用户名: 密码: 验证码:
大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是生态系统的重要组成部分,在能量流动、物质循环以及土壤的形成与熟化过程中均起重要作用,也是反应环境变化的敏感指示生物,其数量组成和种群结构是评价森林土壤质量的重要参数。因此研究内蒙古大兴安岭森林生态系统定位站地区兴安落叶松林土壤微生物的生态分布及土壤酶活性,对退化生态系统的恢复和治理及提高不同植被的生产力均有着重要的理论和实践意义。
     本文对内蒙古大兴安岭兴安落叶松林土壤微生物数量及种群结构进行研究,探讨了土壤微生物数量、土壤肥力、土壤酶间的相互关系;采用形态学与rDNA-ITS分子生物学技术相结合的方法对土壤优势真菌进行分类鉴定。主要研究结果如下:
     1、在兴安落叶松原始林与被干扰林中,土壤pH值在4.59-5.94间,属酸性土壤。土壤有机质含量比较高,且主要积聚在地表,除全钾外,土壤其它营养元素均是随着土层深度的增加,各营养元素含量呈下降的趋势,而全钾在各样地是随着垂直深度的增加,其含量逐渐增加。
     2、土壤微生物数量随季节呈现显著的变化。不同样地各类微生物的变化有所差异,表现为:①微生物总数与细菌:原始林各样地与被干扰林FLB样地微生物总数与细菌数量变化是7月>5月、9月,被干扰林的CL与SL样地微生物总数与细菌数量变化是5月>7月、9月;②真菌:除原始林的LLV样地,其它样地土壤真菌的变化是7月>5月>9月,原始林LLV样地真菌的变化是9月>5月>7月;③放线菌:原始林的LLV、BLV样地与被干扰林的CL样地放线菌数量变化是5月>7月、9月,原始林HLV样地与被干扰林LFB样地放线菌数量变化是7月>5月、9月,被干扰林SL样地放线菌数量变化是9月>5月、7月。土壤微生物数量的垂直分布规律是:随着土层深度的增加,各微生物数量呈递减的趋势,表现为0-10cm层>10-20cm层>20-30cm层。
     3、从兴安落叶松林中分离鉴定到细菌21属,以分枝小杆菌属(Ramibacterium)、芽孢杆菌属(Bacillus)、棒状杆菌属(Corynebacterium)、短杆菌属(Brevibacterium)为优势菌属;真菌21属,以青霉属(Penicillium)、曲霉属(Aspergillus)、毛霉属(Mucor)、木霉属(Trichoderma)为优势菌属;放线菌9属,以链霉菌属(Streptomyces)、诺卡氏菌属(Nocardia)为优势菌属。
     4、土壤微生物与理化性质的相关分析表明,土壤微生物总数、细菌与碱解氮呈极显著正相关(P<0.01),与全氮呈显著正相关(P<0.05)。土壤微生物间,细菌与微生物总数、真菌间呈极显著正相关关系(P<0.01),真菌与微生物总数间呈极显著正相关(P<0.01)。
     5、通过分子鉴定,青霉属(Penicillium)的14个不同菌株属于10个不同的种,其中有1个未确定到具体的种名;曲霉属(Aspergillus)的5个菌株属于5个不同的种;木霉属(Trichoderma)的4个菌株属于4个不同种,其中有2个为它的有性型,有1个未确定到具体的种名;毛霉属(Mucor)的3个菌株属于2个不同的种。
     6、土壤酶活性季节变化规律是:7月酶活性>5月、9月酶活性。在土壤剖面上,土壤酶活性均具有垂直变化规律,其变化是随着土层垂直深度的增加,酶活性逐渐降低,表现为0-10cm层>10-20cm层>20-30cm层。
     7、土壤酶活性与理化性质的相关分析表明,蔗糖酶与pH值呈显著负相关(P<0.05);蛋白酶与全磷、碱解氮呈显著正相关(P<0.05),与速效钾呈显著负相关(P<0.05);酸性磷酸酶与速效钾呈极显著负相关(P<0.01)。土壤酶活性间,多酚氧化酶与酸性磷酸酶呈显著正相关关系(P<0.05);蛋白酶与酸性磷酸酶呈显著正相关(P<0.05)。
     8、土壤酶活性与微生物的相关分析表明,蛋白酶与微生物总数、细菌数量间呈极显著正相关(P<0.01),酸性磷酸酶与微生物总数、细菌、真菌数量间呈显著正相关(P<0.05);蛋白酶与真菌数量间呈显著正相关(P<0.05)。
Soil microorganisms are main parts of the forestry ecosystem, and play vital roles in energy conversion, material cycling, development and maturation of soil. They are sensitive indicatives of any variation in environmental conditions. Both species constitution and quantity of soil microorganisms come to be the key parameters for evaluating the soil quality. So investigating ecological distribution of soil microorganisms and activities of enzyme about Larix gmelinii forest in the national forestry ecosystem station of Inner Mongolia Great Xingan Mountains, they are important theoretical and practical significance in resuming and controlling degraded ecosystem and improving the productivity of different vegetation.
     In this study, we use traditional isolation methods of microorganisms to research the species constitution and quantity of soil microorganisms in Larix gmelinii forest of the Great Xingan Mountains, and to examine their relationships with soil microbial quantity, soil properties and soil enzymes. Morphology and rDNA-ITS are used to identify soil dominant fungi. The key results from these studies are summarized as follows:
     1. Soil pH value are 4.59-5.94 and acid in the Larix gmelinii virgin and disturbed forest. Soil organic matter is relatively high in the surface of soil. In addition to total K, other nutrients of soil are gradual lower with the increasing in vertical depth, but total K is contrary.
     2. The quantity of soil microorganisms show significant changes in different seasons. They are different in different plots, as follows:①The quantity of total microorganisms and bacteria: in all plots of virgin forest and LFB plot of distributed forest, they are July>May and September, but in CL and SL plots of disturbed forest, they are May>July and September.②The quantity of fungi: they are September>May>July in the LLV plots of virgin forest, and are July >May> September in the other plots.③The quantity of actinomycetes: they are May > September and July in LLV and BLV plots of virgin forest and CL plot of disturbed forest, and they are July>May and September in HLV plot of virgin forest and LFB plot of disturbed forest, but they are September>May and July in SL plot of disturbed forest. The quantity of soil microorganisms are gradual lower with the increasing in vertical depth, follow orders: 0-10cm layer>10-20cm layer>20-30cm layer.
