用户名: 密码: 验证码:
六自由度纳米工作台驱动控制方法及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微位移驱动技术是精密测量与精密制造的关键技术之一。随着微纳制造技术的快速发展,需求纳米级驱动控制技术的领域越来越多。本学位论文选题来源于国家自然科学基金“纳米三坐标测量机关键技术的研究”,重点研究用于微小器件表面形貌测量的全场并行共焦显微镜关键部件——六自由度纳米工作台的驱动技术及驱动系统,实现微动平台的快速调整、高精度定位和微型化。
     六自由度纳米工作台采用单层结构,由八个压电陶瓷驱动器并行驱动,因此必须建立工作台位移与各驱动器驱动量之间的关系;压电陶瓷驱动器具有位移分辨率高,体积小,响应快,输出力大,不发热等优点,但其固有的迟滞和蠕变严重影响了它的定位精度;驱动电源的品质直接影响工作台的定位精度,而目前市场上有售的压电陶瓷驱动电源,输出通道数、体积、输出电压稳定性均难以满足课题研制的六自由度微动工作台并行驱动的需求。
     因此本论文围绕六自由度纳米工作台高精度驱动控制技术开展了系统深入的研究,主要的研究工作和创新点如下:
     (1)建立六自由度纳米工作台并行驱动控制模型
     根据六自由度纳米工作台的结构参量,建立了工作台三个移动参量及三个转动参量与八个压电陶瓷驱动器驱动量之间的数学关系。
     (2)研究压电陶瓷驱动器高精度的开环控制方法
     所研制的六自由度工作台有微型化要求,没有安装位移传感器的空间,只能采用开环控制。而压电陶瓷驱动器的迟滞、蠕变特性严重影响开环控制精度。因此从压电陶瓷材料的变形机理入手,深入研究了压电陶瓷驱动器的迟滞特性和蠕变特性,提出了压电陶瓷驱动器的“抗迟滞”和“抗蠕变”高精度开环控制方法。实验结果表明:压电陶瓷驱动器的最大迟滞误差下降了90%左右,蠕变误差也减小了一个数量级,定位稳定时间也大大缩短,使通过开环控制实现六自由度的高精度定位成为可能。上述驱动方法已申请2项国家发明专利,其中1项已获批。
     (3)研制微型化多通道高精度压电陶瓷驱动电源
     性能良好的驱动电源是实现压电陶瓷高精度定位的关键,本论文研究主要从拓展通道数、降纹波、抗干扰、减小体积和控制放大器工作温度等几个方面入手,自行研制出了微型化低纹波的多通道压电陶瓷驱动电源,并完成了相应的特性标定实验。经测试,八路电源输出电压的非线性误差小于0.05%,分辨率为6mV,静态电压纹波小于9mV,功率带宽可达5kHz,连续输出电流可达1.5A,连续工作8小时电压变化量小于0.01%,体积仅为280*260*120mm(博实三通道压电陶瓷电源体积为385*150*340mm),满足压电陶瓷驱动的要求。
     (4)六自由度纳米工作台驱动实验研究
     工作台实际的结构参量与其理论值间存在差异,各驱动器特性也不完全一致,因此对六自由度纳米工作台进行了各自由度的位移特性标定实验,确定了各自由度的驱动特性,并建立了修正后的六自由度并行驱动控制模型,继而对纳米工作台的最终运动精度进行标定,实验验证了前期的研究成果。六自由度纳米工作台的最大重复性误差小于28nm,可以满足全场并行共焦检测插值采样的需求。
Micro-displacement technology is one of the key technologies in precision machinery and precision instruments fields.With the rapid development of micro-nano manufacturing technology,there are more and more fields need nano-driven control technology.The dissertation is based on the project sponsored by the National Natural Science Foundation of "Nano-CMM key technology research",Focus on the driving technology and systems of a six degrees of freedom nano-table which is the key components of the whole field parallel confocal microscope used for measuring surface topography of small devices,to realization the rapid adjustment,high-precision positioning and miniaturization of the micro-platform.
     Six degrees of freedom nano-table with single-layer structure is driven by the eight parallel PZT,therefore it's necessary to establish the relationship between the table displacement and the driving volume of every PZT.The PZT actuator demonstrates superior characteristics of high displacement resolution,miniature size,high-frequency response,strong power,no generate heat etc.But the inherent hysteresis and creep effect the application of PZT badly.The quality of PZT power supply will impact the positioning accuracy of table directly.At present,the PZT power supply in market for sale,not only the number of output channels,but also the volume and output voltage stability are difficult to meet the demands of the parallel driving of six degrees of freedom nano-table.
