用户名: 密码: 验证码:
高山被孢霉多不饱和脂肪酸合成相关基因克隆及转化甘蓝型油菜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多不饱和脂肪酸是对人体有重要生理活性的物质,有较高的药用价值。利用油料作物生产多不饱和脂肪酸是一种极具潜力的途径,将不饱和脂肪酸生物合成途径中的相关基因转入植物生产长链多不饱和脂肪酸成为近几年油脂类国际会议的热点。油菜是十字花科(Cruiferae)芸薹属(Brassica genus)植物,甘蓝型油菜(Brassica napus L.)在世界上是继大豆和棕榈之后的第三大油料作物,我国油菜种植面积和产量均占世界总量的30%左右,在农业生产和粮油安全上占有重要的战略地位。本研究目的是从高山被孢霉中分离花生四烯酸(Arachidonic acid, AA)和二十碳五烯酸(Eicosapentaenoic acid, EPA)合成途径中的相关基因,并将其连接到带有种子特异表达启动子的植物表达载体上,通过农杆菌介导的方法转化甘蓝型油菜品种,从而在甘蓝型油菜中构筑AA和EPA生物合成的途径,为AA和EPA来源开辟新的方向。本论文主要研究内容和结果如下:
     (1)克隆了高山被孢霉的△6去饱和酶基因、△6延长酶基因和△5去饱和酶基因,利用生物信息学手段分析了三个基因编码的氨基酸序列结构,从推导的△6去饱和酶基因和△5去饱和酶基因编码的氨基酸序列中发现均存在一个细胞色素b5结构域和3个组氨酸保守区Ⅰ区(HX3H)、Ⅱ区(HX2HH)和Ⅲ区(QIEHHLFP);△6延长酶基因编码的氨基酸序列中,在183-188和221-225氨基酸残基位置分别有一个组氨酸的富集区和一个酪氨酸的富集区,它们对基因功能的正常表达是必需的。实验中对三个基因的进化也进行了分析。
     (2)把三个基因分别构建酵母表达载体,分别转入毕赤酵母构建重组基因工程菌,用于对三个基因的功能验证。提取转△6去饱和酶基因重组毕赤酵母的总蛋白,SDS-PAGE电泳后有目标蛋白条带的出现,大小为51.8 kDa,证明△6去饱和酶在酵母菌体内能进行正常的转录和翻译,脂肪酸分析表明,△6去饱和酶能把酵母自身能合成的LA转化为GLA,合成的GLA含量占总脂肪酸含量的6.3%,实验中没有检测到OTA的生成,说明转入酵母中的△6去饱和酶基因不能利用ALA合成新的产物或合成的产物量太少而不能检测出来,据此推断△6去饱和酶基因对LA底物具有偏好性。在添加GLA底物时,△6延长酶在重组酵母中能催化合成占总脂肪酸含量0.31%的DHGLA。添加底物DHGLA,转入△5去饱和酶基因的重组酵母脂肪酸中有2.85%的AA生成。根据实验结果推测△6延长酶催化的反应在多不饱和脂肪酸合成中是限速步骤。
     (3)克隆了甘蓝型油菜种子特异表达的napin启动子,通过napin启动子DNA序列分析,该启动子富含AT碱基,含有3个TATA-box,7个CAAT-box,1个GATA-box,2个G-box和3个(CA)n-motif等调控元件,这些调控元件是高等植物启动子序列的特征。采用酶切连接介导PCR的方法构建△6延长酶基因的表达框和△5去饱和酶基因的表达框,利用napin启动子完成三价植物表达载体pCAMBIA1303-D6ELD5 (napin启动子)的构建。
     (4)转化根癌农杆菌LBA4404后,通过愈伤组织转化法、真空渗透法和蘸花法对甘蓝型油菜7633进行了转化,其中愈伤组织转化法的转化效率为1.2%,另外两种转化方法的转化效率最高分别为1.8%和2.5%。利用Hyg对转化的植株和种子进行筛选,获得500多株转基因油菜。对筛选到的阳性植株进行PCR检测和Southern blot分析,证明外源基因已经整合到了油菜的基因组中。
Polyunsaturated fatty acids were one kind of important physiological activity substance to human and had high officinal value. It was a great potential method to produce polyunsaturated fatty acids through oil crops, and to produce long-chain polyunsaturated fatty acids by transferring the related genes in the biosythesis of polyunsaturated fatty acids into plants has turned out to be the hot spot of international lipids conferences recently. Rape is one plant of the Brassica genus of the family Cruiferae. Brassica napus L. has become the third important oil crop following soybean and palm in the world at present. The planting area and output of rape of our country accounted for about thirty percent of the world's total amount, which had an important strategic position in the agriculture production and grain safety. In our research, the related genes in the synthesis of AA and EPA obtained from Mortierella alpina was linked to the plant expression vector with seed-specific promoter, and were transformed to B. napus by Agobacterium-mediated transformation method to build biosynthesis pathway for AA and EPA, which provided one new source for AA and EPA production. The main contents and results of this research work are as follows:
     (1) A6 desaturase gene,△6 elongase gene and△5 desaturase gene were cloned from M. alpina. Then the amino acid sequences encoded by the three genes were analyzed through bioinformatics methods. A domain of cytochrome b5 and three histidine conserved domains namely domainⅠ(HX3H) domainⅡ(HX2HH) and domainⅢ(QIEHHLFP) were found in the amino acid sequences encoded by both△6 desaturase gene and△5 desaturase gene. Meanwhile, in the amino acid sequence encoded by△6 elongase gene, a histidine enrichment domain and a tyrosine enrichment domain were found in the amino acid residues position of 183-188 and 221-225, respectively. The evolution of the three genes was analyzed in the research as well.