     3. By using of traditional culture methods, bacteria isolated from Larix gmelinii forest belong to 21 genera, Ramibacterium, Bacillus, Corynebacterium and Brevibacterium are dominant genera; fungi are composed of 21 genera, Penicillium, Aspergillus,Mucor and Trichoderma are dominant genera; actinomycetes are classified into 9 genera,Streptomyces and Nocardia are main genera.
     4. Correlation analysis of soil properties and microbial quantity show that soil total microorganisms and bacteria have very significant positive correlation with available N (P<0.01), and have significant positive correlation with total N (P<0.05). Among soil microorganisms, bacteria have very significant positive correlation with total microorganisms and fungi (P<0.01), fungi have very significant positive correlation with total microorganisms (P<0.01).
     5. By using of molecular identification, 14 different strains of Penicillium belong to 10 different species; five different strains of Aspergillum belong to five different species; four strains of Trichoderma belong to four different species, and two species are its sexual stages; three different strains of Mucor belong to two different species.
     6. Seasonal variation of soil enzymes are July>May and September. The activities of soil enzymes are gradual lower with the increasing in vertical depth, follow orders: 0-10cm layer>10-20cm layer>20-30cm layer.
     7. Correlation analysis of soil enzymes and soil properties show that invertase has significant negative correlation with pH values (P<0.05), protease has significant positive correlation with total P and available N (P<0.05), and then has significant negative correlation with available K (P<0.05), acid phosphatase has very significant negative correlation with available K (P<0.01). Among the activities of soil enzymes, polyphenol oxidase has significant positive correlation with acid phosphatase (P<0.05), protease has significant positive correlation with acid phosphatase (P<0.05).
     8. Correlation analysis of soil enzymes and soil microorganisms show that the protease has very significant positive correlation with total microorganism and bacteria (P<0.01), acid phosphatase has significant positive correlation with total microorganism, bacteria and fungi (P<0.05), protease has significant positive correlation with fungi (P<0.05).
引文
1张崇邦.东北麦田土坡微生物、小型动物及其生化活性的季节变化动态[J].植物营养与肥料学报,2002,8(3): 372-376.
    2朱海平,姚槐应,张勇,等.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2): 140-142.
    3俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3): 413-421.
    4孙波,赵其国,张桃林,等.土壤质量与持续环境(Ⅲ)土壤质量评价的生物学指标[J].土壤,1997,5:225-234.
    5张腊梅.肥料农药和重金属对紫色水稻土壤微生物特性的影响[J].西南大学学报,2007,6:1-2.
    6周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报,2003,14(8): 246-250.
    7刘苑秋,杨家林,杜天真等.重建森林对退化红壤微生物特性的影响[J].福建林学院学报,2003,23(1):65-69.
    8高雪峰,韩国栋,张功,等.放牧对荒漠草原土壤微生物的影响及其季节动态研究[J].土壤通报,2007,38(l):145-148.
    9 SCHIPPER LA ,DEGENS BP,SPARLING GP. Changes in microbial heterotrophic diversity along five plant successional sequences[J ]. Soil Biol Biochem,2001,33:2093-2103.
    10 Copley J. Ecology goes underground[J].Nature,2000,406,452-454.
    11 Callaway RM, Mahall BE, Wicks C, et al. Soil fungi and the effects of an invasive forb on grasses: Neighbor identity matters[J]. Ecology, 2003, 84(l): 129-135.
    12 Zak D R, Holmes We, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function: are there any links[J]? Ecology, 2003, 84:2042-2050.
    13 Bret-Harte M S, Garcia E A, Sacra V M, et al. Plant and soil responses to neighbor removal and fertilization in Alaskan tussock tundra[J]. Journal of Ecology, 2004, 92:635-647.
    14 Siviero M A, Motta A M, Lima D S, et al. Interaction among N- fixing bacteria and AM fungi in Amazonian legume tree (Schizolobium amazonicum) in field conditions[J]. Applied soil ecology, 2008,39: 144-152.
    15 Wolfe BE, Klironomos J N. Breaking new ground: soil communities and exotic plant invasion[J]. Bioscience, 2005, 55(6):477-487.
    16陆雅海,张福锁.根际微生物研究进展[J].土壤,2006,38(2): 113-121.
    17 Agenese A M,Nunez-Montoya S,Ariza-Espinar L, et al. Chemotaxonomic features in argentinian species of Flaveria (Composite)[J]. Biochemical systematizes and ecology, 1999,27:739-742.
    18张淑香,高子勤.连做障碍与根际微生态研究Ⅱ:根际分泌物与酚酸物质[J].应用生态学报,2000,11(l):552-554.
    19高子勤,张淑香.连做障碍与根际微生态研究Ⅰ:根系分泌物及其生态效应[J].应用生态学报, 2000,9(5):549-554.
    20 Walker T S,Bais H P,Gtewold E,et al. Root exudation and rhizosphere biology[J]. Plant physiology, 2003,132:44-51.
    21刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品,2006,8(10):37-40.
    22 Westover K M, Bever J D. Mechanisms of plant species coexistence: complementary roles of rhizosphere bacteria and root fungal pathogens[J]. Ecology,2001,82:3285-3294.
    23 Stephan A,Meyer AH,Sehmid B.Plant diversity affects culturable soil bacteria in experimental grassland communities[J]. Ecology, 2000, 22: 988-998.
    24 Waid J S. Does soil biodiversity depend upon metabolic activity and influences[J]? Appl Soil Eco1, 1999, 13:151-158.
    25张福锁.土壤微生物与植物营养[M].北京:中国农业出版社,1998, 68-79.
    26 Kelly J, Haeggblom M, Tate R L. Soil biology and Biochemistry[M], 1999,31:1455-1465.
    27 Reynolds H L, Packer A, Bever J D, et al. Plant-microbe-soil interactions as drivers of plant community structure and dynamics[J]. Ecology, 2003, 84: 2281-2291.
    28 Dunn R M, Mikola J, Bol R, et al. Influence of microbial activity on plant-microbial competition for organic and inorganic nitrogen[J]. Plant soil, 2006, 289: 321-334.
    29 Lawrence J M, Samways M J. Litter breakdown by the Seychelles giant millipede and the conservation of soil process on Cousin Island, Seychelles[J]. Biological conservation, 2003, 113: 125-132.
    30 Wolf J J, Beatty S W, Seastedt T R. Soil characteristics of Rock Mountain National Park grasslands invaded by Melllotus officinalis and M. alba[J].Journal of biogeography,2004, 31:415-424.
