用户名: 密码: 验证码:
基于极化干涉SAR的森林结构信息提取模型与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林在全球水文、生态、碳循环及气候变化中起着重要作用,森林的类别、林分结构、高度及生物量等参数是林业资源信息调查中的主要参数。随着遥感技术的发展,具有极化和干涉技术优点的极化干涉SAR技术(Polarimetric SAR Interferometry,简称POLInSAR),以其独特的全天候、低成本的优势,逐渐成为森林资源调查中一种不可替代的技术,在森林制图,特别是森林参数的定量反演中,发挥着越来越重要的作用。基于极化干涉SAR的森林分类、森林高度反演模型、生物量估计模型的研究是极化干涉SAR森林遥感研究的核心问题,对其开展研究有着重要的意义。本文在理解极化干涉SAR理论的基础上,研究了基于极化干涉SAR的森林结构信息提取模型与方法,主要内容如下:
     1、组合极化技术和干涉技术各自的优势,利用极化干涉相干优化技术,并考虑到森林场景异质性的特点,引入模糊技术对森林进行了非监督分类。该方法基于极化散射机制分割出森林区,然后用极化干涉相干优化技术提取的极化干涉特征参数A1和A2对森林区进行初始划分,并将结果做为Fuzzy C–Mea(n简称FCM)算法的初始类别,对POLInSAR数据进行迭代分类。这样,根据数据本身的特点确定初始类别,解决了FCM算法初始值不易确定的问题,同时也避免了参数A1和A2分割中武断的边界划分问题,并引入了适合自然场景处理的模糊技术,分类性能较好。
     2、提出了一种高性能的森林高度反演方法。详细地研究了随机体散射(Random Volume,简称RV)、数字高程模型(Digital Elevation Model,简称DEM)和随机体-地表散射(Random Volume over Ground,简称RVoG)等森林高度反演模型,调查了极化干涉相干优化和非体去相干对各反演模型性能的改善程度,并基于RVoG通过数值仿真方式分析了衰减系数和地体散射比对极化干涉相干的影响,在此基础上,发展了一种基于地体散射比、极化干涉相干优化和非体去相干补偿的相干相位-幅度综合反演方法。和其他方法相比,该方法具有较好的鲁棒性和较高的反演精度。
     3、基于极化相干层析(Polarization Coherence Tomography,简称PCT)技术,深入研究了影响森林垂直方向雷达相对反射率函数的因素,发现了平均相对反射率函数曲线的特征参数对生物量很敏感。用数据仿真方式分析了地体散射比和衰减系数对反射率函数的影响,然后基于森林场景极化干涉矢量测量的仿真,讨论了极化、森林密度和类型对相对反射率函数的影响,进而利用德国宇航局机载合成孔径雷达(Synthetic Aperture Radar ,简称SAR)系统(E-SAR)获取的L波段极化干涉SAR数据,分析了不同地上生物量(Above Ground Biomass,简称AGB)水平的典型林分的相对反射率函数曲线,发现林分平均相对反射率函数曲线的形状特性和森林AGB密切相关。
     4、创建了一种高精度的森林AGB估算模型。利用林分平均相对反射率函数曲线,定义了9个特征参数,通过逐步回归分析法,构建了森林AGB估算模型。对模型进行了评价,由于该模型充分利用了森林垂直结构信息,具有较高的估算精度。
Forest plays an important role as a natural resource in global hydrology, ecology, climate, carbon (biomass) storage and carbon dynamic cycles. The main parameters in survey of forestry resources are forest categories, forest structure, height, biomass, and so on. With the development of remote sensing technology, polarimetric SAR interferometry (POLInSAR) technology which is based on the coherent combination of radar interferometry and polarimetry, has become an irreplaceable technology for survey of forestry resources because of its unique all-weather and low-cost advantages. In forest mapping, particularly quantitative retrieval of forest parameters, it plays an increasing important role. The researches on forest classification, retrieval model of forest height and biomass estimation model using POLInSAR are essential in the studies of SAR remote sensing of forest and are of great significance for application in forest. On the basis of understanding of POLInSAR theory, models and method for extracting forest structure information by POLInSAR are studied in detail in the paper. The main results are as follows:
     1. Based on the complementary information contained in polarimetric and interferometric SAR data, unsupervised classification approach of forest is studied in detail by using fuzzy clustering and polarimetric interferometric coherence optimization technique. The proposed method employs scattering mechanisms to indentify forest area from polarimetric SAR data. Then the forest area is further segmented by parameters A1 and A2 obtained by polarimetric interferometric coherence optimization algorithm. A robust unsupervised fuzzy C means (FCM) classifier initialized with the results of the segmentation is applied to the polarimetric interferometric coherency data sets corresponding to the forest area. As the initial categories are defined by the characteristics of the data itself, this not only solves the problem that the initial value of FCM algorithm is difficult to identify, but also avoid the fact that the A1/A2 zone boundaries were determined in somewhat arbitrary ways. So the proposed method has good performance.