     In this dissertation,carried out a systematic study in depth about the high-precision driving control technology around the six degrees of freedom nano-table.The main works and its originality of this dissertation are as follows:
     (1)The establishment of six degrees of freedom nano-table- parallel control model
     In accordance with the structure parameters of six degrees of freedom nano-table,the mathematical relationship between three mobile workstations parameters and three rotation parameters with the driving capacity of eight PZT have been established.
     (2) The research on high-precision open-loop control method of PZT
     Because the requirements of miniaturization,there is no space for the installation of displacement sensor on the six degrees of freedom nano-table,only the open-loop control could be adopted.But the hysteresis and creep of PZT impact the open-loop control accuracy badly.From the deformation mechanism of the PZT,the hysteresis and creep characteristics of PZT have been studied deeply.The high-precision open-loop control method of PZT "anti-lag" and "anti-creep" also have been made.The experimental results show that:the hysteresis error of the PZT has been reduced about 90%,the creep error also be reduced of an order of magnitude,and the location time has been greatly shortened,It makes the adoption of open-loop control to achieve high-precision positioning of six degrees of freedom become possible.The above-mentioned methods have applied for two national invention patents,which have been granted one.
     (3) The development of miniaturized multi-channel high-precision PZT power supply
     Good performance of driving power supply is the key to achieve high-precision positioning of the piezoelectric ceramic.In this paper,mainly from the expansion of power-channel-count,lower ripple and interference,reducing the volume and temperature control of amplifier such as aspects,developed own micro-low ripple of the multi-channel PZT power supply,and completed the corresponding experiments of the calibration characteristics.By testing,the output voltage of eight channels shows good linearity,the nonlinear error is less than 0.05%.the resolution is 6mv,the static ripple voltage is less than 9mV,the power bandwidth could be 5kHz,the continuous output current could be 1.5A,the voltage variation is less than 0.01%after eight hours continuous working.The volume of power supply is only 280~*260~*120mm(The volume of three-channel PZT power supply of BOSHI is 385~*150~*340mm),the power could satisfy the requirements of PZT driving.
     (4) The research on driving experiments of six degrees of freedom nano-table
     There are differences between the actual parameter values with the theoretical values of the table,and the characteristics of the PZT is not exactly the same,so the displacement calibration experiments on six degrees of freedom nano- table have been made,the driving characteristics of various degrees of freedom have been determined,and established a revised six degree of freedom parallel-driven control model,then the final campaign precision of the nano-table has been calibrated,the preliminary research results have been verified by experiments.The largest repeatability error of six degrees of freedom nano-table is less than 28nm,could meet the needs of the sample interpolation for whole confocal microscope in parallel.