    31 Toyota K, Kuninaga S. Comparison of soil microbial community between soils amended with or without farmyard manure[J]. Applied soil ecology, 2006,33: 39-48.
    32 RametteA, FraPolliM, DefagoG, et al. Phylogeny of HCN synthase-encoding hen BC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability[J].Plant-Micro Interact,2003, 16(6):525-535.
    33 Hierro JL, Maron JL, Callaway RM. A biogeographic approach to plant invasions: the importance of studying exotics in their introduced and native range[J].Journal of Ecology,2005,93:5-15.
    34 DeLong E F.Diversity of naturally occurring prokaryotes [A].In: Colwell RR.ed. Microbial Diversity in Time and Space[C].NewYork:Plenum, 1996, 125-133.
    35 Amann R I ,Ludwig W ,Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J].Microbiol Rev,1995,59 (1):143-169.
    36 Watve MG, Gangal RM.Problems in measuring bacterial diversity and a possible solution [J].Appl Environ Microbio1, 1996, 62 (11):4299-4301.
    37 Istock CA, Ferquson N. Bacterial diversity and evolution: theoretical and practical perspectives [J].Journal of Industrial Microbiology,1996,17 (3):137-150.
    38 Borneman J.,Skroch P.W.,Palus J.A.Molecular microbial diversity of an agricultural soil in Wisconsin[J].Applied and Environmental Microbiology,1996,62:1935-1943.
    39 Bakken L.R.Separation and purification of bacteria from soil[J].Applied Environmental Microbiology,1985,49:1482-1487
    40 Hawksworth D.L. The fungal dimension of biodiversity: magnitude, significance, and conservation [J]. Mycological Research, 1991, 95: 641-655.
    41东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,2001,9(1):18-24.
    42钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(5): 899-904.
    43巨天珍,陈源,常成虎,等.天水小陇山红豆杉(Taxus chinensis(Pilg.)Rehd)林土壤真菌多样性及其与生态因子的相关性[J].环境科学研究,2008,21(1):128-132.
    44张萍,刀志灵,郭辉军.高黎贡山不同土地利用方式对土壤微生物数量和多样性的影响[J].云南植物研究,1999,(增刊xI):84-89.
    45 Walter. K D,Margaret K B, Courtney S C, et al. Biological properties of soil and subsurface sediments under abandoned pasture and cropland[J]. Soil Biol. Biochem,1997, 28(7): 837-846.
    46 Ovreas L., Torsvik V. Microbial diversity and community structure in two different agricultural soil communities[J]. Microbial Ecology,1998, 36(3): 303-315.
    47徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量的影响[J].土壤学报,2002,39(1):89-95.
    48陈文新,李阜隶.我国土壤微生物学和生物固氮研究的回顾和展望[J].世界科技研究与发展,2003,24(4):6-12.
    49姜学艳,黄艺.菌根真菌增加植物抗盐碱胁迫的机理[J].生态环境,2003,12(3):353-356.
    50 Sugden A.M. Ecology: diversity and ecosystem resilience[J]. Science,2000,290(5490): 233-235.
    51杨海君,谭周进.假单胞菌的生物防治作用研究[J].中国生态农业学报,2004,12(3):158-161.
    52 Van Veen J.A,Van Overbeek L.S.,Van Elsas JD. Fate and activity of microorganisms introduced into soil microbiology[J].Microbiology and Molecular Biology Review,1997,61(2):121-135.
    53章家恩,蔡燕飞,高爱霞,等,土壤微生物多样性实验研究方法概述[J].生态学报,2004,36(4): 346-350.
    54蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171.
    55张汉波,段昌群,屈良鹊.非培养方法在土壤微生物生态学研究中的应用[J].生态学杂志,2003,22(5):131-136.
    56郑华,陈法霖,欧阳志云,等.不同森林土壤微生物群落对Biolog-GN板碳源的利用[J].环境科学,2007,28(5): 1126-1130.
    57 Zelles L.Fatty acid patters of phospholipids and lip polysaccharides in the characterization ofmicrobial communities in soil: a review[J].Bio Fertile Soils,1999,29:111-129.
    58王曙光,侯彦林.磷脂脂肪酸方法在土壤微生物分析中的应用[J].微生物学通报,2004,31:114-117.
    59 Frostegard A,Tunlid A,Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J].Applied and Environmental Microbiololgy,1993, 59:3605-3617.
    60 Brant JB, Myrold DD. Root controls on soil microbial community structure in forest soils[J]. Oecologia, 2006.,148: 650-659.
    61廖敏,陈雪花,陈承利,等.土壤-青菜系统中铅污染对土壤微生物活性及多样性的影响[J].环境科学学报,2007,27(2): 220-227.
    62 Roslev P, Iversen N,Henriksen K. Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radio labeling and lipid analysis[J].Journal of Microbiological Methods,1998,31:99-111.
    63 .Boon N,Marle C, Top EM,et al. Comparison of the spatial homogeneity of Physic-chemical parameters and bacterial 16S rRNA genes in sediment samples from a dumping site for dredging sludge[J].Applied Microbiology and Biotechnology,2000,53:742-747.
    64吴展才,余旭胜,徐源泰.采用分子生物学技术分析不同施肥土壤中细菌多样性[J].中国农业科学,2005,38(12): 2474-2480.
    65姚晓华,阂航,袁海平.啶虫脒污染下土壤微生物多样性[J].生态学报, 2006,26(9):3074-3080.
    66敖世洲.真核生物基因的结构与功能[M].北京:科学出版社,1989: 46-94.
    67秦国夫.蜜环菌生物种及系统发育研究进展[J].北京林业大学学报,1993,16(4): 87-94.
    68 Anderson JB,Stasovski E. Molecular phylogeny of northern hemisphere species of Armillaria[J]. Mycologia,1992,84:505-516.
    69柴守诚,员海燕.高等植物DNA重复序列的主要类型和特点[J].西北植物学报,1999,19(3): 555-563.
    70 Apples R, Gerlach WL, Dennis ES, et al. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNA of cereals[J]. Chromosome,1980,78:293-311.
    71 Ellis TN, Lee D,Thomas CM,et al.5S rRNA genes in pisum: Sequence Long range and chromosomal organization[J].Mol. Gen Genet,1988,214: 333-342.
    72李振刚.分子遗传学[M].北京:科学出版社,1990,58-61.