     2. An inversion method of forest height with good performance is proposed. Several available forest height inversion models such as random volume (RV), digital elevation model (DEM), random volume over ground (RVoG), and so on are studied in detail. Then this paper investigates that to what extent do interferometric coherence optimization in radar polarimetry and non-volumetric scattering decorrelation improve the performance of forest height inversion methods. The effects of the extinction coefficient and ground-to-volume scattering ratio in RVoG model on polarimetric interferometric coherence are analyzed by means of numerical simulation. On this basis, an integrated inversion method, which combines coherence phase with coherence amplitude information and includes polarization coherence optimization, ground-to-volume scattering ratio and compensation of non-volume scattering decorrelation, is proposed and discussed. The results show that the method is robust and accurate.
     3. Based on polarization coherence tomography (PCT) technique, the factors possibly affecting the radar relative reflectivity function are investigated in detail and the result is found out that the characteristic parameters extracted from the average relative reflectance functions are sensitive to the biomass. The effects of the extinction coefficient and ground-to-volume scattering ratio in RVoG model on relative reflectivity function are analyzed by means of numerical simulation. Then by applying PCT to L-band POLInSAR simulations of forest scene, the effects of the polarization, forest type and density on relative reflectivity function through extinction coefficient and ground-to-volume scattering ratio are discussed. Furthermore, based on repeated pass DLR E-SAR L-band airborne POLInSAR data, relative reflectivity function curve of different levels of typical stand AGB are analyzed. Then, it is concluded that the shape features of the relative reflectivity function curve are closely related to forest AGB.
     4. A forest AGB estimation model with good accuracy is constructed. Based on forest stand average relative reflectivity function curve, the nine characteristic parameters are defined and used to construct forest AGB estimation model by multiple linear stepwise regression analysis method. The model is evaluated and the forest AGB estimation accuracy is good because of the stand vertical structure information considered comprehensively in the AGB estimation model.