     (2) Yeast expression vectors for the three genes were constructed and transferred into Pichia pastoris GS115 to build recombined engineering strains for the function identification of the three genes, respectively. Total protein of the recombined yeast containing△6 desaturase gene was extracted. The target protein band with the size of 51.8 kDa was found after SDS-PAGE electrophoresis, demonstrating that the△6 desaturase could be transcribed and translated normally in yeast. The fatty acid analysis showed that△6 desaturase could transform LA yielded by yeast itself into GLA, and the output of GLA accounted for 6.3% of the total fatty acids. There was no detection of OTA during the experiment which demonstrated that the A6 desaturase gene could not synthesize new product utilizing ALA or the amount of synthesized product could not be detected. In view of these results, we concluded that△6 desaturase gene had preference to the LA substrate. After the addition of GLA substrate,△6 elongase could catalyze the synthesis of DHGLA, which accounted for 0.31% of the total fatty acids in recombined yeast. While after the addition of DHGLA substrate,2.85% AA was detected in the yeast transformed with△5 desaturase gene. According to the experimental results we suggested that the pathway of△6 elongase catalysis was the rate-limiting step in the synthesis of polyunsaturated fatty acid.
     (3) The napin promoter of seed-specific expression in B. napus was cloned. The DNA sequence analysis of the promoter showed that there were rich AT nucleotides and had much regulatory elements, including three TATA-box, seven CAAT-box, one GATA-box, two G-box, and three (CA)n-motif, which was the character of the higher plants promoter. Furthermore, the expression cassettes of△6 elongase gene and△5 desaturase gene were constructed through the method of enzyme cleavage connection mediated PCR, and the trivalent plant expression vector pCAMBIA1303-D6ELD5 (napin promoter) was built with the napin promoter.
     (4) B. napus 7633 was transformed with Agrobacterium tumefaciens LBA4404 carrying the pCAMBIA1303-D6ELD5(napin promoter) vector through the methods of callus transformation, vacuum infiltration, and floral dip. The transformation efficiency of callus transformation achieved 1.2%, and the maximum transformation efficiency reached 1.2%,1.8%, and 2.5%, respectively. Hygromycin B was applied to screen the transformed explants and seeds, and more than 500 transgenetic plants were obtained during the reseach. PCR and Southern blot were utilized to analyze the screened positive transgenic plants. The results showed that the exogenous genes have been integrated into the genome of rape.
引文
[1]Alonso D L, Maroto F G. Plants as'chemical factories' for the production of polyunsaturated fatty acids. Biotechnology Advances,2000,18(6):481-497
    [2]王萍,张银波,江木兰.多不饱和脂肪酸的研究进展.中国油脂,2008,28(12):55-59
    [3]苏桂红.γ-亚麻酸的开发与应用.黑龙江医药,2004,17(2):142-143
    [4]Takahashi Y, lde T, Fujita H. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying increase in uncoupling protein 1 mRNA level in brown adipose tissue. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,2000,127(2):213-222
    [5]Sangeetha P S, Das U N. Cytotoxic action of cis-unsaturated fatty acids on human cervical (Hela) carcinoma cells in vitro. Prostaglanding, Leukotriencs and Essential Fatty Acids,1995,53:287
    [6]Dsa U N, Kuma K V, Mohan I K. Lipid and essential fatty acids in patients with diabetes mellitus and diabetic nephroathy. Journal of Nutritional Medicine,1994(4): 149
    [7]Pottathil J D, Huang S W, Chandrabose K A. Essential fatty acids in diabetes and systemic lupus erythematosus (SLE) patients. Biochemical and Biophysical Research Communications,1985,128(2):803-808
    [8]Mercuri O, Peluffo R O, Brenner R R. Depression of microsomal desaturation of linoleic to gamma-linolenic acid in the alloxan diabetic rat. Biochimica et Biophysica Acta,1966,116:409-411