    73 Duchesne LC,Anderson JB.Location and direction of transcription of the SSU rRNA gene in Armillaria[J].Mycological Research,1990,94:266-269.
    74 Henrion B,Le Tacon F,Martin F.Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes[J].New Phytol.,1992,122:289-298.
    75 Bell BI, Degennaro LJ,Gelfand DH, et al.Ribosomal RNA genes of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry,1997,252: 8118-8125.
    76 Garber RC,Turgeon BG,Selker EU,et al. Organization of ribosomal RNA genes in the fungus Cochliobolus heterostrophus[J].Current Genetics,1998,14:573-582.
    77阎培生,罗信吕,周启,木耳属真菌rDNA特异性扩增片段的RFLP研究[J].菌物系统,1999,18(2): 206-213.
    78余仲东,张星耀,曹支敏.真菌核糖体基因间隔区研究概况[J].西北林学院学报,2000,15(2): 107-112.
    79 Pritsch K,Boule H,Munch JC,et al.Characterization, and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rRNA internal transcribed spacer (ITS)[J]. New Phytol.,1997,137: 357-369.
    80 White TJ,Bruns TLS,Lee S.Analysis of phylogenetic relation-ships by amplification and direct sequencing of ribosomal RNA genes [C].Innes MA.PCR Protocols: A Guide to Methods and Applications.NewYork:Academic,1990:15-22.
    81 Gardes M,Bruns T.ITS primers with enhanced specific for basidiomycetes–application to the identification of mycorrhiza and rusts[J].Molecular Ecology,1993,2:113-18.
    82 Ingeborg. Identification of Picea-ectomycorrhizae by comparing DNA-sequences[J].Mycological Progress, 2002,1(2):167-178.
    83 Erlan S. Abundance of Tylospora fibrillose ectomycorrhizas in a South Swedish spruce forest measured by RFLP analysis of the PCR-amplified rRNA ITS-region[J]. Mycological Research, 1995, 99:1425-1428.
    84 BY K. Priysch, H. Boyle,JC. Munch, et al.Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS) [J].New phytol. 1997,137:357-369.
    85 Henrion B,Chevalier G,Martin F.Typing truffle species by PCR amplification of the ribosomal DNA spacers[J]. Mycological Research, 1994, 98:37-43.
    86 Khalid El Karkouri,Claude Murat,Elisa Zampieri et al. Identification of internal transcribed spacer sequence motifs in truffles: a first step toward their DNA bar coding[J]. Applied and Environmental Microbiology, 2007,73(16): 5320–5330.
    87侯丽冰,贺伟,刘小勇等.我国几种松干锈菌亲缘关系的ITS序列分析[J].北京林业大学学报, 2002, 24(5): 175-182.
    88彭慧.郑乐臣.rDNA ITS序列在鉴定尖端赛多孢子菌中的应用[J].同济医科大学学报,2000, 29(1): 26-28.
    89王洪凯,张天宇,张猛.应用5.8S rDNA及ITS区序列分析链格孢种级分类[J].菌物系统,2001, 20(2):168-173.
    90吴冰,蔡俊鹏,Collins MD.基于ITS1 DNA序列分析的几种酵母菌的分子分类[J].微生物学通报,2002,29(4): 41-45.
    91 Bcchko J, Klassen GR. Detection of length heterogeneity in the ribosomal DNA of Pythium ultimum by PCR amplification of the intergenic region[J]. Current genetics, 1990, 18: 203-205.
    92 Feibelman T, Bayman P, Cibula WG. Length variation in the internal transcribed spacer of ribosomal DNA in chanterelles[J]. Mycological Research, 1994, 98: 614-618.
    93 Hijr M, Hosny M, van Tuinen, et al.Intraspecific ITS polymorphism in Scutellospora catanea (Glomales, Zygomycota) is structured within multinucleate spores[J].Fungal Genetics and Biology, 1999,26:141-151.
    94 Farmer DJ,Sylvia DM.Variation in the ribosomal DNA internal transcribed spacer of adverse collection of ectomycorrhizal fungi[J].Mycol.Res.,1998,102(7):859-865.
    95 Aanen DK,Kuyper TW,Hoekstra RF.A widely distributed ITS polymorphism within biological species of the extromycorrhizal fungus Hebeloma velutipes[J].Mycol. Res.,2001,105(3):284-290.
    96 Anderson IC,Chambers SM,Cairney,John WG.ITS-RFLP and ITS sequence diversity in Pisolithus from central and eastern Australian sclerophyll forests[J].Mycological Research, 2001,105,(11): 1304-1312.
    97 Armstron JL,Flowes NL,Rygiewicz PT.Retriction fragment length polymorphisms distinguish ectomycorrhizal fungi[J].Plant and Soil,1989,117:1-7.
    98 Bascot F,Wipf D,Di Battista C,et al.DNA polymorphism in morels:PCR/RELP analysis of the ribosomal DNA spacers and microsatellite primed PCR[J].Mycological Research,1996,100:63-71.
    99 Chen DM,Cairney JWG. Investigation of the influence of prescribed burning on ITS profiles of ectomycorrhizal and other soil fungi at three Australian sclerophyll forest sites[J].Mycological Research,2002,106(5):532-540.
    100 Glen M, Tommerup IC, Bougher NL, O’Brien PA. Specificity, sensitivity and discrimination of primers for PCR-RFLP of large basidiomycetes and their applicability to identification of ectomycorrhizal fungi in Eucalyptus forests and plantations[J].Mycological Research, 2001,105(2):138-149.
    101 Gomes EA, Abreu LM, Borges AC, et al.ITS sequences and mitochondrial DNA polymorphism in Pisolithus isolates[J].Mycological Research,2000,104(8):911-918.
    102 Gonzalez V,Arenal F,Platas G,et al.Molecular typing of Spanish species of Amanita by restriction analysis of the ITS region of the DNA[J].Mycological Research,2002,106(8):903-910.
    103 Xu JP,Mitchell TG,Vilgalys R.PCR-restriction fragment length polymorphism(RFLP) analysis reveal both extensive colonality and local genetic differences in Candida albicans[J].Molecular Ecology.1999,8:59-73.
    104朱有勇,王云月,Bruce RY.大丽轮枝菌核糖体基因ITS区段的特异扩增[J].植物病理学报,1999,29(3):250-255.
    105 Godfrey SAC, Monds RD, Lash DT, et al. Identification of Pythium oligandrum usingspecies-specific ITS rDNA PCR oligonucleotides[J].Mycological Research,2003,107(7):790-796.