引文
[1] T. Mette. Forest biomass estimation from polarimetric SAR interferometry: [PhD thesis]. Technische University at Munchen, Germany, 2007, 9-12,84-86,101-111,111-115
    [2]杨永恬.基于多源遥感数据的森林蓄积量估测方法研究: [博士学位论文].北京:中国林业科学研究院, 2010, 1-3
    [3]吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示.电子与信息学报, 2007, 29(5): 1258-1262
    [4]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社, 2002, 2-22
    [5] J. S. Lee, E. Pottier. Polarimetric Radar Imaging: From Basics to Applications. Boca Raton, USA: CRC Press, 2009, 1-22
    [6] J. J. Zylvan. Unsupervised classification of scattering mechanisms using radar polarimetry data. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27: 36-45
    [7] S. R. Cloude, E. Pottier. An entropy based classification scheme for land applications of polarimetric SAR. Geoscience and Remote Sensing, IEEE Transactions on, 1997, 35(1): 68-78
    [8] S. R. Cloude, E. Pottier. A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518
    [9] A. Freeman, S. L. Durden. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973
    [10] J. S. Lee, M. R. Grunes, R. Kwok. Classification of multi-look polarimetric SAR imagery based on the complex Wishart distribution. International Journal of Remote Sensing, 1994, 15(11): 2299-2311
    [11] L. J. Du, J. S. Lee. Fuzzy classification of earth terrain covers using multi-look polarimetric SAR image data. International Journal of Remote Sensing, 1996, 17(4): 809-826
    [12] C. T. Chen, K. S. Chen, J. S. Lee. The use of fully polarimetric information for the fuzzy neural classification of SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2089-2100
    [13] L. Ferro-Famil, E. Pottier, J. S. Lee. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2332-2342
    [14] J. S. Lee, M. R. Grunes, T. L. Ainsworth, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258
    [15] J. S. Lee, M. R. Grunes, E. Pottier, et al. Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Transactions on Geoscience and Remote Sensing,, 2004, 42(4): 722-731
    [16] K. Ersahin, B. Scheuchl, I. Cumming. Incorporating texture information into polarimetric radar classification using neural networks. 2004 IEEE International Geoscience and Remote Sensing Symposium: 560-563
    [17] H. M. Luo, L. Tong, X. W. Li, et al. Polarimetric SAR image classification based on polarimetric decomposition and neural networks theory. 2007 International Symposium on Multispectral Image Processing and Pattern Recognition Vol. 6788: 67881P.1-67881P.6
    [18] T. N. Tran, R. Wehrens, D. H. Hoekman, et al. Initialization of Markov random field clustering of large remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1912-1919
    [19] C. Lardeux, P. L. Frison, C. Tison, et al. support vector machine for multifrequency SAR polarimetric data classification. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4143-4152
    [20] M. Shimoni, D. Borghys, R. Heremans, et al. Fusion of PolSAR and PolInSAR data for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(3): 169-180
    [21] C. Putignano. PolSOM and TexSOM in polarimetric SAR classification: Rome, Italy: Tor Vergata University, 2008, 20-23
    [22]邹同元.多极化SAR图像分类技术研究: [硕士学位论文].武汉:武汉大学, 2009, 50-75
    [23]凌飞龙.面向植被识别的SAR图像分类方法研究: [博士学位论文].北京:中国林业科学研究院, 2010, 88-98
    [24] K. J. Ranson, G. Sun. An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, USA. Remote sensing of environment, 1997, 59(2): 203-222
    [25] E. Rignot, W. A. Salas, D. L. Skole. Mapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote sensing of environment, 1997, 59(2): 167-179
    [26] S. S. Saatchi, J. V. Soares, D. S. Alves. Mapping deforestation and land use in amazon rainforest by using SIR-C imagery. Remote sensing of environment, 1997, 59(2): 191-202
