用户名: 密码: 验证码:
生物增强活性炭优势菌群稳定及竞争特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水源污染和可利用水资源的日益短缺问题为保障供水安全提出了挑战。生物增强活性炭技术(Bio-enhanced Activated Carbon,BEAC)将筛选出的优势菌群固定在活性炭载体上,用于饮用水深度处理,可以增强对有机物的降解效能、提高降解速率,因此受到广泛关注。目前对于BEAC工艺的研究重点在于通过选择适宜的活性炭、调控工艺运行,利于优势菌群生长、防止外入菌群生长、保持高生物活性和生物量,确保工艺稳定运行。然而以上研究均未涉及优势菌的菌群结构动态变化特点,优势菌间的相互关系,以及优势菌群对生态位的竞争关系。优势菌群是BEAC工艺的核心,研究优势菌群的稳定特征及竞争关系,对于保障BEAC工艺稳定运行具有重要意义。
     为了减少由DNA提取不当导致的DGGE分析结果偏差,本文首先进行了3种不同活性炭上菌群DNA提取方法的研究,通过测定DNA量、DNA纯度和DGGE图谱,结果表明采用方法C(20 kHz、输入能量为40 W的超声波预处理120 s,用1% CTAB、100μL 10 mg/L蛋白酶K和1.5 mL 20% SDS对菌体细胞裂解)提取的基因组总DNA经DGGE分析后,可获得完整的DGGE菌群图谱,为最佳DNA提取方案。针对难以应用FISH检测活性炭上菌群的问题,采用超声振荡分离活性炭上菌群后,在不同条件下进行杂交试验,通过测定菌群数量,发现FISH方法??可获得最多的菌群数量,其具体步骤为:超声振荡120 s预处理后,样品用8μL含有50 ng探针的杂交缓冲液,在40°C恒温下杂交3 h,之后用不含探针的杂交缓冲液在42°C条件下洗脱20 min。
     应用上述最佳DNA提取方法和FISH检测方法,对普通生物活性炭(BAC)滤池进行菌群监测,确定优势菌的菌属,并进行分离,获得5株优势菌(SRO 2,SRO 11,SRO19,SRO 20和SRO 30)。通过优势菌对TOC降解效果研究,以及测定世代时间和脱氢酶活性,发现筛选出的优势菌与其他细菌相比,同时具备较高的TOC降解能力、快速生长能力和高脱氢酶活性。
     将筛选的5株优势菌混合后固定于活性炭上,建立BEAC工艺体系。采用最佳DNA提取,及DGGE、ATP、SEM和FISH等技术对比分析了BEAC和普通BAC工艺中菌群动态变化,结果发现,优势菌具有代谢能力强、生物活性高和生长速度快的优点,在BEAC工艺运行期间,上、中、下层菌群生物活性比普通BAC高(BEAC工艺运行至90 d时,菌群生物活性已超过1000 ng ATP/g炭,运行至180 d时,上、中、下层菌群生物活性均超过1500 ng ATP/g炭,而BAC工艺运行期间,最高生物活性仅为1023.5 ng ATP/g炭);BEAC工艺菌群生物活性增长速度较普通BAC快(BEAC工艺菌群活性平均增长速率为7.70[ng ATP·g~(-1)炭·d~(-1)],而普通BAC工艺仅为5.12[ng ATP·g~(-1)炭·d~(-1)]),BEAC工艺对TOC的平均去除率为76.24%,而普通BAC仅为58.97%。BEAC工艺中优势菌群沿活性炭柱上、中、下层的分布相对均一,各层优势菌群均能充分发挥作用,提高了BEAC工艺对有机物的去除效率,优势菌群对提高污染物降解效果和工艺稳定运行发挥了重要作用。
     优势菌SRO 30在BEAC工艺中的比例最高,在运行至180 d时,占生境中总生物量的50%左右;其次是SRO 19,占总生物量的25%以上。BEAC工艺运行期间,优势菌群总量呈增加趋势,但优势菌SRO 11数量逐渐减少。在对BEAC工艺优势菌群竞争关系研究时发现,种群竞争与最低资源(有机物)需求(R~*)有关,由于BEAC工艺中可利用的资源(有机物)低于优势菌SRO 11的最低资源(有机物)需求(R~*),导致180 d后SRO 11从工艺体系中消失。
     假单胞菌属的SRO 2、SRO 11、SRO 19和SRO 20之间以利用性竞争为主,SRO 30与4株假单胞菌(SRO 2、SRO 11、SRO 19和SRO 20)之间以干扰性竞争为主。应用Lotka-Volterra方程计算了BEAC工艺中假单胞菌属(SRO 2,SRO 19和SRO 20)和枯草芽孢杆菌SRO 30的负荷量K_1和K_2,竞争系数α和β,结果表明,在一定条件下,BEAC滤池上、中、下层的假单胞菌属竞争系数α均小于K_1/K_2,枯草芽孢杆菌竞争系数β均小于K_2/K_1,枯草芽孢杆菌(SRO 30)和假单胞菌属(SRO 2,SRO 19和SRO 20)可以共存于BEAC反应体系中,最终形成稳定体系。
     通过以上研究,建立了一种活性炭微生物DNA提取和FISH检测方法,为活性炭上菌群分析提供了可靠的技术手段;发现了枯草芽孢杆菌Bacillus subtilis SRO 30和穿孔假单胞菌Pseudomonas pertucinogena SRO 19在BEAC工艺中的显著优势地位;通过数学模型预测了优势菌稳定特性,发现假单胞菌SRO 2、SRO 19和SRO 20和枯草芽孢杆菌SRO 30可以形成稳定体系。
The insurance of water supply security has in face of challenge because of water shortage and pollution. Bio-enhanced activated carbon (BEAC) is a kind of advanced drinking water treatment process, which fixed the isolated bacteria on activated carbon. The use of BEAC has become a matter of concern to many researchers, because it can improve organic pollutants removal efficiency. At present, the study of BEAC focuses on activated carbon properties in use and proper parameters of the process. The purpose of these studies are keep the dominant bacteria and BEAC process stable by means of improving the growth of dominant bacteria, preventing external bacteria from invading, keeping dominant bacterial quantity and activity. However, these studies did not concern about the importance of dominant bacteria, including the dynamics of dominant bacteria and relationship between these bacteria.