    106 Salazer O,Julian MC,Rubio V.Primers based on specific rDNA-ITS sequences for PCR detection of Rhizoctonia solani, R. solani AG 2 subgroups and ecological types, and binucleate Rhizoctonia [J].Mycological Research,2000,104(3):281-285.
    107 Schmidt O,Moreth U.Species-specific PCR primers in the rDNA-ITS region as a diagnostic tool for Serpula lachrymals[J].Mycological Research,2000,104(1):69-74.
    108 Kikuchi K,Matsushita N,Guerin-Laguette A,et al.Detection of Tricholoma Matsu take by specific ITS primers[J].Mycological Research,2000,104(12):1427-1430.
    109 Chambers SM, Liu G, Cairney JWG. ITS rDNA sequence comparison of ericoid mycorrhizal entophytes from Woollsia pungens[J]. Mycological Research, 2000,104(2):168-174.
    110 Smith BJ, Sivasithamparam K. Internal transcribed spacer ribosomal DNA sequence of five species of Ganoderma from Australia[J].Mycological Research, 2000,104(8):943-951.
    111 Peintner U, Moser MM, Thomas KA,et al.First records of ectomycorrhizal cortinarius species (Agaricales,Basidiomycetes) form tropical India and their phylogenetic position based on rDNA ITS sequences[J].Mycological Research,2003,107(4):485-494.
    112 ThomasKA,PeintoerU, Moser MM,et al. Anamika, a new mycorrhizal genus of cortinariaceae from India and its phylogenetic position based on ITS and LSU sequences[J]. Mycological Research, 2002,106(2):245-251.
    113 Chillali M, Idder-Ighili H, Guillaumin JJ, et al. Variation in the ITS and IGS regions of ribosomal DNA among the biological species of European Armillaria[J]. Mycological Research, 1998, 102(5): 533-540.
    114 Erland S, Henrion B, Martin F, et al. Identification of the ectomycorrhizal basidionycete Tylospora fibrillose Donk by RFLP analysis of the PCR-amplified ITS and IGS regions of ribosomal DNA[J]. New phytologist, 1994,126:525-532.
    115 Fukuda M, Nakashima E, Hayashi K, et al. Identification of the biological species of Armillaria associated with Wynnea and Entoloma abortivum using PCR-RFLP analysis of the intergenic region (IGR) of ribosomal DNA Contribution No. 363 of the Tottori Mycological Institute[J]. Mycological Research, 2003,107(12):1435-1441.
    116 Kauserud H, Schumacher T. Out crossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus[J]. Mycological Research, 2001, 105(6): 676-683.
    117 Lumini E, Bosco M.Polymerase chain reaction-restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections[J]. Canadian Journal of Botany, 1999,77:1261-1269.
    118 Mwenje E, Wingfield BD, Coetzee MPA, et al. Molecular characterization of Armillaria species from Zimbabwe[J]. Mycological Research,2003,107(3):291-296.
    119 Pecchia S,Mercatelli E,Vannacci G.Intraspecific diversity within diaporthe helianthi: evidence from Rdna intergenic spacer (IGS) sequence analysis[J].Mycopathologia,2004,157(3):317-326.
    120 Yli-Manila T, Paavanen-Huhtala S, Bulat SA, et al. Molecular, morphological and phylogenetic analysis of the Fusarium avenaceum/F. Arthrosporioides/F. tricinctum species complex a polyphasic approach[J]. Mycological Research,2002,106(6): 655-669.
    121 Sierra AP, Whitehead D, Whitehead MP. Investigation of a PCR-based method for the routine identification of British Armillaria species[J]. Mycological Research,1999,103(12):1631-1636.
    122 Duncan J, Cooke D. Identifying, diagnosing and detecting Phytophthora by molecular methods[J]. Mycologist,2002,16(2):59-66.
    123 Henson JM, French R. The polymerase chain reaction and plant disease diagnosis[J].Annual Review of phytopathology,1993,31:81-109.
    124 Larsen J, Bodker L. Interactions between pea root-inhabiting fungi examined using signature fatty acids[J]. New phytologist,2001,149:487-493.
    125 Matsumoto M, Furuya N, Takanami Y, Matsuyama N. Rapid detection of Rhizoctonia species, causal agents of rice sheath disease, by PCR-RFLP analysis using an alkaline DNA extraction method[J]. Mycoscience,1997,38:451-454.
    126 Tan M, Niessen LM. Analysis of rDNA ITS sequences to determine genetic relationships among, and provide a basis for simplified diagnosis of, Fusarium species causing crown rot and head blight of cereals[J]. Mycological Research, 2003,107(7):811-821.
    127 Bruns TD,Bidartondo MI.Molecular windows into the belowground interactions of ectomycorrhizal fungi[J]. Mycologist,2002,16(2):47-50.
    128 Gardes M, Bruns T. Community structure of mycorrhizal fungi in a Pinus muricata forest: above-ground and below-ground views[J].Canadian Journal of Botany,1996,74:1572-1583.
    129 Henrion B, Di Battista C, Bouchard D, et al. Monitoring the persistence of Laccaria bicolor as an extomycorrhizal symbiont of nursery-grown Douglass fir by PCR of the rRNA intergenic spacer[J]. Molecular Ecology, 1994,3: 571-580.
    130 Lanfranco L, Delero M, Bonfante P. Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita[J]. Molecular Ecology, 1999, 8: 37-45.
    131 Sakakibara SM,Jones MD,Gillespie M,et al.A comparison of ectomycorrhiza identification based on morph typing and PCR-RFLP analysis[J]. Mycological Research,2002, 106(8): 868-878.
    132 Aanen DK, Kuyper TW, Boekhout T, et al. Phylogenetic relationships in the genus Hebeloma based on ITS 1 and 2 sequences, with special emphasis on the Hebeloma crustuliniforme complex[J]. Mycologia,2000,269-281.
    133 Arenal F, Platas G, Monte E, et al. ITS sequencing support for Epicoccum nigrum and Phoma epicoccina being the same biological species[J]. Mycological Research, 2000,104(3): 301-303.
    134 Bridge P.The history and application of molecular mycology[J].Mycologist,2002,16(3):90-99.
    135 Bruns TD, White TJ, Taylor JW. Fungal molecular systematics[J]. Annual Reviews of colony and systematics, 1991,22:525-564.
    136 Chen W, Hoy JW, Schneider RW.Species-specific polymorphisms in transcribed ribosomal DNA of five Pythium species[J]. Experimental Mycology,1992,16:22-34.
