用户名: 密码: 验证码:
水氮互作对水稻产量形成和氮素利用特征的影响及其生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水、肥在水稻生长发育过程中是相互影响和制约的两个因子。研究不同灌水方式与氮肥管理间的水氮互作机制、优化水、氮管理技术,达到以水促肥、以肥调水的目的,对减少水稻灌溉用水、高效利用肥料来实现水稻稳产高产有重要意义。本研究于2008-2009年在大田试验条件下,以代表性水稻品种杂交稻冈优527为材料,研究了“淹水灌溉”(W1)、“前期湿润灌溉+孕穗期浅水灌溉+抽穗至成熟期干湿交替灌溉”(W2)和“旱种”(W3)3种灌水方式分别与不同的施氮量、不同的氮肥运筹处理对水稻产量形成与氮素利用特征的影响及其生理机制。主要研究结果如下:
     1、水氮互作对水稻产量及其构成因素的影响两年不同的水氮管理方式对水稻产量的影响均达显著水平,且互作效应显著。2008年试验以W2处理和施氮量为180kg hm-2的水氮运筹处理下的水稻产量相对于其他处理优势明显,其互作存在显著的正效应;2009年在2008年试验确立合理的施氮量的基础上,在W2灌水方式下,“稳前、适时中攻”的N3氮肥运筹模式—基肥:分蘖肥:孕穗肥(倒3.5、1.5叶龄期分2次等量施入)=3:3:4与之相配套,充分发挥了水氮耦合的优势,有利于水稻对水分和氮素的协同吸收,并在保证一定数量有效穗及结实率的前提下,显著提高了穗粒数及千粒重,促进了水稻产量的增加。淹灌条件下,施氮量以180 kg hm-2为宜,其氮肥后移量可占总施氮量的40%-60%为宜,而旱作条件下施氮量可适当降低以90-180kg hm-2为宜,但应减少氮肥的后移量,氮肥后移量可占总施氮量的20%-40%为宜,以缓解水氮互作下的负效应。
     2、水氮互作对水稻群体质量的影响不同的灌水方式与施氮量、氮肥运筹措施均明显影响水稻群体质量,且水氮对水稻一些群体质量指标的影响存在显著或极显著的互作作用。W2灌水方式与适宜的施氮量(180kg hm-2),并结合N3的氮肥运筹措施能及时对水稻群体分蘖数进行调控,提高茎蘖成穗率,保证抽穗期水稻达到适宜的叶面积指数(LAI)和粒叶比,适当降低了上3叶叶倾角,提高了高效叶面积率及群体透光率,促进群体中下层叶片的光合作用,有利于结实期期植株光合能力的提高和光合产物的积累。
     3、水氮互作条件下氮代谢酶活性与氮素利用关系水与氮对水稻各生育时期氮代谢酶活性及氮素吸收利用有显著互作作用,W2相对于其他灌水处理有助于拔节至抽穗期水稻吸氮量的增加,提高氮素干物质生产效率及稻谷生产效率,而且与施氮量为180kg hm-2耦合、与氮肥运筹为N3耦合能达到提高氮代谢酶活性、提高氮肥利用效率的目的;过高的氮肥后移比例N4——基肥:分蘖肥:孕穗肥(倒3.5、1.5叶龄期分2次等量施入=2:2:6及施氮量达270 kg hm-2时水氮互作优势减弱,不利于3种灌水方式下硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)活性的提高,还会导致氮效率的下降。相关分析表明,历年试验水氮互作下各氮代谢酶活性与氮素利用特征及产量间均存在显著或极显著的相关性,据此可将各生育时期功能叶GS活性作为准确判断水稻各生育时期氮素积累量的指标;并可将抽穗期剑叶中NR、GS、GOGAT及内肽酶(EP)活性作为综合评价水稻产量及氮效率的指标。
     4、水氮互作对水稻结实期衰老生理的影响W2处理下,施氮量为180 kg hm-2、氮肥运筹方式为N3的水氮运筹相对于其他处理,能发挥水氮交互效应优势,使剑叶中活性氧(02-、H202)和丙二醛(MDA)增幅较慢,具有较高的光合速率(Pn),有利于可溶性蛋白等渗透调节物质的积累和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性及根系活力的提高;旱作、施氮量过高及氮肥后移比例过大各水氮处理交互效应优势减弱,影响结实期水稻正常的生理机能。此外,水氮互作下各指标间有显著的相关性,剑叶中02-、H202和MDA间呈极显著正相关,与保护酶活性、Pn及可溶性蛋白均呈显著或极显著负相关。两年不同的水氮管理方式对各生理指标在抽穗后7-14 d的影响均存在显著互作效应,且此期间各指标与产量均呈极显著相关,衰老过程中地下与地上部也密切相关;根系活力与剑叶保护酶活性、Pn及可溶性蛋白呈显著或极显著正相关,与02-、H202和MDA呈显著负相关。
     5、水氮互作对水稻结实期物质转运的影响水氮互作对水稻抽穗至成熟期物质运转的影响也存在显著或极显著的互作效应,但本研究在对水氮互作效应的分析中表明,不同灌水方式和施氮量下最优耦合处理为W2N180,而不同灌水方式和氮肥运筹下最优耦合处理为W2N3,有利于水稻根系对水分和氮素的协同吸收,促进了结实期水稻地上部物质的转运,与抗衰老水氮调控措施所得到的最佳的水氮运筹方式结论相一致;而其他各水氮处理,出现交互效应优势减弱甚至出现负效应,导致结实期水稻衰老指标与物质转运的相关性减弱,均不利于水稻后期的灌浆结实;且抽穗期茎鞘物质及非结构性碳水化合物(NSC)的累积量、结实期间茎鞘物质及NSC的转运量与最终产量均呈极显著正相关。根据水氮互作效应还可看出,旱作和氮肥的互作效应对物质转运的影响多数为负效应,且过量施用氮素及氮肥后移比例过大均会导致负效应的加重,不仅不会起到延缓结实期水稻衰老的作用,还会导致抽穗后物质转运、籽粒灌浆速率下降,进而减产。