     In this study, three different DNA extraction protocols were used for evaluating the DNA extraction efficiency of bacteria attached on activated carbon by DGGE analysis. The results showed that method C with 120 seconds ultra-sonication under 20 kHz and 40 W input energy could produce the intact bacterial profiles, which was the most proper DNA extraction protocol. After comparison with three different fluorescence in situ hybridization methods, the results showed that 120 s ultra-sonication pretreatment was benefit for bacteria separated from activated carbon. The most proper hybridization condition was that the samples were hybridized for 3 hours in 8μL hybridization solutions with 50 ng probes at 40°C, then eluted in hybridization for 20 minutes at 42°C.
     With the most proper DNA extraction and FISH methods described above, bacterial community of BAC filter operated for 300 days was tested, and dominant bacteria were isolated and screened. It was found that five bacteria (SRO 2, SRO 11, SRO 19, SRO 20 and SRO 30) biodegraded TOC with higher efficiency, grew faster, and activated with higher dehydrigebase activity.
     Five bacteria were combined and fixed on activated carbon to form BEAC process. Parameters of BEAC process were tested by comparing with BAC, including water qualities of influent and effluent water, bacterial activity, structure and dynamics with DNA extraction, ATP, SEM and FISH analysis. The results showed that dominant bacterial played an important role in improving pollutants removal efficiency and stable operation of process. Bacterial activity of BEAC filter was higher than that of BAC filter. On the 90~(th) day of BEAC process, bacterial activity was above 1000 ngATP/g carbon. On the 180~(th) day of BEAC process, bacterial activity was above 1500 ngATP/g carboon, while the highest bacterial activity was 1023.5 ngATP/g carbon during BAC process. Bacterial activity of the BEAC filter increased faster than BAC because of the dominant bacteria attached on BEAC with the properties of strong metabolism, high biological activity and low growth time. The average increase rate of bacterial activity in BEAC filter was 7.70 ngATP·g~(-1)carbon·d~(-1), while it was 5.12 ngATP·g~(-1)carbon·d~(-1) in BAC filter. The higher biological activity of BEAC improved pollutants removal efficiency. During BEAC operation, average TOC removal efficiency of BEAC was 76.24%, while its of BAC was only 58.97%. Bacterial distribution along the BEAC filter was relatively more uniform than BAC, which made bacteria on each layer of the filter act and promoted the removal efficiency.
     On the 180~(th) day of BEAC operation, the amount of SRO 30 was the highest, with 50% of total biomass. The ammount of SRO 19 was 25% of total biomass. The amount of dominant bacteria was increased during BEAC process, while the amount of SRO 11 was decreased and eliminated on the 180~(th) day of operation. The study of competition between dominant bacteria on BEAC showed that the competition was related to the minus required resource (R~*). The organic resouce in influent was lower than R~* of SRO 11, so it limited the growth of SRO 11.
     The competition between SRO 2, SRO 11, SRO 19 and SRO 20 of Pseudomonas genus is exploitative. The competition between SRO 2, SRO 11, SRO 19, SRO 20 and SRO 30 is interfering. The environmental load of Pseudomonas genus SRO 2, SRO 19, SRO 20 and Bacillus subtilis SRO 30 are represented by K_1 and K_2 respectively. The competition coefficient of Pseudomonas genus SRO 2, SRO 19, SRO 20 and Bacillus subtilis SRO 30 are represented byαandβ. K_1, K_2,αandβwere calculated by using Lotka-Volterra fomula. The results showed thatαwas lower than K_1/K_2, andβwas lower than K_2/K_1, which indicated that Pseudomonas genus SRO 2, SRO 19, SRO 20 and Bacillus subtilis SRO 30 could coexist in the BEAC process.