    [27] J. E. S. Fransson, M. Magnusson, H. Olsson, et al. Detection of forest changes using ALOS PALSAR satellite images. 2007 IEEE Geoscience and Remote Sensing Symposium: 2330-2333
    [28] J. R. Santos, J. C. Mura, W. R. Paradella, et al. Mapping recent deforestation in the Brazilian Amazon using simulated L-band MAPSAR images. International Journal of Remote Sensing, 2008, 29: 4879-4884
    [29] M. C. Dobson, L. E. Pierce, F. T. Ulaby. Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites. IEEE Transactions on Geoscience and Remote Sensing, 1996 34(1): 83-99
    [30] M. Simard, S. S. Saatchi, G. D. Grandi. The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2310-2321
    [31] C. Thiel, P. Drezet, C. Weise, et al. Radar remote sensing for the delineation of forest cover maps and the detection of deforestation. Forestry, 2006, 79(5): 589
    [32] M. M. Rahman, J. T. S. Sumantyo. Mapping tropical forest cover and deforestation using synthetic aperture radar (SAR) images. Applied Geomatics, 2010, 2(3): 113-121
    [33] A. Rosenqvist, M. Shimada, N. Ito, et al. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3307-3316
    [34] H. Balzter. Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR). Progress in Physical Geography, 2001, 25(2): 159
    [35] U. Wegmuller, C. L. Werner. SAR interferometric signatures of forest. IEEE Transactions on Geoscience and Remote Sensing, 2002, 33(5): 1153-1161
    [36] S. Quegan, T. Le Toan, J. J. Yu, et al. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Transactions on Geoscience and Remote Sensing, 2002, 38(2): 741-753
    [37]杨震.合成孔径雷达干涉与极化干涉技术研究: [博士学位论文].北京:中国科学院电子学研究所, 2003, 98-116
    [38]谈璐璐,杨汝良,商建,等.利用Shannon熵参数的极化干涉SAR图像非监督分类.电子学报, 2010, 38(10): 2264-2267
    [39] W. Yan, W. Yang, Y. Liu, et al. Unsupervised classification of PolInSAR image based on Shannon Entropy Characterization. 2010 IEEE 10th International Conference on Signal Processing (ICSP): 2192-2195
    [40] M. Jager, M. Neumann, S. Guillaso, et al. A self-initializing PolInSAR classifier using interferometric phase differences. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3503-3518
    [41] J. S. Lee, K. P. Papathanassiou, I. Hajnsek, et al. Applying polarimetric SAR interferometric data for forest classification. 2005 IGARSS, Vol. 7: 4848-4851
    [42] L. Ferro-Famil, F. Kugler, E. Pottier, et al. Forest mapping and classification at L band using POL-inSAR optimal coherence set statistics. EUSAR, 2006: ID 207
    [43] L. Du, J. S. Lee, S. Mango. Fuzzy classification of earth terrain covers using multi-look polarimetric SAR image data. 1993 IGARSS, Vol. 4: 1602 - 1604
    [44] P. R. Kersten, J. S. Lee, T.L. Ainsworth. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 519-527
    [45] S. E. Park, W. M. Moon. Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2652-2664
    [46] J. Chanussot, G. Mauris, P. Lambert. Fuzzy fusion techniques for linear features detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2002, 37(3): 1292-1305
    [47] K. A. Sambodo, A. Murni, R. Dewanti, et al. Polarimetric SAR classification using fuzzy maximum likehood estimation clustering with consideration of complementary information based on physical polarimetric parameters, target scattering characteristic, and spatial context. International Journal of Remote Sensing and Earth Sciences, 2010, 5(1)
    [48] S. R. Cloude, K. P. Papathanassiou. Forest vertical structure estimation using coherence tomography. 2008 IEEE International Geoscience & Remote Sensing Symposium: V-275-V-278