    137 Cooke DEL, Jung T, Williams NA, et al. Molecular evidence supports Phytophthora quercina as a distinct species[J]. Mycological Research,1999,103(7): 799-804.
    138 Crous PW, Hong L, Wingfiled BD, et al. ITS rDNA phylogeny of selected Mycosphaerella species and their anamorphs occurring on Myrtaceae[J]. Mycological Research,2001,105(4): 425-431.
    139 De Koker TH, Nakasone KK, Haarhof J, et al. Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region[J].Mycological Research,2003, 107(9):1032-1040.
    140 Down G. Fungal Family Trees-finding relationships from molecular data[J]. Mycologist,2002, 16(2): 51-58.
    141 Garnica S, Weib M, Oberwinkler F. Morphological and molecular phylogenetic studies in South American Cortinarius species[J]. Mycological Research, 2003, 107(10): 1143-1156.
    142 Gottlieb AM, Ferrer E, Wright JE. rDNA analyses as an aid to the taxonomy of species of Ganoderma[J]. Mycological Research, 2000,104 (9):1033-1045.
    143 Hughes KW, Petersen RH, Johnson JE, et al. Infragenic phylogeny of Collybia s. str. based on sequences of ribosomal ITS and LSU regions[J]. Mycological Research, 2001,105(2):164-172.
    144 Lieckfeldt E, Kullnig CM, Kubicek CP, et al. Trichoderma aureoviride: phylogenetic position and characterization[J]. Mycological Research,2001,105(3):313-322.
    145 Martin F, Di ez J, Dell B, et al. Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences[J]. New Phytologist,2002,153(2):345-357.
    146 Mazzaglia A, Anselmi N, Vicario S, et al. Sequence analysis of the 5.8S rDNA and ITS regions in evaluating genetic relationships among some species of Hypoxylon and related genera[J]. Mycological Research,2001,105(6):670-675.
    147 Paulus B,Hallenberg N,Buchanan PK,et al.A phylogenetic study of the genus Schizopora (Basidiomycota) based on ITS DNA sequences[J].Mycological Research,2000,104(10):1155-1163.
    148 Peintner U, Moser MM, Thomas KA, et al. First records of ectomycorrhizal Cortinarius species (Agaricales, Basidiomycetes) from tropical India and their phylogenetic position based on rDNA ITS sequences[J]. Mycological Research, 2003, 107(4): 485-494.
    149 Peter M, Buckler U, Ayer F, et al. Ectomycorrhizas and molecular phylogeny of the hypogeous russuloid fungus Arcangeliella borziana[J]. Mycol. Res., 2001,105(10):1231-1238.
    150 Thomas KA, Peintner U, Moser MM, et al. Anamika, a new mycorrhizal genus of Cortinariaceaefrom India and its phylogenetic position based on ITS and LSU sequences[J]. Mycological Research, 2002,106(2):245-251.
    151 IwenPC,Hinrichs SH,Rupp ME.Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens[J].Med Myco1,2002,40:87-109.
    152唐建辉,工伟.西瓜炭疽菌核糖体基因ITS区段的克降及序列分析[J].安徽农业利学,2007,35(9):2566-2568.
    153陈玉玺,张利平,吕志堂.10株镰刀菌rDNA内转录间隔区(ITS)序列分析[J].安徽农业科学,2008,36(12):4886-4887.
    154陈永青,姜子德,戚佩坤.RAPD分析与ITS序列分析在拟茎点霉分类鉴定上的应用[J].菌物系统,2002, 21(1) :39-46.
    155杨雅云,罗文富,杨艳丽.马铃薯及番茄晚疫病菌的核糖体DNA-ITS区段序列分析[J].云南农业大学学报,2005,20(2):188-192.
    156 Karen O,Hogborg N,Dalllberg A ,et al. Inter and intruspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis[J].New Phytol,1997,136:313-325.
    157 Laurene L,Lisa AC,Lori M,et al.Internal transcribed spacer sequence-based phylogeny and polymerase chain reaction restriction fragment length polymorphism differentiation of tilletia walker and T[J].Indica Phytopathology,2001,91:935-940.
    158 Cooke DEL,Duncan JM,Drenth A,et al.A molecular phylogeny of phytophthora and related oomycetos[J].Fungal Genetics and Biology,2000,30:17-32.
    159 Collopyp D,Largeteau M,Romaine CP,et al.Molecular phylogenetic analyses of verticillium fungical and related species causing dry bubble disease of the cultivated button mushroom,agarics bisporus[J].Phytopathology,2001,91:905-912.
    160杨腊英,黄华平,唐复润,等.香蕉炭疽菌rDNA ITS区的分子鉴定与检测[J].植物病理学报,2006,36(3):219-225.
    161王文华,曾会才.香蕉枯萎镰刀菌的核糖体DNA-ITS区段序列分析[J].安徽农业科学,2007, 35(27):8440-8442.
    162王源超,丁国云,马志超,等.棉花疫病菌和辣椒疫病菌核糖体基因ITS区域的克隆和序列分析[J].南京农业大学学报,2000,23(3):33-36.
    163刘志文,韩旭,赵明辉,等.核糖体DNA在植物系统发育中的应用与研究进展[J].安徽农业科学,2008,36(9):3561-3562.
    164 Amicucci A,Zambonelli A,Giomaro G.Identification of ectomycorrhizal fungi of the genus tuber[J]. Mol Ecol,1998,7(3):273-277.
    165黄学顺,付艳平,秦乐业,等.栀子叶斑病及其病原的鉴定[J].华中农业大学学报,2006,25(1):21-25.
    166曹慧,孙辉,杨浩.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报[J],2003,9(1):105-109.
    167关松荫.土壤酶及其研究法[M].北京:农业出版社.1986.
    168周礼恺.土壤酶学[M].北京:科学出版社,1987,116-267.
    169 Acosta-Martinez V, Tabatabai MA.Enzyme activities in a limed agricultural soil[J]. Biol Fertile Soils,2000,31:85-91.
    170 Frankenberger WT,Dick WA. Relationships between enzyme activities and microbial growth and activity indices in soil[J]. Soil Sci Soc Am J,1983, 47:945-951.
    171 Speir TW,Lee R,Pansier EA,et al.A comparison of sulphatase,unease and protease activities in planted and fallow soils[J]. Soil Biol Biochem,1980,12:281-291.
    172宋日,吴春胜,牟金明.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响.应用生态学报[J],2002,13(3):303-306.