     After the above study, the most proper DNA extraction and FISH methods were constructed, which could provide the reliable technologies for future study of bacteria on BAC or BEAC. It has been confirmed by this research that Bacillus subtilis SRO 30 and Pseudomonas pertucinogena SRO 19 obviously dominant achieved in BEAC ecosystem. The reasons about the dominance of BEAC were pointed out. The choice of dominant bacteria is important for BEAC process stability, during which should avoid overlapping resource, choose bacteria with low minus required resource (R~*), minimize internal competition. The forecasting results of dominant bacterial competition by using methametic fomula showed that Pseudomonas genus SRO 2, SRO 19, SRO 20 and Bacillus subtilis SRO 30 could coexist in the BEAC process, forming stable bacteria community.
引文
[1]王瑗,盛连喜,李科,等.中国水资源现状分析与可持续发展对策研究[J].水资源与水工程学报,2008,3:10-14.
    [2]王丽花,周鸿,张晓健,等.水源水中有机物特性及其氯化活性研究[J].环境科学学报,2001,5(5):573-576.
    [3]叶少帆,王志伟,吴志超.微污染水源水处理技术研究进展和对策分析[J].水处理技术,2010,36(6):22-28.
    [4]张天健.活性炭在我国饮用水处理中的应用研究进展[J]. 2009(2):54-60.
    [5] Stewart M H, Wolfe R L, Means E G. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water[J]. Appl Environ Microbiol, 1990,56(12):3822-3829.
    [6] Thuy Q T, Visvanathan C. Removal of inhibitory phenolic compounds by biological activated carbon coupled membrane bioreactor[J]. Water Sci Technol, 2006,53(11):89-97.
    [7] Wang H, Ho L, Lewis D M, et al. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins[J]. Water Res, 2007,41(18):4262-4270.
    [8] Xing W, Ngo H H, Kim S H, et al. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater[J]. Bioresour Technol, 2008,99(18):8674-8678.
    [9] Laurent P, Kihn A, Andersson A, et al. Impact of backwashing on nitrification in the biological activated carbon filters used in drinking water treatment[J]. Environ Technol, 2003,24(3):277-287.
    [10] Andersson A, Laurent P, Kihn A, et al. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment[J]. Water Res, 2001,35(12):2923-2934.
    [11] Akta? ?, ?e?en F. Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol[J]. Bioresour Technol, 2009,100(20):4604-4610.
    [12] Vinitnantharat S, Baral A, Ishibashi Y, et al. Quantitative bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol[J]. Environ Technol, 2001,22(3):339-344.
    [13] Ha S R, Vinitnantharat S, Ishibashi Y. A modeling approach to bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol[J]. JEnviron Sci Health A Tox Hazard Subst Environ Eng, 2001, 36(3):275-292.
    [14] Wenderoth D F, Rosenbrock P, Abraham W R, et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater[J]. Microb Ecol, 2003, 46 (2):161-176.
    [15]郜玉楠,李伟光,孙晓伟,等.优势菌在活性炭表面固定中生物量的变化规律研究[J].中国环境科学,2008,28(12):1079-1083.
    [16]刘水,李伟光,郜玉楠,等.生物因子控制反冲洗对BEAC滤池优势菌稳定性影响研究[J].环境科学,2009,30(12):3573-3578.
    [17] Fantroussi S E, Agathos S N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J]. Current Opinion in Microbiology, 2005,8:268-275.
    [18] Bathe S, Schwarzenbeck N, Hausner M. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid[J]. Bioresour Technol, 2009, 100:2902-2909.
    [19] Semprini L, Dolan M E, Mathias M A, et al. Bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane[J]. European Journal of Soil Biology, 2007,43:322-327.
    [20] Semprini L, Dolan M E, Hopkins G D, et al. Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene[J]. Journal of Contaminant Hydrology, 2009,103:157-167.
    [21] Alisi C, Musella R, Tasso F, et al. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance[J]. Science of the Total Environment, 2009,407:3024-3032.
    [22] Lima D, Viana P, AndréS, et al. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: The effectiveness of bioaugmentation and biostimulation approaches[J]. Chemosphere, 2009,74:187-192.
    [23] Hu X, Li A, Fan J, et al. Biotreatment of p-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation[J]. Bioresource Technology, 2008,99:4529-4533.
    [24] Ren N Q, Wang D Y, Yang C P, et al. Selection and isolation of hydrogen-producing fermentative bacteria with high yield and rate and itsbioaugmentation process[J]. International Journal of Hydrogen Energy, 2010,35(7):2877-2882.
    [25] Wang M, Yang G, Min H, et al. Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: Degradation study and analysis of its mechanisms[J]. water Res, 2009,43(17):4187-4196.