    [49] G. Krieger, K. P. Papathanassiou, S. R. Cloude. Spaceborne polarimetric SAR interferometry: performance analysis and mission concepts. EURASIP Journal on Applied Signal Processing, 2005, 2005(20): 3272-3292
    [50]周勇胜,洪文,王彦平,等.基于RVoG模型的极化干涉SAR最优基线分析.电子学报, 2008, 36(12): 2367-2372
    [51]胡庆东,毛士艺.干涉合成孔径雷达系统的最优基线.电子学报, 1999, 27(005): 93-95
    [52]郑芳,马德宝,裴怀宁.合成孔径雷达干涉测量中的最优基线模型.现代雷达, 2005, 27(003): 9-11
    [53] S. k. Lee, F. Kugler, I. Hajnsek, et al. The impact of temporal decorrelation over forest terrain in polarimetric SAR interferometry. 2009 Proceedings of the International Workshop on Applications of Polarimetry and Polarimetric Interferometry(PolInSAR): 1-6
    [54] M. Lavalle, M. Simard, E. Pottier, et al. Polinsar forestry applications improved by modeling height-dependent temporal decorrelation. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4772-4775
    [55] Y. S. Zhou, W. Hong, F. Cao, et al. Analysis of temporal decorrelation in dual-baseline POLinSAR vegetation parameter estimation. 2008 IEEE International Geoscience and Remote Sensing Symposium( IGARSS), Vol. 2: 473-476
    [56] S. R. Cloude, K. P. Papathanassiou. Three-stage inversion process for polarimetric SAR interferometry. IEE Proc Radar Sonar Navig, 2003, 150(3): 125-134
    [57] T. Mette, F. Kugler, K. P. Papathanassiou, et al. Forest and the random volume over ground-nature and effect of 3 possible error types. 2006 EUSAR,
    [58] R. N. Treuhaft, S. N. Madsen, M. Moghaddam, et al. Vegetation characteristics and underlying topography from interferometric radar. Radio Science, 1996, 31(6): 1449–1485
    [59] R. N. Treuhaft, P. R. Siqueira. The vertical structure of vegetated land surfaces from interferometric and polarimetric data. Radio Science, 2000, 31: 1449-1495
    [60] K. P. Papathanassiou, S. R. Cloude. Single-baseline polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352-2363
    [61] S. R. Cloude. polarisation: applications in remote sensing. New York: Oxford University Press, 2009
    [62] S. R. Cloude. Polarization coherence tomography. Radio Science, 2006, 41(4): RS4017.1-RS4017.27
    [63] M. Neumann. Remote sensing of vegetation using multi-baseline polarimetric SAR interferometry: theoretical modeling and physical parameter retrieval: [PhD thesis]. Rennes: University of Rennes, 2009, 140
    [64]韦顺军.极化干涉SAR植被高度估计方法研究: [硕士学位论文].成都:电子科技大学, 2009, 61-66
    [65]张腊梅. L波段PolnlSAR图像地表参数反演方法研究: [硕士学位论文].哈尔滨:哈尔滨工业大学, 2006, 39-60
    [66]李新武.极化干涉SAR信息提取方法及其应用研究: [博士学位论文].北京:中国科学院遥感应用研究所, 2002, 20-21,83-85,105-115
    [67]陈曦,张红,王超.双基线极化干涉合成孔径雷达的植被参数提取.电子与信息学报, 2008, 30(12): 2858-2861
    [68]李新武,郭华东,李震,等.用SIR-C航天飞机双频极化干涉雷达估计植被高度的方法研究.高技术通讯, 2005, 15(7): 79-84
    [69] Y. S. Zhou, W. Hong, F. Cao. An improvement of vegetation height estimation using multi-baseline polarimetric interferometric SAR data. PIERS Online, 2009, 5(1): 6-10
    [70] F. Kugler, S. K. Lee, K. P. Papathanassiou. Estimation of forest vertical sructure parameter by means of multi-baseline Pol-InSAR. 2009 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), Vol. 4: 721-724
    [71]白璐,曹芳,洪文.相干区域长轴的快速估计方法及其应用.电子与信息学报, 2010, 32(3): 548-553
    [72]付兵.极化干涉SAR植被参数估计方法研究: [硕士学位论文].成都:电子科技大学, 2010, 19-28
    [73]杨磊,赵拥军,王志刚.基于功率和相位联合估计TLS-ESPRIT算法的极化干涉SAR数据分析.测绘学报, 2007, 36(2): 163-168
    [74] G. Y. Zhou, T. Xiong, J. Yang, et al. Forest height inversion based on polarimetric SAR interferometry. 2008 9th International Conference on Signal Processing(ICSP): 2473-2476
    [75] H. Yamada, H. Okada, Y. Yamaguchi. Accuracy improvement of ESPRIT-based polarimetric SAR interferometry for forest height estimation. 2005 IEEE International Geoscience and Remote Sensing Symposium(IGARSS '05), Vol. 6: 4077-4080