    [9]Jiang W G, Hiseox S, Hallett M B, et al. Regulation of the Expression of E-cadherin on human cancer cells by y-linolenic acid (GLA). Cancer Research, 1995,55(21):5043-5048
    [10]姚昕,秦文,齐春梅等.花生四烯酸的生理活性及其应用.粮油加工与食品机械,2004(5):57-59
    [11]罗大力,张幼怡,韩启德.花生四烯酸的生物活性及其钙信号转导作用.生理科学进展,2002,33(3):251-254
    [12]Piomelli D, Volterra A, Dale N, et al. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of. aplysia sensory cells. Nature, 1987,328:38-43
    [13]阮征,吴谋成,胡筱波等.多不饱和脂肪酸的研究进展.中国油脂,2003,28(2):55-59
    [14]Haskins R H, Tulloch A P, Micetich R G. Steroids and the stimulation of sexual reproduction of a species of Pythium. Canadian Journal of Microbiology,1964,13: 755-760
    [15]林树新,於峻.花生四烯酸代谢物对呼吸道感受器的作用.生理学报,2007,59(2):141-149
    [16]董白霞,马景学,叶存喜等.二十碳五烯酸对体外培养的人血管内皮细胞增殖抑制效应的研究.中华眼科杂志,2007,43(8):726-733
    [17]张敏芳,钱家麒,Yasuhiko T. EPA对KKAy/Ta小鼠代谢异常和肾组织病变的影响.上海交通大学学报(医学版),2009,29(1):34-37
    [18]王蓬,陈孝平,Lai P B S等.二十碳五烯酸对三种肝癌细胞系作用的实验研究.中华普通外科杂志,2001,16(1):24-27
    [19]Kremer J M. N-3 fatty acid supplements in rheumatoid arthritis. Clinical Nutrition, 2000,71(1):349-351
    [20]Volker D H, Fitzgerald P E B, Garg M L. The eicosapentaenoic to docosahexenoic acid ratio of diets affects the pathogenesis of arthritis in Lew/SSN rates. Journal of Nutrition,2000,130(3):559-565
    [21]黄明发,吴桂苹,焦必宁等.二十二碳六烯酸和二十碳五烯酸的生理功能.食品与药品A,2007,9(2):69-71
    [22]Harris W S, Von Schacky C. The Omega-3 index:a new risk factor for death from coronary heart disease? Preventive Medicine,2004,39(1):212-220
    [23]Sinclair A J. The good oil:omega 3 polyunsaturated fatty acid. Today's Life Science,1991,9(1):65-70
    [24]O'Brien J S, Sampson E L. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter and myelin. Journal of Lipid Research,1965,6:545-551
    [25]Benatti P, Peluso G, Nicolai R, et al. Polyunsaturated fatty acids:biochemical, nutritional and epigenetic properties. Journal of the American College of Nutrition, 2004,23:281-302
    [26]Clough P. Sources and production of speciality oils containing GLA and stearidonic acid. Lipid Technology,2001,13:9-12
    [27]慕鸿雁,裘爱泳.γ-亚麻酸生理功能、资源及其分离纯化.粮食与油脂,2004,10:12-14
    [28]Ward O P, Singh A. Omega-3/6 fatty acids:Alternative sources of production. Process Biochemistry,2005,40(12):3627-3652
    [29]Hiruta O, Kamisaka Y, Yokochi T, et al. Gamma-linoleic acid production by a low temperature-resistant mutant of Mortierella ramanniana. Journal of Fermentation and Bioengineering,1996,82:119-123
    [30]Certik M, Balteszova L, Sajbidor J. Lipid formation and gamma-linolenic acid production by Mucorales fungi grown on sunflower oil. Letters in Applied Microbiology,1997,25 (2):101-105
    [31]Conti E, Stredansky M, Stredansky S, et al. Gamma-linolenic acid production by solid-state culture of Mucorales strains on cereals, Bioresource Technology,2001, 76(3):283-286
    [32]Cohen Z, Didi S, Heimer Y M. Overproduction of γ-linolenic and eicosapentaenoic acids by algae. Plant Physiology,1992,98:569-572
    [33]Zhu M, Yu L J, Wu Y X. An inexpensive medium for production of arachidonic acid by Mortierella alpina. Journal of Industrial Microbiology and Biotechnology, 2003,30 (1):75-79
    [34]Eroshin V K, Satroutdinov A D, Dedyukhina E G, et al. Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochemistry,2000,35(10):1171-1175
    [35]Lan W, Qin W M, Yu L J. Effect of glutamate on arachidonic acid production from Mortierella alpina. Letters of Applied Microbiology,2002,35:357-360
    [36]Kyle D J. Arachidonic acid and methods for the production and use thereof. The United States, US005658767,1997:1-11
    [37]Singh A, Ward O P. Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC 32222. Applied Microbiology and Biotechnology,1997,48(1):1-5
    [38]Barclay W R. Method for production of arachidonic acid. The United States, US007601523B2,2009:1-10
    [39]Yongmanitchai W, Ward O P. Separation of algal lipid classes from Phaeodactylum tricornutum using silica cartridges. Phytochemistry,1992,31(10):3405-3408