    [26] Yu F B, Ali S, Guan L B, et al. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities[J]. Journal of Hazardous Materials, 2009,176:20-16.
    [27] Niu G L, Zhang J J, Zhao S, et al. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73[J]. Environ Pollut, 2009,157:763-771.
    [28] Orr P T, Jones G J, Hamilton G R. Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide--implications for compliance with the Australian drinking water guidelines[J]. Water Res, 2004,38(20):4455-4461.
    [29] Huang W J, Peng H S, Peng M Y, et al. Removal of bromate and assimilable organic carbon from drinking water using granular activated carbon[J]. Water Sci Technol, 2004,50(8):73-80.
    [30] Magnuson M L, Speth T F. Quantitative structure-property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon[J]. Environ Sci Technol, 2005,39(19):706-711.
    [31] Savchyna L A, Kozyatnyk I P, Poliakova T V, et al. Influence of surface chemistry and structure of activated carbon on adsorption of fulvic acids from water solution[J]. Water Sci Technol, 2009,60(2):441-447.
    [32] Yin C Y, Aroua M K, Daud W M A W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions[J]. Separation and Purification Technology, 2007,52(3):403-415.
    [33] Seredynska-Sobecka B, Tomaszewska M, Janus M, et al. Biological activation of carbon filters[J]. Water Res, 2006,40(2):355-363.
    [34]李伟光,时文歆,赵庆良.固定化生物活性炭处理低浓度甲醇废水的工程应用[J].给水排水,2003,29(12):47-49.
    [35]姚宏,马放,田盛,等.臭氧-固定化生物活性炭滤池深度处理石化废水的试验研究[J].环境污染治理技术与设备,2005,6(5):83-86.
    [36]杨基先,马放,赵庆良,等.固定化生物活性炭除微量有机物的应用研究[J].东北师大学报自然科学版,2000,32(1):90-95.
    [37]安东,李伟光,崔福义,等.固定化生物活性炭强化饮用水深度处理[J].中国给水排水,2005,21(4):9-12.
    [38]王广智,李伟光,黄丽坤,等. Removal characteristics of disinfection by-products formation potential by bioaugmentation activated carbon proces[J]. Journal of Harbin Institute of Technology, 2010,17(3):323-327.
    [39]王锐.活性炭生物增强工艺长期运行的稳定性研究[D].哈尔滨:哈尔滨工业大学学位论文,2006:18-79.
    [40]王广智,李伟光,何文杰,等.活性炭性质对固定化生物活性炭净水效果的影响研究[J].环境科学,2006,27(10):2040-2044.
    [41]王广智.固定化生物活性炭中优势菌群生物稳定性的控制研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:54-74.
    [42]郜玉楠.土著菌群对生物增强活性炭系统的稳定运行研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:91-114.
    [43] Wilcox D P, Chang E, Dickson K L, et al. Microbial growth associated with granular activated carbon in a pilot water treatment facility[J]. Appl Environ Microbiol, 1983,46(2):406-416.
    [44]吴强,梁伟杰. BAC滤池微生物分布及生长状况的分析[J].供水技术,2007,1(4):20-22.
    [45]王晨,马放,山丹,等. Performance of BAC process for treatment of micro-polluted water[J]. Journal of Harbin Institute of Technology (New Series), 2008,15(2):194-197.
    [46]李凌,李轶,胡洪营.活性炭固定耐冷菌对硝基苯的降解特性[J].中国环境科学,2009,29(9):941-945.
    [47]周春生,尹军. TTC-脱氢酶活性检测方法的研究[J].环境科学学报,1996,10(4):400-405.
    [48]邢林林,王竞,曲媛媛,等.生物强化对MBR系统生物特性及群落结构的影响[J].环境工程学报,2007,1(4):70-73.
    [49]荣宏伟,李建中,张可方.铜对活性污泥微生物活性影响研究[J].环境工程学报,2010,4(8):1709-1713.
    [50] Magic-Knezev A, van der Kooij D. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment[J]. Water Res, 2004,38(18):3971-3979.
    [51] Velten S, Hammes F, Boller M, et al. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination[J]. Water Res, 2007,41(9):1973-1983.
    [52]朱小彪,许春华,高宝玉,等.曝气生物滤池生物量和生物活性的试验研究[J].环境科学学报,2007,27(7):1135-1140.
    [53]王志勇,许振成,虢清伟,等. HRT对悬挂链曝气式生物接触氧化工艺的影响[J].环境科学与技术,2009,32(5):52-61.
    [54]朱扬玲.采用PCR-DGGE方法研究浙江玫瑰醋酿造过程中的微生物多样性[D].杭州:浙江工商大学学位论文,2009:9-10.
    [55] Fischer S G, Lerman L S. DNA fragments fiffering by fingle fase-pair fubstitutions are separated in denaturing gradient gels: correspondence with melting theory[J]. Proc Natl Acad Sci USA, 1983,80:1579-1583.