引文
[1]Yung-Tien Liu,Rong-Fong Fung,Tai-Kun Huang.Dynamic responses of a precision positioning table impacted by a soft-mounted piezoelectric actuator Precision Engineering 28(2004) 252-260
    [2]董维杰,高颖,崔玉国,朴柱宏,压电执行器迟滞特征的自动采集及分析。计算机应用,2002,Vol.23No.9
    [3]邓辉,余晓芬等,钨青铜系列压电陶瓷驱动器迟滞特性的改善。仪器仪表学报,2002,24卷第四期增刊
    [4]张晓峰,林彬.大行程纳米级分辨率超精密工作台的发展方向,南京航空航天大学学报,2005,(37增刊)179-183
    [5]Kazuhiro Takahashi,Makoto Mita,Hiroyuki Fujita,etal.Ahigh fill-factor comb-driven XY-stage with topological layer switch architecture[J].IEICE Electronics Express,2006,3(9):197-202
    [6]Gu Lei,Li Xinxin,Bao Haifei,et al.Single-waferprocessed nano-positioning XY-stages with trenchsidewall micromachining technology [J].J Micromech Microeng,2006 16(7):1349-1357
    [7]荣伟彬,曲东升.压电陶瓷管驱动三自由度微操作手的究与应用[J].压电与声光,2002,24(3):186-191
    [8]SCH INSTOCK D E,CUTTINO J F.Real time kinematic solutions of a noncontacting,three dimensional metrology frame[J].Precision Engineering,2000(24):70-76
    [9]叶树亮,谭久彬,具有纳米分辨力二维超精密定位系统的研制,哈尔滨工业大学学报,2005,37(11):1472-1475
    [10]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004
    [11]王光庆,郭吉丰.空间柔性结构振动控制用压电主动构件模型与实验研究[J].中国机械工程,2005(16):95-100
    [12]薛实福,李庆祥.精密仪器设计[M].北京:清华大学出版社,1991
    [13]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004
    [14]王光庆,郭吉丰.空间柔性结构振动控制用压电主动构件模型与实验研究[J].中国机械工程,2005(16):95-100
    [15]Okazaki Y.A micro-positioning tool post using apiezoelectric actuator for diamond turning machines[J].Precision Engineering,2000,12(3):151
    [16]Ge P,Jouaneh M.Tracking control of a piezoceramic actuator[J].IEEE Transaction on Control Systems Technology,2001,4(3):209 215
    [17]RemboldU,Fatikow S.Autonomous micro-robots.Journal of Intelligent and Robotic Systems[J].1997,19(4):375-391
    [18]孙立宁,张涛,蔡鹤皋.纳米定位技术的研究[J].仪器仪表学报,1999,20(4):126-129
    [19]Ping Ge,Musa Jouaneh.Modeling Hysteresis in Piezoceramic Actuators[J].Precision Engineering,1995,17:211-221
    [20]Yu Yunhe,Xiao Zenngchu,Nagi G,et al.Dynamic Preisach Modeling of Hysteresis for the Piezoceramic Actuator System[J].Mechanism and Machine theory,2002,37:75-89
    [21]Ping Ge,Musa Jouaneh.Generalized Preisach Model for Hys-teresis Nonlinearity of Piezoceramic Actuators[J].Precision Engineering,1997,20:99-111
    [22]Y.Okazaki.A micro-positioning tool using a piezoelectric actuator for diamond turning machines.Journal of the American Society of Precision Engineering,2001,Vol.12,No.3
    [23]M.Brokate,Hysteresis and phase transitions.Springer-Verlag,Berlin,1999
    [24]H.Ozisik and R.F.Keltie.,Implemention of an open-loop control technique for high-speed micro-speed micro-positioning in a single-point diamond turning process.Journal of the American Society of Precision Engineering,2001,Vol.13,No.2
    [25]荣伟彬,曲东升,孙立宁.基于压电陶瓷驱动的微操作手研究现状[J].微纳电子技术,2003(7):590-594