    [40]Yongmanitchai W, Ward O P. Molecular species of triacylglycerols from the freshwater diatom, Phaeodactylum tricornutum. Phytochemistry,1993,32(5): 1137-1139
    [41]Kyle D J, Gladue R. Eicosapentaenoic acids and methods for their production. The United States, US005244921A,1993:1-9
    [42]Shimizu S, Jareonkitmongkol S, Kawashima H, et al. Production of a novel co-3 eicosapentaenoic acid by Mortierella alpina IS-4 grown on 1-hexadecene. Archives of Microbiology,1991,156:163-166
    [43]刘吉华,袁生,戴传超.二十碳五烯酸等多不饱和脂肪酸高产菌的筛选.菌物系统,2000,19(3):407-409
    [44]Gandhi S R, Weete J D. Production of the polyunsturatured fatty acids arachidonic acid and eicosapentaenoic acid by fungus pythium ultimum. Journal of General Microbiology,1991,137:1825-1830
    [45]Stinson E E, Kwoczak R, Kurantz M J. Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare. Journal of Industrial Microbiology, 1991,8:171-178
    [46]卢美欢,朱敏,周蓬蓬等.影响腐霉发酵培养中菌丝形态的因素及其与EPA含量的关系.生命科学研究,2008,12(3):238-241
    [47]Bajpai P, Bajpai P K, Ward O P. Eicosapentaenoic acid formation:comparative studies with Mortierella strains and production by M. elongata. Mycological Research,1991,95 (1):1294-1298
    [48]Bajpai P, Bajpai P K, Ward O P. Effects of ageing Mortierella mycelium on production of arachidinic acid and eicosapentaenoic acid. Journal of theAmerican Oil Chemist' Society,1991,68(10):775-780
    [49]Jareonkitmongkol S, Shimizu S, Yamada H. Production of eicosapentaenoic acid-containing oil by a delta-12 desaturase-defective mutant of Mortierella alpina 1S-4. JAOCS,1993,70:119-123
    [50]李运涛.产PUFAs转基因株的构建:[博士学位论文].武汉:华中科技大学图书馆,2009
    [51]张楚富.生物化学原理.北京:高等教育出版社,2003:415-426
    [52]Roughan P G, Mudd J B, McManus T T, et al. Linoleate and alpha-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts. Journal of Biochemistry,1979,184(3):571-574
    [53]Heinz E, Roughan P G. Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiology,1983,72: 273-279
    [54]Slack C R, Roughan P G, Terpstra J. Some properties of a microsomal oleate desaturase from leaves. Journal of Biochemistry,1976,155(1):71-80
    [55]Wallis J G, Browse J. The Delta 8-desaturase of Euglena gracilis:an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Archives of Biochemistry and Biophysics,1999,365(2):307-316
    [56]Metz J G, Roessler P, Facciott D, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science,2001,293: 290-293
    [57]Napier J A. Plumbing the depths of PUFA biosynthesis:a novel polyketide synthase-like pathway from marine organisms. Trends in Plant Science,2002,7: 51-54
    [58]魏景超.真菌鉴定手册.上海:上海科学技术出版社,1979
    [59]朱敏.高山被孢霉生产花生四烯酸及△5脱饱和酶基因的克隆与表达分析:[博士学位论文].武汉:华中科技大学图书馆,2004
    [60]中国科学院微生物研究所《常见和常用真菌》编写组.常见与常用真菌.北京:科学出版社,1973
    [61]朱敏,余龙江,肖靓等.高山被孢霉的红四氮唑染色程度与菌体油脂中花生四烯酸含量的关系.生命科学研究,2004,8(4):339-343
    [62]周蓬蓬,秦文敏,余龙江等.KLa对高山被孢霉产花生四烯酸的影响.生命科学研究,2002,6(4):339-342
    [63]周蓬蓬,余龙江,汪建华等.微波等离子体溅射诱变选育花生四烯酸高产菌及补料工艺研究.激光生物学报,2003,12(1):59-62
    [64]金明杰,黄和,肖爱华等.利用乙醇胁迫作用提高花生四烯酸产量.食品与发酵工业,2007,33(11):52-54
    [65]Jin M, Huang H, Xiao A, et al. Enhancing arachidonic acid production by Mortierella alpina ME-1 using improved mycelium aging technology. Bioprocess and Biosystems Engineering,2009,32(1):117-122
    [66]张腊梅,袁成凌,李娟等.高效利用木糖产油的氮离子注入Mortierella alpina诱变选育研究.激光生物学报,2009,18(5):673-681
    [67]Sakuradani E, Ando A, Ogawa J, et al. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Applied Microbiology and Biotechnology,2009,84(1):1-10
    [68]Jareonkitmongkol S, Sakuradani E, Shimizu S. Isolation and characterization of a Delta 9-desaturation-defective mutant of an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Journal of the American Oil Chemists' Society,2002, 79(10):1021-1026
    [69]Takeno S, Sakuradani E, Tomi A, et al. Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Delta 12-desaturase gene expression. Applied and Environmental Microbiology,2005,71(9):5124-5128
    [70]Abe T, Sakuradani E, Asano T, et al. Identification of mutation sites on Delta 6 desaturase genes from Mortierella alpina 1S-4 mutants. Bioscience Biotechnology and Biochemistry,2005,69(5):1021-1024