    [56] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993,59:695-700.
    [57] Kirk J L, Klironomos J N, Lee H, et al. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil[J]. Environ Pollut, 2005,133(3):455-465.
    [58] Ivnitsky H, Katz I, Minz D, et al. Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment[J]. Water Res, 2007,41(17):3924-3935.
    [59] Babbitt C W, Pacheco A, Lindner A S. Methanol removal efficiency and bacterial diversity of an activated carbon biofilter[J]. Bioresour Technol, 2009,100(24):6207-6216.
    [60]王振宇,张昱,刘新春,等. O3—BAC工艺的微生物群落结构解析[J].中国给水排水,2006,22(1):1-4.
    [61]金鹏康,姜德旺,张小峰,等.臭氧-生物活性炭工艺中生物群落分布特征[J].西安建筑科技大学学报(自然科学版),2007,39(6):829-833.
    [62]张阳,陶思源,潘晶,等.阿特拉津微污染原水生物活性炭处理系统种群动态演替分析[J].化工学报,2009,60(5):1281-1286.
    [63] Farrelly V, Rainey F A, Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species[J]. Appl Environ Microbiol, 1995,61(7):2798-2801.
    [64] Picard C, Ponsonnet C, Paget E, et al. Detection and enumeration of bacteria insoil by direct DNA extraction and polymerase chain reaction[J]. Appl Environ Microbiol, 1992, 58(9):2717-2722.
    [65]周德庆.微生物学教程[M].第二版.北京:高等教育出版社,2003:6-7
    [66]张志强,林波,李昌花,等.复合菌群的构建及其所产MBF絮凝活性的影响因素研究[J].江西科学,2006,24(1):17-20.
    [67]刘海燕,李明,丁存宝,等.海洋石油降解菌株选育及组合降解优化[J].安徽农业科学,2009,37(15):6892-6893.
    [68]李现尧,刘晓文,史全良.一株微囊藻毒素降解辅助菌的分离和鉴定[J].微生物学通报,2010,37(3):473-478.
    [69]周雪飞,张亚雷,徐德强,等.烷烃和丁二腈高效降解菌混合降解性能研究[J].同济大学学报(自然科学版),2007,35(8):1074-1079.
    [70]李平,王焰新,刘琨,等.高效纤维素降解菌系的构建[J].地球科学(中国地质大学学报),2009,34(3):533-538.
    [71]任南琪,马放,杨基先,等.污染控制微生物学[M].第三版.哈尔滨:哈尔滨工业大学出版社,2007:159-169.
    [72]高小朋,乔小强,贺小龙,等.陕北地区石油降解菌的筛选及菌群的构建[J].湖北农业科学,2010,49(4):840-841.
    [73]王丽娟,王哲,张翼龙,等.壤中石油烃降解菌群的构建及其在降解过程的特征分析[J].安徽农业科学,2010,38(20):10834-10836.
    [74]范耀山[加].分子细胞遗传学——技术与应用[M].刘青杰,译.北京:科学出版社,2007:24-25.
    [75] Speicher M R, Ballard S G, Ward D C. Karyotyping human chromosomes by combinatorial multi-fluor FISH[J]. Nat Genet, 1996,12(4):368-375.
    [76] Spencer D V, Cavalier M, Kalpatthi R, et al. Inverted and deleted chromosome 16 with deletion of 3'CBFB identified by fluorescence in situ hybridization[J]. Cancer Genet Cytogenet, 2007,179(1):82-84.
    [77] Baoyu Z, Guofu C, Guangce W, et al. Identification of two Skeletonema costatum-like diatoms by fluorescence in situ hybridization[J]. Chinese Journal of Oceanology and Limnology, 2010,28(2):310-314.
    [78] Satoh H, Okabe S, Yamaguchi Y, et al. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode[J]. Water Res, 2003,37(9):2206-2216.
    [79] Kim D J, Lee D I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of itsnitrifying bacterial community by FISH[J]. Bioresour Technol, 2006,97(3):459-468.
    [80] Ariesyady H D, Ito T, Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Res, 2007,41(7):1554-1568.
    [81] Wilen B M, Onuki M, Hermansson M, et al. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability[J]. Water Res, 2008,42(8-9):2300-2308.
    [82] Lee H W, Park Y K, Choi E, et al. Bacterial community and biological nitrate removal: comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage[J]. J Microbiol Biotechnol, 2008,18 (11):1826-1835.
    [83] Chae K J, Rameshwar T, Jang A, et al. Analysis of the nitrifying bacterial community in BioCube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes[J]. J Environ Manage, 2008,88 (4):1426-1435.
    [84] Matsumoto S, Katoku M, Saeki G, et al. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses[J]. Environ Microbiol, 2010,12(1):192-206.