    173 D.Dodor and M.Tabatabai.Effects of cropping systems and microbial biomass on arylamidase activity in soils.Biology and Fertility of Soils[J],2002,35(4):253-261.
    174张玉兰,陈利军,刘桂芬,等.土壤水解酶类催化动力学研究进展[J].应用生态学报,2003,14(12): 2326-2332.
    175 Busto MD,Perez MM. Extraction of humic-β-glucosidase fractions from soil[J]. Biol&Fertil Soi1s,1995,20:77-82.
    176蒲小鹏,胡自天.祝高寒草甸土壤酶活性分析[J].中国草地学报,2006,26(6):7-9.
    177周智彬,徐新文.塔里木沙漠公路防护林土壤酶分布特征及其与有机质的关系[J].水土保持学报,2004,18(5):10-14.
    178安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J].水土保持研究,2005(3):32-35.
    179刘福德,姜岳忠,刘颜泉,等.连作Ⅰ-107杨树无性系苗圃地的土壤酶活性特征[J].中国水土保持科学,2005,3(2):122-127.
    180 Griffiths RP, Homann PS, Rile YR. Denitrification enzyme activity of Douglas-fir and red alder forest soils of the Pacific Northwest[J].Soil Biology& Biochemistry,2002,30(8): 1147-1157.
    181宋漳,陈兴族,黄天章.杉木感染根线虫病后林地土壤微生物及生化活性的研究I土壤酶活性及土壤化学性质[J].福建林学院学报,1994,14(1):81-55.
    182陈竣,李传涵.杉木幼林根圈土壤磷酸酶活性、磷组分及其相互关系.林业科学研究,1997,10(5):458-463.
    183郑洪元.森林有机残物分解与土壤酶活性[J].土壤,1983,3: 36-39.
    184周礼恺.不同来源的植物物质在棕壤中的分解特征与土壤酶活性[J].土坡通报,1984, 4:180-181.
    185武雪萍,刘增俊,赵跃华,等.施用芝麻饼肥对植物烟根际土壤酶活性和微生物碳、氮的影响[J].植物营养与肥料学报,2005,11(4): 541-546.
    186 Decker KLM, Boerner REJ, Morris SJ. Scale dependent patterns of soil enzyme activity in a forestlandscape[J]. Canedian Journal of Forest Researeh,1999,29(2):232-241.
    187沈其荣.土壤肥料学通论[M].高等教育出版社,2001:295-307.
    188 Dick RP,Rasmussen PE,Kerle EA.Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system[J].Biology and Fertility of Soils,1988,6:159–164.
    189 Dick,W A,Cheng,L.Soil acid and alkaline phosphatase activity as pH adjustment indicators[J].Soil Biology&Biochemistry,2000,32:1915-1917.
    190 Rao MA,Violante A ,Gianfreda L.Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: Kinetics and stability[J].Soil Biology & Biochemistry,2000,32: 1007-1014.
    191 Caplan JA. The worldwide bioremediation industry: prospects for profits[J].Trends Biotechnol, 1993,11: 320-323.
    192 Cacciatore DA,Mcneil MA. Principles of soil bioremediation[J]. Biocycle,1995,36(10): 61-64.
    193郑洪元.森林有机残物分解与土壤酶活性[J].土壤,1983,3: 36-39.
    194周礼恺.不同来源的植物物质在棕壤中的分解特征与土壤酶活性[J].土坡通报,1984, 4:180-181.
    195武雪萍,刘增俊,赵跃华,等.施用芝麻饼肥对植物烟根际土壤酶活性和微生物碳、氮的影响[J].植物营养与肥料学报,2005,11(4): 541-546.
    196 Decker KLM, Boerner REJ, Morris SJ. Scale dependent patterns of soil enzyme activity in a forest landscape[J]. Canedian Journal of Forest Researeh,1999,29(2):232-241.
    197王海英,宫渊波,龚伟.不同林分土壤微生物、酶活性与土壤肥力的关系研究综述[J].四川林勘设计,2005,3:9-14.
    198 Bergstrom D W,Monreal C M,King D J.Sensitivity of soil enzyme activities to conservation practices[J].Soil Science Society of American Journal,1998,62:1286-1295.
    199 Badiane NY,Chotte JL,Patea E,et al.Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions[J].Applied Soil Ecology, 2001,18:229-238.
    200 Caldwell B A,Griffiths R P,Sollins P.Soil enzyme response to vegetation disturbance in two lowland Costa Rican[J].Soil Biology and Biochemistry,1999,31:1603-1608.
    201 Miller M,Dick R P.Thermal stability and activities of soil enzymes as influenced by crop rotations [J].Soil Biology and Biochemistry,1995,27:1l61-1166.
    202 Bums RG, Dick RP. Enzymes in the environment: ecology, activity and applications[M]. Enzymology of Disturbed Soils. Elsevier, Amsterdam. 1998, 1-340.
    203肖育贵.不同林型凋落物土壤微生物数量动态的研究[J].北京:林业科技通讯.1996,17(1):28-29.
    204 Glenn J K, Gold M H, Purification and characterization of an extra cellular Mn(II)-dependent peroxide from the lignin-degrading basidiomycetes, phancero chaste chrysosporium[J]. Arch. Biochem Biophys,1985,242:329341.
    205 Sariaslani FS, Microbial enzymes for oxidation of organic molecules[J]. Crit. Rev. Siotechnology, 1989,9:171-257.
    206 Tien M, Kirk TK, Lignin-degrading enzyme from phancerochaete chrysosporium: purification characterization and catalytic properties of a unique H2O2 requiring oxygenize[J]. Proc.NaH Acad Sci USA, 1984,81:2280-2284.
    207 Simoes DCM, Mc Neil D, Kristiansen B,et al. Purification and partial characterization of a 1.57kDa thermostable esterase from Baeillus stear other mophilus[J].FEMS Mierobio Llett,1997,147: 151-156.
    208 Naseby DC, Pascual JA, Lynch JM.Effect of biocontrol strains of Trichoderma on plant growth,Psnhium optimum populations, soil microbial communities and soil enzyme activities[J]. Journal of Applied Microbiology,2000, 88: 161-169.
    209 Vazquez M M, Cesar S, Azcon R, et al. interactions between carbuncular mycorrhizal fungi other microbial inocants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants[J]. Applied Soil Ecology, 2000,15:261-272.