    [71]Abe T, Sakuradani E, Ueda T, et al. Identification of mutation sites on Delta 5 desaturase genes from Mortierella alpina 1S-4 mutants. Journal of Bioscience and Bioengineering,2005,99(3):296-299
    [72]Zhang S, Sakuradani E, Shimizu S. Identification of a sterol Delta 7 reductase gene involved in desmosterol biosynthesis in Mortierella alpina 1S-4. Applied and Environmental Microbiology,2007,73(6):1736-1741
    [73]Sakuradani E, Shimizu S. Gene cloning and functional analysis of a second Delta 6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Bioscience Biotechnology and Biochemistry,2003,67(4):704-711
    [74]Sakuradani E, Murata S, Kanamaru H, et al. Functional analysis of a fatty acid elongase from arachidonic acid-producing Mortierella alpina 1S-4. Applied Microbiology and Biotechnology,2008,81(3):497-503
    [75]Chen R, Matsui K, Ogawa M, et al. Expression of Delta 6, Delta 5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Science,2006,170(2):399-406
    [76]李明春,刘莉,胡国武等.高山被孢霉△6-脂肪酸脱氢酶基因的克隆、结构分析及其功能的研究.微生物学报,2003,43(2):220-227
    [77]李明春,刘莉,胡国武等.转基因烟草表达高山被孢霉△6--脂肪酸脱氢酶基因的研究.作物学报,2004,30(6):618-621
    [78]李明春,李航,张琦等.△12-脂肪酸脱氢酶基因在大肠杆菌中的表达.微生物学通报,2004,31(4):43-48
    [79]朱敏,刘智,余龙江等.高山被孢霉△5脱饱和酶基因的分离与验证.遗传学报,2005,32(9):986-992
    [80]卜云萍,李明春,胡国武等.高山被孢霉△6-脂肪酸脱氢酶基因转化大豆的研究.生物技术,2004,14(3):16-18
    [81]卜云萍,李明春,胡国武等.高山被孢霉△6-脂肪酸脱氢酶基因在大豆中的表达.中国农业科学,2004,37(8):1104-1109
    [82]Rao A Q, Bakhsh A, Kiani S, et al. The myth of plant transformation. Biotechnology Advances,2009,27(6):753-763
    [83]Nadolska-Orczyk A, Orczyk W, Przetakiewicz A. Agrobacterium mediated transformation of cereals-from technique development to its application. Acta Physiologiae Plantarum,2000,22(1):77-88
    [84]Zaenen I, Larebeke N van, Teuchy H, et al. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. Journal of Molecular Biology,1974,86(1): 109-127
    [85]Chilton M D, Drummond M H, Merlo D J, et al. Stable incorporation of plasmid DNA into higher plant cells:the molecular basis of crown gall tumorigenesis. Cell, 1977,11:263-271
    [86]Haute E van, Joos H, Maes M, et al. Integeneric transfer and exchange recombination of restriction fragments cloned in pBR322:a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. The EMBO Journal,1983,2(3):411-417
    [87]de Framond A J, Barton K A, Chilton M D. Mini-Ti:a new vector strategy for plant genetic engineering. Nature Biotechnology,1983,1:262-269
    [88]Hoekema A, Hirsch P R, Hooykaas P J J, et al. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature,1983,303:179-180
    [89]Bevan M, Barnes W M, Chilton M D. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Research,1983,11(2):369-385
    [90]Fraley R T, Rogers S Q Horsch R B, et al. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America,1983,80:4803-4807
    [91]练云,梁慧珍,王树峰等.农杆菌介导大豆遗传转化研究进展及转基因作物现状.大豆科学,2009,28(3):531-536
    [92]Pugalendhi T, Premalatha M, Bhat S G. Agrobacterium mediated transformation of annexin gene in tobacco (Nicotiana tabacum). African Journal of Biotechnology, 2009,8(20):5149-5154
    [93]Dutt M, Madhavaraj J, Grosser J W. Agrobacterium tumefaciens-mediated genetic transformation and plant regeneration from a complex tetraploid hybrid citrus rootstock. Scientia Horticulturae,2010,123(4):454-458
    [94]Li F, Wu S, Chen T, et al. Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell Tissue and Organ Culture,2009,97(3):225-235
    [95]Das B, Goswami L, Ray S, et al. Agrobacterium-mediated transformation of Brassica juncea with a cyanobacterial (Synechocystis PCC6803) delta-6 desaturase gene leads to production of gamma-linolenic acid. Plant Cell Tissue and Organ Culture,2006,86(2):219-231
    [96]Bull S E, Owiti J A, Niklaus M, et al. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nature Protocol, 2009,4(12):1845-1854
    [97]Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology,1997,35:205-218