    [85]张星,林炜铁,朱雅楠. FISH技术定量解析亚硝酸盐氧化菌的条件优化[J].环境科学学报,2009,29(4):716-722.
    [86]郑雅楠,滝川哲夫,郭建华,等. SBR法常、低温下生活污水短程硝化的实现及特性[J].中国环境科学,2009,29(9):935-940.
    [87]宫正,刘思彤,杨凤林,等.启动炭管膜曝气生物膜反应器实现全程自养脱氮[J].环境科学,2008,29(5):1221-1226.
    [88]包涵,张卫东,宫正,等.膜曝气生物膜反应器运行单级自养脱氮工艺功能型菌群特性研究[J].环境科学,2009,30(5):1461-1467.
    [89]亢涵,王秀蘅,李楠,等.生物除磷系统启动期聚磷菌的FISH原位分析与聚磷特性[J].环境科学,2009,30(1):80-84.
    [90]高景峰,陈冉妮,苏凯,等.同步脱氮除磷好氧颗粒污泥形成与反应机制的研究[J].环境科学,2010,31(4):1021-1029.
    [91]刘春,马俊科,吴根,等.阿维菌素废水工业化UASB颗粒污泥产甲烷菌群分析[J].环境科学,2010,31(3):725-730.
    [92]陈瑛,任南琪,宋佳秀.荧光原位杂交技术解析发酵产氢细菌群落结构[J].中国环境科学,2007,27(3):295-299.
    [93]曾薇,张悦,李磊,等.生活污水常温处理系统中AOB与NOB竞争优势的调控[J].环境科学,2009,30(5):1430-1436.
    [94]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报,2005,24(5):854-860.
    [95] Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Appl Environ Microbiol, 1996,62(2):316-322.
    [96]王镜岩,朱圣庚,徐长法.生物化学(上册)[M].第三版.北京:高等教育出版社,2002:507-508.
    [97] Steffan R J, Goksoyr J, Bej A K, et al. Recovery of DNA from soils and sediments[J]. Appl Environ Microbiol, 1988,54(12):2908-2915.
    [98] Sanguinetti C J, Neto E D, Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994,17 (5):914-921.
    [99] Lefendre P, Legendre L. Numerical Ecology[M]. Second English ed. USA: Elsevier Science B.V., 1998:21-34.
    [100]DuTeau N M, Rogers J D, Bartholomay C T, et al. Species-specific oligonucleotides for enumeration of Pseudomonas putida F1, Burkholderia sp. strain JS150, and Bacillus subtilis ATCC 7003 in biodegradation experiments[J]. Appl Environ Microbiol, 1998,64(12):4994-4999.
    [101]Lenaerts J, Lappin-Scott H M, J Porter. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry[J]. Appl Environ Microbiol, 2007,73(6):2020-2023.
    [102]Sekiguchi Y, Kamagata Y, Nakamura K, et al. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules[J]. Appl Environ Microbiol, 1999,65 (3):1280-1288.
    [103]Watanabe K, Watanabe K, Kodama Y, et al. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities[J]. Appl Environ Microbiol, 2000,66(11):4803-4809.
    [104]Kitaguchi A, Yamaguchi N, Nasu M. Enumeration of respiring Pseudomonas spp. in milk within 6 hours by fluorescence in situ hybridization following formazan reduction[J]. Appl Environ Microbiol, 2005,71(5):2748-2752.
    [105]孙巍. BAC增强工艺中优势菌群特性及最优固定化条件的研究[D].哈尔
    滨:哈尔滨工业大学学位论文,2008:20-25.
    [106]Yang H, Xiao Y, Zeng G M, et al. Comparison of methods for total community DNA extraction and purification from compost[J]. Appl Microbiol Biotechnol, 2007,74(4):918-925.
    [107]Sheu C, Wu C Y, Chen S C, et al. Extraction of DNA from soil for analysis of bacterial diversity in transgenic and nontransgenic papaya sites[J]. J Agric Food Chem, 2008,56(24):11969-11975.
    [108]Maciel B M, Santos A C, Dias J C, et al. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste[J]. Genet Mol Res, 2009,8(1):375-388.
    [109]Lakay F M, Botha A, Prior B A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils[J]. J Appl Microbiol, 2007,102(1):265-273.
    [110]Amorim J H, Macena T N, Lacerda G V, et al. An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest[J]. Genet Mol Res, 2008,7(4):1226-1232.
    [111]de Lipthay J R, Enzinger C, Johnsen K, et al. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis[J]. Soil Biology and Biochemistry, 2004,36 (10):1607-1614.
    [112]Krsek M, Wellington E M. Comparison of different methods for the isolation and purification of total community DNA from soil[J]. J Microbiol Methods, 1999,39(1):1-16.
    [113]Frosteg?rd A, Courtois S, Ramisse V, et al. Quantification of bias related to the extraction of DNA directly from soils[J]. Appl Environ Microbiol, 1999,65(12):5409-5420.