    [76]李哲,陈尔学,王.建.几种极化干涉SAR森林平均高反演算法的比较评价.遥感技术与应用, 2009, 24(5): 611-616
    [77]陈尔学,李增元,庞勇,等.极化合成孔径雷达干涉测量平均树高提取技术研究.林业科学, 2007, 43(4): 66-71
    [78] S. K. Lee, F. Kugler, K. P. Papathanassiou, et al. Polarimetric sar interferometry for forest application at p-band: potentials and challenges. 2009 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2009) Vol. 4: 13-16
    [79] I. Hajnsek, F. Kugler, S. K. Lee, et al. Tropical forest parameter estimation by means of PolInSAR: The INDREX-II campaign. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 481-493
    [80] J. M. Lopez-Sanchez, J. D. Ballester-Berman, Y. Marquez-Moreno. Model limitations and parameter-estimation methods for agricultural applications of polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3481-3493
    [81] J. J. Sharma, I. Hajnsek, K. P. Papathanassiou. Long wavelength PolInSAR for glacier ice extinction estimation. 2010 EUSAR 2010: 325-328
    [82] S. R. Cloude, M. L. Williams. The negative alpha filter: A new processing technique for polarimetric SAR interferometry. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 187-191
    [83] S. R. Cloude. Calibration requirements for forest parameter estimation using POLinSAR. 2002 Proceedings of CEOS Working Group on Calibration / Validation SAR Workshop: 19.1
    [84] M. Neumann, L. Ferro-Famil, A. Reigber. Multibaseline polarimetric SAR interferometry coherence optimization. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 93-97
    [85] S. R. Cloude, K. P. Papathanassiou. Polarimetric optimisation in radar interferometry. Electronics Letters, 1997, 33(13): 1176-1178
    [86] E. Colin, C. Titin-Schnaider, W. Tabbara. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery. IEEE Transactions on Geoscience and Remote Sensing, 2005, 44(1): 167-175
    [87] M. Tabb, J. Orrey, T. Flynn, et al. Phase diversity:A decomposition for vegetation parameter estimation using polarimetric SAR interferometry. 2002 EUSAR: 721–724
    [88]陈尔学.合成孔径雷达森林生物量估测研究进展.世界林业研究, 1999, 12(6): 18-23
    [89]杨存建,刘纪远,黄河,等.热带森林植被生物量与遥感地学数据之间的相关性分析.地理研究, 2005, 24(3): 473-479
    [90]徐小军,杜华强,周国模,等.基于遥感植被生物量估算模型自变量相关性分析综述.遥感技术与应用, 2008, 23(2): 239-247
    [91] D. S. Lu. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 2006, 27(7): 1297-1328
    [92]王臣立,郭治兴,牛铮,等.热带人工林生物物理参数及生物量对RADARSAT SAR信号响应研究.生态环境, 2006, 15(1): 115-119
    [93] M. C. Dobson, F. T. Ulaby, L. E. Pierce, et al. Estimation of forest biophysical characteristics in northern michigan with SIR-C/X-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 877-895
    [94] T. Le Toan, A. Beaudoin, J. Riom, et al. Relating forest biomass to SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 403-411
    [95] M. C. Dobson, F. T. Ulaby, T. Le Toan, et al. Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 412-415
    [96] M. L. Imhoff. Radar backscatter and biomass saturation: ramifications for global biomass inventory. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 511-518
    [97] J. M. Kellndorfer, M. C. Dobson, J. D. Vona, et al. Toward precision forestry: plot-level parameter retrieval for slash pine plantations with JPL AIRSAR. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1571-1582
    [98] M. K. Steininger. Satellite estimation of tropical secondary forest aboveground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing, 2000, 21(6&7): 1139-1157
    [99] J. T. Koskinen, J. T. Palliainen, J. M. Hyyppa, et al. The seasonal behavior of interferometric coherence in boreal forest. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 820-829
    [100] M. Santoro, J. Askne, G. Smith, et al. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote sensing of environment, 2002, 81(1): 19-35