    [98]Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize(Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology,1996,14: 745-750
    [99]Tingay S, McElroy D, Kalla R, et al. Agrobacterium tumefaciens mediated barley transformation. Plant Journal,1997,11:1369-1376
    [100]Cheng M, Fry J E, Pang S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology,1997,115:971-980
    [101]Carlos H, Carvalho S, Zehr U B, et al. Agrobacterium-mediated transformation of sorghum:factors that affect transformation efficiency. Genetics and Molecular Biology,2004,27:259-269
    [102]Bechtold N, Pelletier G In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants by vacuum infiltration. Methods of Molecular Biology,1998,82:259-266
    [103]Clough S J, Bent A F. Floral dip:a simplified method fox Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal,1998,16(6):735-743
    [104]Davis A M, Hall A, Millar A J, et al. Protocol:Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods,2009,5:3
    [105]de Pater S, Neuteboom L W, Pinas J E, et al. UN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotechnology Journal,2009,7(8):821-835
    [106]Verma S S, Chiinnusarny V, Bansal K C. A simplified floral dip method for transformation of Brassica napus and B-carinata. Journal of Plant Biochemistry and Biotechnology,2008,17(2):197-200
    [107]Song X, Gu Y, Qin G Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding. Life Science Journal,2007,4(1):77-79
    [108]Luo Z, and Ray W. A simple method for the transformation of rice via the pollen-tube pathway. Plant Molecular Biology Reporter,1988,6:165-174
    [109]Mu H M, Liu S J, Zhou W J, et al. Transformation of wheat with insecticide gene of arrowhead proteinase inhibitors by pollen tube pathway and analysis of transgenic plants. Yi Chuan Xue Bao,1999,26(6):634-642
    [110]Hu C Y, Wang L. In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cellular & Development Biology-Plant,1999,35:417-420
    [111]Chen W S, Chiu C C, Liu H Y, et al. Gene transfer via pollen-tube pathway for anti fusarium wilt in watermelon. Biochemistry and Molecular Biology International, 1998,46(6):1201-1209
    [112]牛一丁,霍朝霞,哈斯阿古拉等.紫花苜蓿花粉管通道法转基因技术初探.中国草地学报,2009,31(1):36-39
    [113]Tjokrokusumo D, Heinrich T, Wylie S, et al. Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Reports,2000,19:792-797
    [114]Hussain S S, Husnain T, Riazuddin S. Sonicated assisted Agrobacterium mediated transformation (SAAT):an alternative method for cotton transformation. Pakistan Journal of Botany,2007,39 (1):223-230
    [115]BeranovaM, Rakousky S, Vavrova Z, et al. Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tissue Organism Culture,2008,94(3):253-259
    [116]Kaeppler H, Gu W, Somer D A, et al. Silicon carbide fiber-mediated DNA delivery into plany cells. Plant Cell Reports,1990,9:415-418
    [117]Kaeppler H, Somers D A, Rines H W, et al. Silicon carbide fiber-mediated stable transformation of plant cells. Theoretical and Applied Genetics,1992,84:560-566
    [118]Asad S, Mukhtar Z, Nazir F, et al. Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Molecular Biotechnology,2008,40(2):161-169
    [119]Frame B R, Drayton P R, Bagnall S V, et al. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant Journal,1994,6: 941-948
    [120]王汉中.我国油菜产需形势分析及产业发展对策.中国油料作物学报,2007,29(1):101-105
    [121]殷艳,王汉中,廖星等.2009年我国油菜产业发展形势分析及对策建议.中国油料作物学报,2009,31(2):259-262
    [122]Kong F, Li J, Tan X, et al. A new time-saving transformation system for Brassica napus. African Journal of Biotechnology,2009,8(11):2497-2502
    [123]Bhalla P L, Singh M B. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Protocols,2008,3(2):181-189
    [124]Dutta I, Saha P, Das S. Efficient Agrobacterium-mediated genetic transformation of oilseed mustard [Brassica juncea (L.) Czern.] using leaf piece explants. In Vitro Cellular & Developmental Biology-Plant,2008,44(5):401-411
