCR-RFLP技术分析沼气池厌氧活性污泥细菌的多样性[J].广西农业生物科学, 2008, 27(4): 372-374.
    [154]宋凤敏,呼世斌. EM菌活性污泥系统对皂素废水的深度处理试验[J].工业用水与废水, 2008, 39(2): 39-41.
    [155]张翔,余建峰,刘金盾,等.不同接种物对牛粪高温厌氧发酵的影响[J].广西师范大学学报(自然科学版), 2007, 25(1): 78-81.
    [156]毕东苏,郑广宏,陆烽.剩余污泥厌氧发酵过程中氮的转化规律与计量关系[J].生态环境, 2008, 17(4): 1403-1406.
    [157] Gassmann G., Glindemann D.. Phosphane (PH3) in the Biosphere[J]. Angewandte Chemie (International Edition in English), 1993, 32(5): 761-763.
    [158] Rutishauser B. V., Bachofen R.. Phosphine formation from sewage sludge cultures[J]. Anaerobes, 1999, 5(5): 525-531.
    [159]郭夏丽,郑平,梅玲玲.厌氧除磷种源的筛选与厌氧除磷条件的研究[J].环境科学学报, 2005, 25(2): 238-241.
    [160]豆俊峰,罗固源,刘翔.生物除磷过程厌氧释磷的代谢机理及其动力学分析[J].环境科学学报, 2005, 25(9): 1164-1169.
    [161]席北斗.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社, 2006.
    [162]蒋建国,王岩,隋继超,等.厨余垃圾高固体厌氧消化处理中氨氮浓度变化及其影响[J].中国环境科学, 2007, 27(6): 721-726.
    [163]孙士杰,许为义,彭书传.生物质垃圾厌氧反应特性的实验研究[J].合肥工业大学学报(自然科学版), 2008, 31(1): 105-108.
    [164]冯磊, Bernhard R.,李润东,等.有机垃圾单级高固体厌氧消化的中试实验[J].环境科学学报, 2009, 29(3): 584-588.
    [165] Zhang B., Zhang L. L., Zhang S. C., et al. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion[J]. Environmental Technology, 2005, 26(3): 329-339.
    [166]马传杰,花日茂,郭亮.接种量对牛粪厌氧干发酵的影响[J].家畜生态学报, 2008, 29(5): 81-84.
    [167]王光辉,于冰,张志凡,等. IC反应器中剩余污泥的厌氧消化试验研究[J].矿冶, 2007 16(3): 73-76.
    [168]张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社, 2001.
    [169]李志东,李娜,张勇,等.城市污水处理厂剩余污泥厌氧消化试验研究[J].水处理技术, 2007, 33(9): 78-83.
    [170]任南琪,周大石,马放.水污染控制微生物学[M].哈尔滨:黑龙江科学技术出版社, 1997.
    [171]苑宏英,员建,徐娟,等.碱性pH条件下增强剩余污泥厌氧产酸的研究[J].中国给水排水, 2008, 24(9): 26-29.
    [172] Yu H. Q., Fang H. H. P. Acidogenesis of geltin-rich wastewater in an upflow anaerobic reactor: influence of pH and temperature [J]. Water Research, 2003, (25): 55-66.
    [173] Patureau D., Helloin E., Rustrian M., et al. Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula aerodeni-trificans[J]. Water Research, 2001, 35(1): 189-197.
    [174]宋珍霞,王里奥,黄川,等.复合微生物制剂对化粪池粪便污泥厌氧消化减量的影响[J].中国给水排水, 2009, 25(19): 20-23.
    [175]吴江,徐龙君,谢金连.碱浸泡预处理对固体有机物厌氧消化的影响研究[J].环境科学学报, 2006, 26 (2): 252-255.
    [176] Kimi S.. Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion[J]. Water Science and Technology, 2000, 41(13): 67-73.
    [177]雷中方.高浓度钠盐对废水生物处理系统的失稳影响综述[J].工业水处理, 2000, 20 (4): 6-9.