    [101] W. Wagner, A. Luckman, J. Vietmeier, et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote sensing of environment, 2003, 85(2): 125-144
    [102] T. Mette, K. P. Papathanassiou, I. Hajnsek. Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain. 2004 IEEE International Geoscience and Remote Sensing Symposium(IGARSS '04), Vol. 1: 511-514
    [103] M. A. Lefsky, D. J. Harding, M. Keller, et al. Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 2005, 32(22): L22S02
    [104] T. Neeff, L. V. Dutra, J. R. dos Santos, et al. Tropical forest measurement by interferometric height modeling and P-band radar backscatter. Forest Science, 2005, 51(6): 585-594
    [105] R. N. Treuhaft, B. D. Chapman, J. R. Dos Santos, et al. The ambiguity in forest profiles and extinction estimated from multibaseline interferometric SAR. Bol. Cienc. Geod., 2009, 15(3): 299-312
    [106] R. N. Treuhaft, B. Chapman, L. Dutra, et al. Estimating 3-dimensional structure of tropical forests from radar interferometry. Ambiência, 2006, 2(1): 111-119
    [107] S. Tebaldini, F. Rocca, A. M. Guarnieri. Model based SAR tomography of forested areas. 2008 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2008), Vol. 2: 593-596
    [108] A. Reigber, A. Moreira. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142-2152
    [109] S. R. Cloude. Dual-baseline coherence tomography. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 127-131
    [110] I. Hajnsek, K. P. Papathanassiou. Crop characterisation at short wavelength POLINSAR. 2009 International Workshop on Applications of Polarimetry and Polarimetric Interferometry(PolInSAR 2009),
    [111] Z. S. Zhou, S. R. Cloude. Application of polarization coherence tomography to GB-POLInSAR data. 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium: 4040-4043
    [112] J. Praks, F. Kugler, J. Hyyppa, et al. SAR coherence tomography for boreal forest with aid of laser measurements. 2008 IEEE International Geoscience & Remote Sensing Symposium, Vol. 2: 469-472
    [113] J. J. Sharma, I. Hajnsek, K. P. Papathanassiou. Vertical profile reconstruction with Pol-InSAR data of a subpolar glacier. 2008 IEEE International Geoscience & Remote Sensing Symposium: 1147-1150
    [114] M. J. Sanjuan, J. M. Lopez-Sanchez, J. D. Ballester-Berman. Microwave scattering profiles of a rice sample by means of polarization coherence tomography. 2008 IEEE International Geoscience & Remote Sensing Symposium, Vol. 3: 554-557
    [115] R. N. Treuhaft, G. P. Asner, B. E. Law, et al. Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data. Journal of Geophysical Research, 2002, 107(D21): 4568-4580
    [116] R. N. Treuhaft, G. P. Asner, B. E. Law. Structure-based forest biomass from fusion of radar and hyperspectral observations. Geophysical Research Letters, 2003, 30(9): 1472-1475
    [117] R. N. Treuhaft, L. B. E, A. G.P. Forest attributes from radar interferometric structure and its fusion with optical remote sensing. BioScience, 2004, 54(6): 561-571
    [118] R. N. Treuhaft, B. D. Chapman, J. R. Dos Santos, et al. Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements. Journal of Geophysical Research, 2009, 114(D23): D23110:1-16
    [119] A. T. Caicoya, F. Kugler, K. P. Papathanassiou. Biomass estimation as a function of vertical forest structure and forest height-Potential and limitations for Radar Remote Sensing. 2010 EUSAR: 901-904
    [120] J. S. Lee, L. Jurkevich, P. Dewaele, et al. Speckle filtering of synthetic aperture radar images: a review. Remote Sensing Reviews, 1994, 8(4): 313-340
    [121]王超,张红,陈曦,等.全极化合成孔径雷达图像处理.北京:科学出版社, 2008, 6-7
    [122] H. MOTT, (杨汝良).极化雷达遥感.北京:国防工业出版社, 2008, 6-9