    [114]赵子翰,李俊英,杨晓雁,等. SIIA-C2191-A and B, novel polycyclic xanthoneantibiotics produced by Streptomyces flavogriseus I. Taxonomy, fermentation, isolation and biological activities[J].中国抗生素杂志,2003,10:627-632.
    [115]Wang C, Li Y. Incorporation of granular activated carbon in an immobilized membrane bioreactor for the biodegradation of phenol by Pseudomonas putida[J]. Biotechnol Lett, 2007,29(9):1353-1356.
    [116]Zhong W, Zhu C, Shu M, et al. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD[J]. Bioresour Technol, 2010,101(18):6935-6941.
    [117]方式纯,郝瑞霞,鲁志强.枯草芽孢杆菌(Bacillus subtilis)降解萘的动力学研究[J].高校地质学报,2007,13(4):682-687.
    [118]Jiang C, Sun H, Sun T, et al. Immobilization of cadmium in soils by UV-mutated Bacillus subtilis 38 bioaugmentation and NovoGro amendment[J]. J Hazard Mater, 2009,167(1-3):1170-1177.
    [119]周方,朱厚础,唐光江,等.细胞脂肪酸气相色谱图鉴别细菌的研究[J].微生物学报,1987,27(2):95-104.
    [120]解军,祁峰,裴海燕,等.脱氢酶活性检测方法及其在环境监测中的应用[J].中国环境监测,2006,22(5):14-18.
    [121]Khammar N, Malhautier L, Degrange V, et al. Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters[J]. J Appl Microbiol, 2005,98(2):476-490.
    [122]Haribabu B, Kamath A V, Vaidyanathan C S. Degradation of substituted benzoic acids by a Micrococcus species[J]. FEMS Microbiology Letters, 1984,21(2):197-200.
    [123]GK S, LE S, A K. Degradation of Pyridine by Micrococcus luteus Isolated from Soil[J]. Appl Environ Microbiol, 1986,51(5):963-968.
    [124]Doddamani H P, Ninnekar H Z. Biodegradation of Carbaryl by a Micrococcus Species[J]. Current Microbiology, 2001,43(1):69-73.
    [125]潘利华,姜绍通,刘鹏达,等.苯酚降解菌的筛选及其降解特性的初步研究[J].微生物学通报,2003,30(5):78-81.
    [126]凌琪,汤利华,陶勇,等.苯酚降解细菌的分离与选育研究[J].中国给水排水,2007,23(11):78-82.
    [127]刘红玉,鲁双庆,廖柏寒,等.表面活性剂AE降解菌株的分离筛选及鉴定[J].环境科学学报,2003,23(4):512-516.
    [128]王志强,武强,叶思源,等.地下水石油污染高效生物降解研究[J].环境科学,2005,26(6):61-64.
    [129]陈华,严莲荷,陈媛,等.富马酸废水降解菌的选育及降解效果[J].环境科学与技术,2005,28(6):75-76.
    [130]El-Sayed W S, El-Baz A F, Othman A M. Biodegradation of melamine formaldehyde by Micrococcus sp. strain MF-1 isolated from aminoplastic wastewater effluent[J]. International Biodeterioration & Biodegradation, 2006,57(2):75-81.
    [131]温洪宇,廖银章,李旭东.菌株N-1对萘的降解特性研究[J].应用与环境生物学报,2006,12(1):96-98.
    [132]龙家茹.乙酰甲胺磷高效降解菌的筛选与鉴定[J].安徽农业科学,2007,35(35):11504-11505.
    [133]郑春莉,周集体,王竞,等.硝基苯高效降解菌对硝基苯好氧降解[J].大连理工大学学报,2008,48(2):173-177.
    [134]荚荣,洪祯瑞,李青,等.降解甲胺磷细菌的分离及某些特性的研究[J].安徽大学学报(自然科学版),1997,21(1):100-103.
    [135]赵启美,何佳,顾向阳,等.高效苯胺降解菌筛选方法研究[J].河南农业大学学报,2000,34(2):174-176.
    [136]Koma D, Hasumi F, Yamamoto E, et al. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp[J]. J Biosci Bioeng, 2001,91(1):94-96.
    [137]张小凡,朱南文.聚乙酸乙烯酯降解菌的分离、鉴定及降解特性[J].中国环境科学,2002,22(5):464-467.
    [138]Kang B R, Lee J H, Ko S J, et al. Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010[J]. Can J Microbiol, 2004,50 (11):935-941.
    [139]祝儒刚,钟鸣,周启星,等.一株菲降解菌的分离鉴定及其特性[J].应用生态学报,2006,17(11):2117-2120.
    [140]Adav S S, Chen M Y, Lee D J, et al. Degradation of phenol by Acinetobacter strain isolated from aerobic granules[J]. Chemosphere, 2007,67 ( 8 ):1566-1572.