    [125]El-Mezawy A, Wu L, Shah S. A seed coat-specific promoter for canola. Biotechnology Letters,2009,31(12):1961-1965
    [126]Okuley J, Lightner J, Feldmann K, et al. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell,1994,6: 147-158
    [127]熊兴华,官春云,李栒等.甘蓝型油菜FAD2基因cDNA片段的克隆和序列分析.湖南农业大学学报:自然科学版,2002,28(2):97-99
    [128]熊兴华,官春云,李栒等.基因枪法向甘蓝型油菜转移反义FAD2基因的研究.湖南农业大学学报:自然科学版,2003,29(3):188-191
    [129]Hitz W D, Yadaw N S, Reiter R S, et al. Reducing polyunsaturation in oils of transgenic canola and soybean. Wilmington:Kluwer Academic Publishers,1995, 506-508
    [130]陈苇,李劲峰,董云松等.甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得.植物生理与分子生物学学报,2006,32(6):665-671
    [131]董娜,林良斌,马占强.农杆菌介导反义油酸脱饱和酶基因转化甘蓝型油菜.分子植物育种,2004,2(5):655-659
    [131]陈松,浦惠明,张洁夫等.农杆菌介导法将fad2基因的ihpRNA表达框转入甘蓝型油菜.江苏农业学报,2008,24(2):130-135
    [133]田保明,陈占宽,杨光圣等.基于RNAi技术转移脂肪酸延长酶基因fae1及转基因油菜的获得.中国油料作物学报,2007,29(2):27-31
    [134]Wu G, Truksa M, Datla N, et al. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plant. Nature Biotechnology,2005, 23(8):1013-1017
    [135]Wu J, Wu L, Liu Z, et al. A plant defensin gene from Orychophragmus violaceus can improve Brassica napus' resistance to Sclerotinia sclerotiorum. African Journal of Biotechnology,2009,8(22):6101-6109
    [136]马玲莉,霍蓉,高学文等.转harpinXooc蛋白编码基因hrf2对油菜抗菌核病的影响.中国农业科学,2008,41(6):1655-1660
    [137]杜建中,孙毅,曹秋芬等.转基因油菜后代的农艺性状表现及其抗虫性研究.生物技术通报,2008(3):148-152,165
    [138]Cegielska-Taras T, Pniewski T, Szala L. Transformation of microspore-derived embryos of winter oilseed rape(Brassica napus L.) by using Agrobacterium tumefaciens. Journal of Applied Genetics,2008,49(4):343-347
    [139]Sakhno L O, Komarnits'Kii I K, Cherep M N, et al. Phosphinothricin-resistant Brassica napus plus Orychophragmus violaceus somatic hybrids. Cytology and Genetics,2007,41(1):1-5
    [140]王满困,张志春,方小平等.转基因抗除草剂油菜对春油菜区主要害虫发生数量的影响.中国油料作物学报,2009,31(1):56-60,64
    [141]Beaudoin F, Michaelson L, Lewis M, et al. Production of C-20 polyunsaturated fatty acids (PUFAs) by pathway engineering:identification of a PUFA elongase component from Caenorhabditis elegans. Biochemical Society Transactions,2000: 661-663
    [142]Domergue F, Abbadi A, Ott C, et al. Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. Journal of Biological Chemistry,2003,278(37): 35115-35126
    [143]Kajikawa M, Yamato K, Kohzu Y, et al. Isolation and characterization of Delta(6)-desaturase, an ELO-like enzyme and Delta(5)-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Molecular Biology,2004,54(3):335-352
    [144]Abbadi A, Domergue F, Bauer J, et al. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds:Constraints on their accumulation. Plant Cell,2004,16(10):2734-2748
    [145]Pereira S, Huang Y, Bobik E, et al. A novel omega 3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochemical Journal,2004:665-671
    [146]李明春,刘莉,张丽等.深黄被孢霉△6-脂肪酸脱氢酶基因的克隆及序列分析.菌物系统,2001,20(1):44-50
    [147]Hong H, Datla N, Reed D W, et al. High-level production of gamma-linolenic acid in Brassica juncea using a Delta 6 desaturase from Pythium irregulare. Plant Physiology,2002,129(1):354-362
    [148]李劲峰,郑树松,张崎等.农杆菌介导法将深黄被孢霉△6-脂肪酸脱氢酶基因(D6D)导入油菜的研究.西南农业学报,2006,19(1):29-31
    [149]张琦,李明春,蔡易等.少根根霉△6-脂肪酸脱氢酶基因在转基因油菜中的表达.中国农业科学,2006,39(3):463-469
    [150]Qi B, Fraser T, Mugford S, et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology,2004,22(6): 739-745
    [151]刘建民.高山被孢霉△6脂肪酸脱饱和酶基因的克隆及表达分析:[硕士学位论文],武汉:华中科技大学图书馆,2007
    [152]Huang Y S, Sunita C, Jennifer M T. Cloning of △12 and A6 desaturases from Mortierella alpina and recombinant production of y-linolenic acid in Saccharomyces cerevisiae. Lipids,1999,34 (7):649-659
    [153]Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Research,1984,12(2):857-872
    [154]Parker-Barnes, J M, Das T, Bobik E, et al. Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(15):8284-8289
    [155]Michaelson L V, Lazarus C M, Griffiths G, et al. Isolation of a Delta5-fatty acid desaturase gene from Mortierella alpina. Journal of Biological Chemistry,1998, 273(30):19055-19059