    [123] E. Pottier, L. Ferro-Famil. Wave Polarimetry. http://earth.esa.int/polsarpro/Manuals/030_w- ave_polarimetry.pdf, 2004
    [124] A. P. Agrawal, W. M. Boerner. Redevelopment of Kennaught's target characteristics polarization state theory using the polarization ratio formalism for the coherent case. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27: 2-14
    [125]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社, 1999, 43-50
    [126] H. A. Zebker, J. J. Van Zyl. Imaging radar polarimetry: a review. PROCEEDINGS OF THE IEEE, 1991, 79(11): 1583-1606
    [127] S. R. Cloude. Group theory and polarisation algebra. Optik, 1986, 75(1): 26-36
    [128] E. Pottier. Polarimetry Basics. http://earth.eo.esa.int/landtraining09/D1La3_Pottier_Polarime- try_Basics.pdf. 2009
    [129] E. Lüneburg. Principles of radar polarimetry. IEICE Transactions on Electronics, 1995, 78(10): 1339-1345
    [130] E. Lüneburg. Polarimetric target matrix decompositions and the Karhunen-Loeve expansion. 1999 IEEE International Geoscience and Remote Sensing Symposium, Vol. 5: 2658-2660
    [131] L. Halounová. SAR Basics. http://earth.eo.esa.int/landtraining09/D1La1_Halounova _SARBasics.pdf. 2009
    [132] E. Krogager. Coherent integration of scattering matrices. 1995 Third International Workshop on Radar Polarimetry: 708–719
    [133] E. Krogager, Z. H. Czyz. Properties of the sphere, diplahe, helix decomposition. 1995 Third International Workshop on Radar Polarimetry: 106–114
    [134] R. Touzi, F. Charbonneau. Characterization of target symmetric scattering using polarimetric SARs. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2507-2516
    [135] W. L. Cameron, N. N. Youssef, L. K. Leung. Simulated polarimetric signatures of primitive geometrical shapes. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793-803
    [136] S. R. Cloude, E. Pottier. Concept of polarization entropy in optical scattering. Optical engineering, 1995, 34(06): 1599-1610
    [137] Y. Yamaguchi, T. Moriyama, M. Ishido, et al. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706
    [138] F. Gatelli, A. M. Guamieri, F. Parizzi, et al. The wavenumber shift in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 855-865
    [139] C. Prati, F. Rocca. Improving slant-range resolution with multiple SAR surveys. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 135-143
    [140] E. Rodriguez, J. M. Martin. Theory and design of interferometric synthetic aperture radars. 1992 IEE Proceedings F Radar and Signal Processing Vol. 139: 147-159
    [141] H. A. Zebker, J. Villasenor. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959
    [142] S. R. Cloude, K. P. Papathanassiou. Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551-1565
    [143] L. Ferro-Famil, D. G. Corr, A. Rodrigues, et al. Statistical segmentation of polarimetric SAR data. 2003 POLinSAR 2003, Vol. 529: P15.1-P15-6
    [144] L. Ferro-Famil, E. Pottier, J. S. Lee. Classification and interpretation of polarimetric interferometric SAR data. 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Vol. 1: 635-637
    [145]张晓玲,韦顺军,韩迪.结合相干系数的极化干涉SAR植被高度估计方法研究.电子科技大学学报, 2009, 38(3): 321-324
    [146]韩迪,张晓玲.一种快速且稳健的极化干涉SAR植被高度反演方法.信号处理, 2009, 25(010): 1649-1653
    [147] T. Flynn, M. Tabb, R. Carande. Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry. 2002 IEEE International Geoscience and Remote Sensing Symposium(IGARSS'02), Vol. 5: 2596-2598
    [148] R. N. Treuhaft, P. R. Siqueira. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Science, 2000, 35(1): 141-177
    [149]冯仲科,刘永霞.森林生物量测定精度分析.北京林业大学学报, 2005, 27(Supp.2): 108-111
    [150]高惠璇.应用多元统计分析.北京:北京大学出版社, 2005, 118-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700