    [178]杨洋,左剑恶,沈平,等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学, 2006, 27(4): 691-695.
    [179]胡亚冰,张超杰,张辰,等.碱解处理对剩余污泥融胞效果及厌氧消化产气效果[J].四川环境, 2009, 28(1): 1-4.
    [180] Bond P. L., Keller J., Blackall L. L.. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal:A possible mechanism of intracellular pH control[J]. Biotechnology and Bioengineering, 1999, 63(5): 507-515.
    [181] Liu Y.,Chen Y.,Gu G., et al. Effect of initial pH on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids[J]. Chemosphere, 2007, 66(1): 123 -129.
    [182]郭琇,孟昭辉,董晶颢.厌氧池中pH值对生物除磷的影响[J].哈尔滨商业大学学报(自然科学版), 2005, 21(3): 292-297.
    [183]郑弘,陈银广,杨殿海,等.污水起始pH值对序批式反应器(SBR)中增强生物除磷过程的影响研究[J].环境科学, 2007, 28(3): 512-516.
    [184]汪德生,付蕾.城市污水处理厂剩余污泥中温厌氧消化处理研究[J].新疆环境保护, 2006, 28(4): 6-9.
    [185]施跃锦,李非里,张嗣炯.城市污水污泥的厌氧消化与厌氧堆肥[J].浙江工业大学学报, 2002, 30(4): 377-381.
    [186]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社, 1998.
    [187] Buswell A. M., Hatfield W. D..Laboratory studies of sludge digestion / / Miller TL, ed. Anaerobic Fermentations [M]. Urbana: State of Illinois Department of Registration and Education, 1936.
    [188] Angellidaki I., Arhing B. K.. Anaerobic digestion of manure at different ammonia loads: effect of temperature [J]. Water Research, 1994, (28): 727-731.
    [189] Kettunen R. H., Rintala J. A.. The effect of low temperature (5~20℃) and adaptation on the methanogenic activity of biomass[J]. Appl Microbiol Biotechnol, 1997, (48): 570- 576.
    [190]赵杰红,张波,蔡伟民.温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响[J].环境科学, 2006, 27(8): 1682-1686.
    [191]庞云芝,李秀金,罗庆明.温度和化学预处理对玉米秸厌氧消化产气量的影响[J].生物加工过程, 2005, 3 (1): 37-40.
    [192] Ahring B. K., Ibrahim A. A., Mladenovska Z.. Effect of temperature increase from 55℃to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle manure [J]. Water Research, 2001, (35): 2446-2452.
    [193]张翠丽,李轶冰,卜东升,等.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报, 2008, 19(8): 1817- 1822.
    [194]张翠丽,杨改河,卜东升,等.温度对秸秆厌氧消化产气量及发酵周期影响的研究[J].农业环境科学学报, 2008, 27(5): 2069- 2074.
    [195]刘荣厚,郝元元,武丽娟.温度条件对猪粪厌氧发酵沼气产气特性的影响[[J].可再生能源, 2006, 5(129): 32- 35.
    [196]施晶俊.城市污水厂污泥生物厌氧减量化技术试验研究(硕士学位论文)[D].合肥:合肥工业大学,硕士学位论文, 2007.
    [197] Petersen D.G., Dahllof I. . Improvements for comparative analysis of changes in diversity of microbial communities using interal standards in PCR-DGGE[J]. FemsMicrobiology Ecology, 2005, 53(339-348).
    [198]马悦欣, Jeremy W., Staffan K.,等.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用[J].生态学报, 2003 23(1561-1569).
    [199]冯胜,高光,朱广伟,等.基于16S rDNA-DGGE和FDC技术对富营养化湖泊不同生态修复工程区细菌群落结构的研究[J].应用与环境生物学报, 2007, 13(4): 535-540.
    [200]刘敏,朱开玲,李洪波,等.应用PCR-DGGE技术分析黄海冷水团海域的细菌群落组成[J].环境科学, 2008, 29(4): 1082-1091.