    [156]Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,1997,25(24):4876-4882
    [157]Nicholas K B, Nicholas H B, Deerfield D W. GeneDoc:Analysis and visualization of genetic variation. EMBnet. News,1997,4:14
    [158]Tamura K, Dudley J, Nei M, et al. MEGA 4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007, 24(8):1596-1599
    [159]Harju S, Fedosyuk H, Peterson K. Rapid isolation of yeast genomic DNA:Bust n' Grab. BMC Biotechnology,2004,4:8-13
    [160]Huang Y S, Ziboh V A. Gamma-linolenic acid:Recent advances in biotechnology and clinical applications. Champaign, IL:AOCS Press,2002
    [161]张琦,苗翠苹,李明春等.△6-脂肪酸脱氢酶的系统进化分析.云南大学学报(自然科学版),2006,28(5):450-455
    [162]Takeno S, Sakuradani E, Murata S. Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids,2005,40(1):25-30
    [163]余龙江,朱敏,周蓬蓬等.花生四烯酸油脂及其微生物发酵生产方法.中国专利,200310111296.6
    [164]Josefsson L G, Lenman M, Ericson M L, et al. Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus. Journal of Biological Chemistry, 1987,262(25):12196-12201
    [165]Chen P, Wang C, Soong S, et al. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Molecular Breeding,2003,11(4):287-293
    [166]刘志,袁小玲,张天真等.获得多价转基因作物的策略.遗传,2001,23(2):182-186
    [167]林春晶,韦正乙,蔡勤安等.几种植物转基因表达载体的构建方法.生物技术,2008,18(5):84-87
    [168]美国生命技术公司.GATEWAYTM——一种新型克隆技术.微生物学通报,2000, 27(5):388
    [169]杨美英,贺红霞,王艳等.番茄茄红素p-环化酶基因高效沉默载体构建.分子植物育种,2007,5(1):43-46
    [170]Nakamura S, Nakao A, Kawamukai M, et al. Development of gateway binary vectors, R4L1pGWBs, for promoter analysis in higher plants. Bioscience Biotechnology and Biochemistry,2009,73(11):2556-2559
    [171]Sasaki Y, Sone T, Yahata K, et al. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells:Eukaryotic clones containing two and three ORF multi-gene cassettes expressed from a single promoter. Journal of Biotechnology,2008,136(3-4):103-112
    [172]Sone T, Yahata K, Sasaki Y, et al. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells:Modular construction of multiple cDNA expression elements using recombinant cloning. Journal of Biotechnology,2008, 136(3-4):113-121
    [173]Goldstone R M, Moreland N J, Bashiri G, et al. A new Gateway (R) vector and expression protocol for fast and efficient recombinant protein expression in Mycobacterium smegmatis. Protein Expression and Purification,2008,57(1):81-87
    [174]欧阳平,李玉,严红等.一种载体构建的新方法:一步克隆法.湖北大学学报:自然科学版,2007,29(2):178-181
    [175]陆云华,马立新,蒋思婧.一种通用高效的复杂载体构建的新方法.遗传,2006,28(2):212-218
    [176]李红.油菜高效再生体系的建立及遗传转化的研究:[硕士学位论文],武汉:华中科技大学图书馆,2008
    [177]Wang W C, Menon G, Hansen G. Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Reports,2003,22(4):274-281
    [178]Babic V, Datla R S, Scoles G J, et al. Development of an efficient Agrobacterium-mediated transformationsystem for Brassica carinata. Plant Cell Reports,1998,17: 183-188
    [179]Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Reports,2003,21:599-604
    [180]谭小力,戚存扣,张丽丽等.不同抗生素对油菜种子萌发的影响.江苏农业科 学,2006(5):27-29
    [181]张彦萍,贾瑞玲,侯岁稳等.高等植物合成长链多不饱和脂肪酸基因工程研究进展.中国油料作物学报,2009,31(1):97-102
    [182]Kinney A J, Cahoon E B, Damude H G, et al. production of very long chain polyunsaturated fatty acids in oilseed plants. The United States, US20070237876A1, 2007.1-40
    [183]Peng Q, Hu Y, Wei R, et al. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Reports,2010,29(4):317-325
    [184]Birch R G. Plant transformation:Problems and strategies for practical application. Annual Review of Plant Biology,1997,48:297-326
    [185]Potrykus I. Gene transfer to plants:assessment of published approaches and results. Annual Review of Plant Biology,1991,42:205-225
    [186]王关林,孙月剑,那杰等.中国转基因植物产业化的研究进展及存在问题.中国农业科学,2006,39(7):1328-1335
    [187]Jansson B J, Gardner R C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Molecular Biology,1989,14: 61-72
    [188]Kiran K. Sharma P B A T. Genetic transformation technology:Status and problems. In Vitro Cellular & Developmental Biology-Plant,2005,41(2):102-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700