    [26]K.Kuhnen,H.Janocha.Compensation of the Creep and Hysteresis Effects of Piezoelectric Actuators with Inverse Systems.6~(th)International Conference on New Actuators,Bremen,1998
    [27]Hah Dooyoung,Choi Chang-Auch,Kim Chang-Kyu,etal.A self-aligned vertical comb-drive actuator on an SOI wafer for a 2D scanning micromirror[J].J Micromech Microeng,2004,14(8):1148-1156
    [28]Kim Chen-Heung,Kim Yong-Kweon.Micro XY-stage using silicon on a glass [J].J Micromech Microeng,2002,12(2):103-107
    [29]Choi Jae-joon,Park Hongsik,Kim Kyu Yong,et al.Electromagnetic micro x-y stage for probe based data storage[J].Journal of Semiconductor Technology and Science,2001,1(1):84-93
    [30]孙麟治,李鸣鸣,程维明,精密定位技术研究[J],光学精密工程,增刊2005(13)69-75
    [31]马立,荣伟彬,孙立宁.三维纳米级微动工作台的设计与分析.光学精密工程,2006,14(6):1017-1024
    [32]杨雪锋,李威,王禹桥.压电陶瓷驱动电源的研究现状及进展[J].仪表技术与传感器,2008,11:109-112
    [33]Wang K,Sinclair M,Gary K,et al.An Electrostatic Zigzag Transmissive Microoptical Switch for MEMS Displays[J].IEEE/ASME Journal of Micro electromechanical Systems,2007,16(1):140-154
    [34]Leedy K D,Strawser R E,Cortez R,et al.Thin- Film Encapsulated RF MEMS Switches[J].IEEE/ASME Journal of Microelectromechanical Systems,2007,16(2):304-309
    [35]谭晓钧,刘晓为.应用MEMS技术加快微小卫星及微卫星的发展[J].仪器仪表学报,2004,25(4):598-600
    [36]Kurita T,Hattori M.Development of new-concept desk topsize machine tool [J].International Journal of MachineTools & Manufacture Design Research and Application,2005(45):959 965
    [37]Hyung Wook Park.DEVELOPMENT OF MICRO-GRINDING MECHANICS AND MACHINE TOOLS[D]Atlanta:Georgia Institute of Technology,2008:9 15
    [38]LIU Teijun,Huang Zhiyao,Wang Baoliang,et al.High Speed Electrical Resistance Tomography System Based on Bi2directional Pulse Current Technique[C].The 4th International Symposiμm onMeasurment Techniques ofMultiphase Flows,nangzhou,2004:194-198
    [39]金大元.微电子机械系统(MEMS)及其在军事领域的应用[J].通信对抗,2007,4:56-60
    [40]曾毅波,蒋书森,黄彩虹,等.激光共焦扫描显微镜在微机电系统中的应用[J].光学精密工程,2008,16(7):1241-1246
    [41]Thomas R,Andreas W,Verdes,et al.Confocal reader for biochip screening and fluorescence microscopy[J].Biosensors and Bioelectronics,2005,20(9):1872-1877
    [42]Chandler E L,Smith A L,et al..Membrane surface dynamics of DNA-threaded nanopores revealed by simultaneous single2molecule optical and ensemble electrical recording[J].Langmuir.2004,20(3):898-905
    [43]张旭,徐维奇.激光扫描共聚焦显微镜技术的发展与应用[J].现代科学仪器, 2001,76(2):21-23
    [44]李海燕,张琢,浦昭邦.共焦显微扫描探测技术的发展[J].光学技术,2008,34(1):94-97
    [45]高晓斌,余晓芬.一种并行共焦显微镜的设计与研制[J].光学仪器,2005,27(6):72-75
    [46]GAO Y.Detachment modeling of a novel workp iece micro-positioning table under preloaded hertz contact[J].Precision Engineering,26(1):2002,83-92
    [47]YIH-TUN T.High2speed and p recise positioning of an X-Y table[J].Control Engineering Practice,2003,11(4):357-365
    [48]孙立宁.基于PZT的微驱动定位系统及控制方法的研究[J].光学精密工程,2004,12(1):55-59
    [49]RenyiYang,MusaJouaneh,RudolphSchweizer.Designandcharacterizationofalow profilemicropositioningstage.PrecisionEngineering,1996,18(1):20-29.
    [50]张勇,余晓芬,胡鹏浩.闭环控制的6自由度微动工作台的设计[J].哈尔滨工业大学学报,2006.38(10):1685-1688