    [201] Bano N., Hollibangh J. T.. Phylogenetic composition of bacterioplanton assemblages from Arctic ocean [J]. Applied and Environmental Microbiology 2002, 68(2): 505-518.
    [202] Casserly C., Erijman L. . Molecular monitoring of microbial diversity in an UASB reactor[J]. International Biodeterioration and Biodegradation, 2003, (52): 7-12.
    [203]刘新春,吴成强,张昱,等. PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析[J].生态学报, 2005, 25(4): 842-847.
    [204]邢薇,左剑恶,孙寓姣,等.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究[J].环境科学, 2006, 27(11): 2268-2272.
    [205]任瑞霞,张颖,李慧,等.石油污染土壤水改旱田后污染物组份及微生物群落结构变化[J].应用生态学报, 2007, 18(5): 1107-1112.
    [206]刘恩科,赵秉强,李秀英,等.不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3片段PCR产物的DGGE分析[J].生态学报, 2007, 27( 3): 1079-1085.
    [207]宋琳玲,曾光明,陈耀宁,等.固态发酵过程中微生物总DNA提取方法比较[J].环境科学学报, 2008, 28(11): 2200-2205.
    [208]刘莉,王中康,俞和韦,等.贡嘎蝠蛾幼虫肠道细菌多样性分析[J].微生物学报, 2008, 48(5): 616-622.
    [209]邢德峰,任南琪,宋佳秀,等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响[J].环境科学, 2006, 27(7): 1424-1428.
    [210]赵继红,楼燕,余志晟.城市污水厂(A/O工艺)微生物群落结构及其动态变化[J].生态环境, 2008, 17(3): 898-902.
    [211]王振宇,赵更峰,陈威,等.采油废水模拟处理系统中酵母菌群落结构动态初步解析[J].微生物学通报, 2009, 36(2): 165-169.
    [212]刘志恒.现代微生物学[M].北京:科学出版社, 2002.
    [213] Seksik P. ,Rigottier Gois L.,Gramet G., et al. Alterations of the dominant faecal bacterial group s in patientswith Crohn's disease of the colon[J]. Gut, 2003, 52: 237-242.
    [214] Rivière D.,Desvignes V.,Pelletier E., et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009.
    [215] Jayalakshmi S., Kurian J., Sukumaran V.. Bio hydrogen production from kitchen waste[J]. International Journal of Environment and Waste Management, 2008, 2(1-2): 75-83.
    [216] Tanisho S., Ishiwata Y.. Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks[J]. International Journal of Hydrogen Energy, 1995, 20(7): 541-545.
    [217] Wang C. C.,Chang C. W.,Chu C. P., et al. Producing hydrogen from wastewater sludge by Clostridium bifermentans[J]. Journal of Biotechnology, 2003, 102(1): 83-92.
    [218] Wang X., Hoefe D., Saint C. P., et al. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge[J]. Journal of Applied Microbiology, 2007, 103(5): 1415-1423.
    [219] Duran M.,Tepe N.,Yurtsever D., et al. Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control[J]. Applied Microbiology and Biotechnology, 2006, 73(4): 960-966.
    [220] Chouarir L. E., Paslierd D., Daegel E. N. P., et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J]. Environ Microbiol 2005, 7(8): 1104-1115.
    [221] Taguchi F.,Chang J. D.,Mizu Kami N., et al. Isolation of a hydrogen producing bacteria Clostridium beijerinckii strain AM21B from termites[J]. Canandian Journal Microbiology, 1993 39(7): 724-731.
    [222]包木太,王兵,陈庆国,等. PCR-DGGE技术在内源细菌选择性激活过程中的应用[J].环境科学, 2009, 30(6): 1802-1809.
    [223]刘开朗,王加启,卜登,等.人体肠道微生物多样性和功能研究进展[J].生态学报, 2009, 29(5): 2589-2594.
    [224] Bckhed F.,Ley R. E.,Sonnenburg J. L., et al. Host-bacterialmutualism in the human intestine[J]. Science, 2005, (307): 1915-1920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700