    [141]李华,刘永军,刘金光.固定化Acinetobacter sp. XA05和Sphingomonas sp. FG03降解苯酚[J].化工环保,2010,30(1):12-15.
    [142]吴为中,冯叶成,王建龙.不动杆菌(Acinetobacter sp.)降解4-氯酚的特性及机制研究[J].环境科学,2008,29(11):3185-3188.
    [143]Sharma A, Thakur I S, Dureja P. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site[J]. Biodegradation, 2009,20(5):643-650.
    [144]Kim J M, Jeon C O. Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113[J]. Curr Microbiol, 2009,58(1):70-75.
    [145]李艳春,熊明华,肖晶,等.一株丁草胺降解菌的分离鉴定及其降解特性的研究[J].微生物学通报,2009,36(8):1178-1182.
    [146]Renxing L, Xueling W, Xingna W, et al. Aerobic biodegradation of diethyl phthalate by Acinetobacter sp. JDC-16 isolated from river sludge[J]. J Cent South Univ Technol, 2010,17:959-966.
    [147]Tanaka D, Takashima M, Mizuta A, et al. Acinetobacter sp. Ud-4 efficiently degrades both edible and mineral oils: isolation and characterization[J]. Curr Microbiol, 60(3):203-209.
    [148]Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus[J]. J Appl Microbiol, 2001,90 (4):622-629.
    [149]Rahman M S, Ano T, Shoda M. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168[J]. J Biotechnol, 2007,127(3):503-507.
    [150]Nasser W, Chalet F, Robert-Baudouy J. Purification and characterization of extracellular pectate lyase from Bacillus subtilis[J]. Biochimie, 1990,72(9):689-695.
    [151]Shivanand P, Jayaraman G. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast[J]. Process Biochemistry, 2009,44(10):1088-1094.
    [152]Droge M J, Boersma Y L, Braun P G, et al. Phage display of an intracellular carboxylesterase of Bacillus subtilis: comparison of Sec and Tat pathway export capabilities[J]. Appl Environ Microbiol, 2006,72(7):4589-4595.
    [153]El-Naas M H, Al-Muhtaseb S A, Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel[J]. J Hazard Mater, 2009,164(2-3):720-725.
    [154]Zheng Y, Liu D, Liu S, et al. Kinetics and mechanisms of p-nitrophenol biodegradation by Pseudomonas aeruginosa HS-D38[J]. J Environ Sci (China), 2009,21(9):1194-1199.
    [155]Ortega-Calvo J J, Saiz-Jimenez C. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil[J]. Appl Environ Microbiol, 1998,64(8):3123-3126.
    [156]Alagappan G, Cowan R M. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene[J]. Chemosphere, 2004,54(8):1255-1265.
    [157]Jean J S, Lee M K, Wang S M, et al. Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. ina laboratory porous media sand aquifer model[J]. Bioresour Technol, 2008,99(16):7807-7815.
    [158]Parameswarappa S, Karigar C, Nagenahalli M. Degradation of ethylbenzene by free and immobilized Pseudomonas fluorescens-CS2[J]. Biodegradation, 2008,19(1):137-144.
    [159]Monticello D J, Bakker D, Finnerty W R. Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species[J]. Appl Environ Microbiol, 1985,49(4):756-760.
    [160]Kropp K G, Saftic S, Andersson J T, et al. Transformations of six isomers of dimethylbenzothiophene by three Pseudomonas strains[J]. Biodegradation, 1996,7(3):203-221.
    [161]Holden P A, LaMontagne M G, Bruce A K, et al. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand[J]. Appl Environ Microbiol, 2002,68(5):2509-2518.
    [162]Chayabutra C, Ju L K. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions[J]. Appl Environ Microbiol, 2000,66(2):493-498.
    [163]Hage J C, Van Houten R T, Tramper J, et al. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1[J]. Appl Microbiol Biotechnol, 2004, 64(5):718-725.
    [164]Margesin R, Labbe D, Schinner F, et al. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils[J]. Appl Environ Microbiol, 2003, 69(6):3085-3092.
    [165]Lin Y, Kong H N, He Y L, et al. Isolation and characterization of a new heterotrophic nitrifying Bacillus sp. strain[J]. Biomed Environ Sci, 2007, 20(6):450-455.
    [166]梁仁君.物种对资源竞争的动力机制及数值模拟研究[D].南京:南京师范大学学位论文,2007:29-48.
    [167]Pearl R, Reed L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation[J]. Proc Natl Acad Sci USA, 1920,6(6):275-288.
    [168]Nazarenko V G. Generalization of the Lotka-Volterra equation[J]. Biofizika, 1976,21(1):172-177.
    [169]Tilman D. Resource competition and community structure[J]. Monogr Popul Biol, 1982,17:291-296.
    [170]南春容,董双林.资源竞争理论及其研究进展[J].生态学杂志,2003,22(2):36-42.
    [171]池振明.微生物生态学[M].济南:山东大学出版社,1999:222-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700