    [51]HOLMESM,HOCKENR,TRUMPERD.Thelong-rangescanningstage:anovelplatformfors canned-probemi-croscopy[J].PrecisionEngineering,2000,(24):191-209.
    [52]高思田,陈治,胡晓东,等.纳米精度MEMS平面运动测量技术[J].天津大学学报,2008,41(4):423-428
    [53]荣烈润.面向21世纪的纳米测量技术[J].航空精密制造技术,2008,44(4)1-5
    [54]赵平,杨勇,胡小唐.几何量纳米计量方法及仪器[J].航空精密制造技术,2001,37(6):28-31
    [55]董红磊.精密加工与精密测量技术的发展[J].宇航计测技术,2008,28(6):20-26
    [56]孙立宁,徐文军,安辉等.一种新型6-DOF并联机器人研究[J].哈尔滨工业大学学报,1999,31(1):17-21
    [57]Lobontiu N,Paine J S N.Corner-filled flexure hinges[J].ASME Journal of Mechanical Design,2001,123(3):346-352
    [58]Lobontiu N,Paine J N.Parabolic and hyperbolic flexurehinges:Flexibility,motion precision and stress characterization based on compliance closed-form equations[J].Precision Engineering,2002,26(2):183-192
    [59]Lobontiu N,Paine J S N.Design of symmetric conicsection flexure hinges based on closed-form compliance equations[J].Mechanism and Machine Theory,2002,37(5):477-498
    [60]Wu Y F,Zhou Z V.Design calculations for flexure hinges[J].Review of Scientific Instruments,2002,73(8):3101-3106
    [61]Wu Yingfei,Zhou Zhaoying.Design of flexure hinges[J].Engineering Mechanics,2002,19(6):136-140.(inChinese)
    [62]Lobontiu N.Stiffness characterization of corner-filleted flexure hinges [J].Review of Scientific Instruments,2004,75(11):4896-4904
    [63]Chen Guimin,Liu Xiaoyuan.Compliance calculation of elliptical flexure hinge[J].Chinese Journal of MechanicalEngineering,2006,42(Supplement):111-115
    [64]陈贵敏,贾建援,勾燕洁.混合型柔性铰链研究[J].仪器仪表学报,2004,25(4S):110-112
    [65]刘分良,田莳,张跃.压电陶瓷驱动器动态非线性建模与实验分析[J].压电与声光,2001,23(1):30-32
    [66]贾宏光,吴一辉,王立鼎.压电元件非线性特性研究的进展[J].压电与声光,2001,23(2):116-119
    [67]荣伟彬,曲东升,孙立宁.压电陶瓷微位移器件迟滞模型的研究[J].压电与声光,2003,25(1):22-25
    [68]Adriaens,DeKoning.Modeling piezoelectric actuators[J].IEEE/ASME Transactions onMechatronics,2000,5(4):331-341
    [69]LIU Y T,FUNG R F,HUANG T K.Dynamic responses of a precision positioning table impacted by a soft-mounted[J].Piezoelectric Actuator Precision Engineering,2004,(8):252-260
    [70]田延岭,张大卫,闫兵。二自由度微定位平台的研制[J]。光学精密工程,2006,(14)1:94-99
    [71]孙立宁,孙绍云,曲东升,等。基于PZT的微驱动定位系统及控制方法的研究[J]。光学精密工程,2004,(12)1:55-59
    [72]刘建芳,杨树臣,杨志刚,等。新型压电精密步进旋转驱动器研究[J]。光学精密工程,2006,(14)4:594-600
    [73]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程,1998,6(5):26-32
    [74]JUNG H,GWEON D G.Creep characteristics of piezoelectric actuators Review of Scientific Instruments,2000,71(4):1986-1900
    [75]孙宝玉,任建岳等,一种超精密压电式微位移机构研究。哈尔滨工业大学学报,2004,Vol.36No.4
    [76]Chang.S-H,Tseng.C-K,ChienH-C.Anultra-precisionXY(?) ZPiezo-microposition er-Part Ⅰ:design and analysis.IEEE Trans UltrasonicFerroelectrics Frequency Control 1999;46(4):897-905
    [77]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004
    [78]王光庆,郭吉丰.空间柔性结构振动控制用压电主动构件模型与实验研究[J].中国机械工程,2005(16):95-100
    [79]万德安,刘春节,陆文.压电驱动微位移放大机构放大特性的研究[J].机械工程师,2004(7):31-33
    [80]刘登云,杨志刚,程光明,等.压电叠堆泵微位移放大机构的试验研究[J].机械与电子,2007(3):75-77
    [81]王振海,张卫红.柔性结构拓扑优化设计发展概况[J].机械设计,2004,21(3):1-4
    [82]DoganA.,K.Onitsuka,K.Uchino,eta.l High Displacement Ceramic Metal Composite Actuators(Moonies)[J].Ferroelectrics,1994,156:1-6