    210 Groffman PM, Mc-Dowellb WH, Myersc JC, et al. Soil microbial biomass and activity in tropical riparian forests[J]. Soil Biol. &Biochem., 2001,33:1339-1348.
    211 Bandick AK,Dick RP Field management effects on soil enzyme activities[J]. Soil Biology& Biochemistry,1999, 31:1471-1479.
    212 Taylor JP, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques[J].Soil Biol.&Biochem., 2002,34:387-401.
    213杨玉盛,俞新妥等.不同栽杉代数根际土壤肥力及生物学特性变化[[J].应用与环境生物学报,1999,5(3):254-258.
    214周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报,2003,14(8):1246-1250.
    215宋漳,朱锦懋,杨玉盛.闽北常绿阔叶林土壤微生物学特性的研究[J].福建林学院学报, 2000, 20(4): 317-320.
    216马晓梅,尹林克,陈理.塔里木河干流胡杨和柽柳根际土壤微生物及其垂直分布[J].干旱区研究,2008,25(2):183-189.
    217 Long R J ,Zhang D G,Wang X,et al. Effect of strategic feed supplementation on productive and reproductive performance in Yak Cows[J ]. Preventive Veterinary Medicine ,1999,38(2-3):195-206.
    218陈俊蓉,洪伟,吴承祯,等.不同桉树土壤微生物数量的比较[J].亚热带农业研究,2008,4(2): 146-150.
    219 WANG Qing-Kui,WANG Si-Long. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations[J]. Journal of Forestry Research,2008,19(2):131-135.
    220 Spading G P: Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE., Doube BM., Gupta V S R,ed. Biological Indicators of Soil Health[M]. CAB INTERNATIONAL,1997:97-119.
    221 Powlson DS., Brookes PC, Christenson B .Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biol. Biochem., 1987,19:159-164.
    222孙波,赵其国.土壤质量与持续环境:土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    223 Louise MD, Gwyn SG, John H, et al. Management influences on soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales. Soil Biol Biochem, 2000, 32(2): 253-263.
    224 Rogers BF, Tate Iiirl. Temporal analysis of the soil microbial community along a top sequence in pineland soil. Soil Biol Biochem, 2002, 33(10): 1389-1401.
    225 Grayston SJ, Prescott CE. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry, 2005, 37(6): 1157-1167.
    226王少昆,赵学勇,左小安,等.科尔沁沙地植物萌动期不同类型沙丘土壤微生物区系特征[J].中国沙漠,2008, 28(4): 696-700.
    227 Humphries JA, Ashe AMH, Smiley JA, et al. Microbial community structure and trichloroethylene degradation in ground water. Canadian Journal of Microbiology, 2005, 51(6): 433-440.
    228徐化成.中国大兴安岭森林[M].北京:科学出版社,1998.
    229周以良.中国大兴安岭植被[M].北京:科学出版社.1991.
    230杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):39-55.
    231薛立,陈红跃,邝立刚.湿地松混交林地土壤养分,微生物和酶活性的研究[J].应用生态学报,2003,14(l):157-159.
    232姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    233 Hofman J,Bezch J,Dusek L,et al.Novel approach to monitoring of the soil biological quality[J]. Environment international,2003,28:771-778.
    234 Amann RI,Ludwig W,Schleifer KH.Phylogenetic identification and in site detection of individual microbial cells without cultivation[J].Microbiol Rev.,1995,59:143-169.
    235鲁如坤.土壤农业化学分析方法[M].中国土壤学会.北京:中国农业科技出版社,1999.
    236许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986年第一版,92-110.
    237 LOU ISE M. D., GW YN S. G., JOHN H., et a.l Management influences on soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales[J]. Soil Biol Biochem, 2000, 32: 253 - 263.
    238戴芳澜.真菌的形态和分类.北京:科学出版社, 1987.
    239魏景超.真菌鉴定手册.上海:上海科学技术出版社, 1979.
    240孔华忠.中国真菌志(第三十五卷,青霉属及其相关有性型).北京:科学出版社,2007.
    241齐祖同.中国真菌志(第五卷,曲霉属及其相关有性型).北京:科学出版社,1997.
    242东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社, 2001.
    243阎逊初.放线菌的分类和鉴定.北京:科学出版社,1992.
    244陈立新,杨承栋.落叶松人工林土壤磷形态、磷酸酶活性演变与林木生长关系的研究[J].林业科学,2004,40(3):12-18.
    245 Staben M L,Bezdicek D F,Smith J L,et al.Assessment of soil quality in conservation reserve program and wheat-fallow soils[J].J Soil Sci.Soc.Am.,1997,61:124-130.
    246 Warkentin B P.The changing concept of soil quality[J].J Soil Water Conser,1995,50:226-228.
    247 Erlan S.Abundance of Tylospora fibrillose ectomycorrhizas in a South Swedish spruce forest measured by RFLP analysis of the PCR-amplified rRNA ITS-region [J].Mycological Research, 1995, 99:1425-1428.
    248 Glenn A.E.,Rkyard D.M.,Bacon C.W.,et al. Molecular characterization of Myriogenospora atramentosa and its occurrence on some new hosts [J].Mycol.Res,1998,102(4):483-490.
    249 Hsiang T,Wu C.Genetic relationships of pathogenic Typhula species assessed by RAPD, ITS-RFLP and ITS sequencing[J].Mycological Research,2000,104(1):16-22.
    250 Chambers SM., Liu G., Cairney JWG. Its rDNA sequence comparison of ericoid mycorrhizal endophytes from Woollsia Pungens [J].Mycol.Res, 2000, 104(2):168-174.
    251 Abdul KS,Katayama A,Kimura.Activities of some soil enzymes in different land use system after deforestation in hilly areas of west Lampung,South Sumatra, Indonesia[J].Soil Sci.,2000,80:91-97.
    252 Acosta-Martinez V,Zobeck TM,Gill TE,et al. Enzyme activities and microbial community structure in semiarid agricultural soils[J].Biology and Fertility of Soil,2003,3:216-227.
    253何斌,刘运华,陆志科,等.肉桂人工林土壤速效养分与酶活性的季节变化[J].经济林研究2004,22(3):l-4.
    254胡海波,张金池.岩质海岸防护林土壤微生物数量及其与酶活性和理化性质关系[J].林业科学研究,2001,15(l): 88-95.
    255王光华,金剑,韩晓增,等.不同土地管理方式对黑土土壤微生物量碳和酶活性的影响[J].应用生态学报, 2007,18(6) :1275-1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700