    [83]Fernfindez J.F.,Dogan A.,Uchino K.eta.l Tailoring the Performance of Ceramicmetal Piezo-composite Actuators,Cymbals,Sensors and Actuators[J].1998,A65:228-237
    [84]UchinoK.,Giniewicz J.Micromechatronics[C].New York:Mar-celDekker,2002
    [85]Claeyssen F.,LeLetty R.Mechanism.based on Piezo Actuators[C].Actuator2000 Conference,2000:456-459
    [86]孙宝玉,任建岳等,一种超精密压电式微位移机构研究。哈尔滨工业大学学报,2004,Vol.36No.4
    [87]Chang.S-H,Tseng.C-K,ChienH-C.Anultra-precisionXY(?) ZPiezo-microposition er-Part Ⅰ:design and analysis.IEEE Trans UltrasonicFerroelectrics Frequency Control 1999;46(4):897-905
    [88]魏燕定,陶惠峰,压电驱动器迟滞特性的Preisach模型研究[J]。压电与声光,2004,(26)5:365-367
    [89]JANOCHA H,KUHNEN K.Real-time compensation of hysteresis and creed in piezoelectric[J].Sensors and Actuators,2000,(79):83-89
    [90]Yu Yunhe,Xiao Zenngchu,Nagi G,et al.Dynamic Preisach Modeling of Hysteresis for the Piezoceramic Actuator System[J].Mechanism and Machine theory,2002,37:75-89
    [91]Ping Ge,Musa Jouaneh.Generalized Preisach Model for Hys-teresis Nonlinearity of Piezoceramic Actuators[J].Precision Engineering,1997,20:99-111
    [92]Claudio Serpico,Ciro Visone.Magnetic Hysteresis Modeling Via Feed-Forward Neural Networks[J].IEEE Transactions on Magnetics,1998, 34:623-628
    [93]Wei Jyh-Da,Sun Chuen-Tsai.Constructing Hysteretic Memory in Neural Networks[J].IEEE Transactions on System,Man and Cybernetics-Part B:Cybernetics.2000,30:601-609
    [94]孙涛,潭永彬,董申,压电陶瓷微驱动器用于超精定位的技术研究。压电与声光,1999,Vol.21 No.6
    [95]福学,王丽坤.现代压电学[M].北京:科学出版社,2002
    [96]俊宝,吕刚.智能桁架结构振动控制中压电主动构件的研究:压电主动构件设计[J].压电与声光,1998,20(2):92-94
    [97]张福学,王丽坤.现代压电学[M].北京:科学出版社,2002:93-97
    [98]张腊梅,黄其圣,余晓芬,闭环控制的微动工作台设计。工具技术,2004,Vol.38No.4
    [91]林伟,冯海,压电陶瓷电源控制系统的设计与实现。现代电子技术,2007,Vol.16
    [99]冯晓光,赵万生,栗岩.压电陶瓷微位器驱动电源减小其纹波的方法[J].压电与声光,1997,19(1):35-38
    [100]刘放,张士邈,陈明.压电陶瓷驱动电源及其在激光陀螺扫模中的应用[J].航空计测技术,2001,21(2):2-9
    [101]尹德芹,颜国正,颜德因.压电陶瓷动态应用的新型驱动电源研究[J].压电与声光,2004,26(3):189-191
    [102]王广林,王慧峰,邵东向.一种闭环控制的压电陶瓷微位移器驱动电源[J].压电与声光,2005,27(2):121-125
    [103]李文卓,颜国正,蔡彬.一种新型压电陶瓷驱动器电源设计[J].压电与声光,2005,41(4):33-35
    [104]林伟,叶虎年,冯海.一种新型压电陶瓷驱动器电源设计[J].微纳电子技术,2006(3):138-140
    [105]周亮,姚英学,张宏志。低波纹波快速响应压电陶瓷驱动电源的研制[J].压电与声光,2000,22(4):237-239
    [106]李福良。基于PA85的新型压电陶瓷驱动电源[J].压电与声光,2005,27(4):392-394
    [107]冯晓光,赵万生,栗岩,等。压电陶瓷微位器驱动电源减小其纹波的方法,压电与声光,1997,19(1):35-38
    [108]刘放,张士邈,陈明。压电陶瓷驱动电源及其在激光陀螺扫模中的应用,航空计测技术,2001,21(1):6-9
    [109]李福良,张辉。基于PA85的新型压电陶瓷驱动电源,电子质量2004,26(1):64-65
    [110]尹德芹,颜国正,颜德因,等.压电陶瓷动态应用的新型驱动电源研究,压电与声光,2000,22(2)86-89
    [111]王宏,钟朝位,张树人。压电陶瓷驱动器线性动态驱动电源的研制,压电与声光,2004,26(3):189-191
    [112]赵建伟,孙徐仁,田蔚.低频压电陶瓷驱动器驱动电源研制.压电与声光,2002,24(2):107-110
    [113]周志敏,周纪海.开关电源实用技术--设计与应用[M].北京:人民邮电出版,2003
    [114]王彤.使用开关电源的产品的电磁干扰抑制对策实例[M].北京:人民邮电出版,2004
    [115]比林斯,张占松,汪仁煌.开关电源手册[M].谢丽萍,译.北京:人民邮电出版社,2006
    [116](加拿大)大卫A卫斯特.电磁兼容原理与运用[M].王守三,杨自佑,译.北京:机械工业出版社,2006
    [117]刘雷波.信号完整性问题和印刷电路板设计[M].北京:机械工业出版社,2005
    [118]杨士元.电磁屏蔽理论与实践[M].北京:国防工业出版社,2006
    [119]白同云,吕晓德.电磁兼容设计[M].北京:北京邮电学院出版社,2001
    [120]刘尚合.静电放电及危害防护[M].北京:北京邮电大学出版社,2004
    [121]杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700