     6、水氮互作条件下水稻养分吸收、转运间及其与产量间的关系水与氮对水稻主要生育时期氮、磷、钾的累积、转运及分配均存在显著的互作作用,各生育时期氮、磷、钾间的吸收与累积均有显著或极显著的相关性,且随生育进程相关性加强。此外,抽穗期氮、磷、钾的累积与各养分在结实期转运总量间、以及各养分转运间均有极显著相关性,而抽穗前期氮累积量与结实期氮、磷、钾转运贡献率间极显著负相关性,表明本试验水氮互作条件下,抽穗前期各养分累积量的多少与结实期各养分的向籽粒转运量呈正比,但施氮过多(270 kg hm-2)、氮肥后移比例过重(N4)和旱作条件下(W3处理)均会造成抽穗前期氮累积量过高或过低,均会显著加重转运贡献率的负效应。水氮互作下各生育时期氮、磷、钾吸收、转运及其与产量间也存在显著或极显著的正相关关系,施氮量不同的水氮互作条件下抽穗前期氮、磷的累积以及分蘖盛期对钾的吸收状况与产量呈极显著正相关,而前氮后移的水氮互作条件下会使磷、钾的累积与产量最大相关性的时期有所延后,而氮的累积与产量最大相关性仍在抽穗期。
The water and fertilizer are two factors with mutual interaction and restriction in the process of rice growth and development. Elucidation of their influences and coupling effects on different irrigation regime and nitrogen fertilizer management, optimization water and nitrogen interaction management technology on grain yield and growing development of rice would have great significance in reducing irrigation water and fertilizer efficient utilization for high and stable yields. In this study, hybrid rice Gangyou 527 was used to investigate the effects of three irrigation regimes (submerged irrigation, W1; dry cultivation, W3; and damp irrigation before booting stage plus shallow irrigation at booting stage plus wetting-drying alternation irrigation from heading stage to mature stage, W2) and different nitrogen rate, and different nitrogen application on yield formation and characteristics of nitrogen utilization in rice and its physiological mechanism. The main results are as follows:
     1. Effects of water-nitrogen interaction on yield and yield components
     The result indicated that the grain yield was influenced by different water-nitrogen treatment regimes in past years experiments, and there was an obvious interaction between irrigation regime and nitrogen management mode. The regime for highest yield was W2 and suitable nitrogen application amount (180 kg ha-1) in 2008. Under this condition, water- nitrogen interaction had significant positive effect on grain yield. Reasonable amount of nitrogen was established in 2009 through the experiment for previous one year. W2 irrigation regime and "Stable application at early stage, large application timely at middle stage" pattern of N3 nitrogen application regime (the ratio of base fertilizer to tillering fertilizer and to panicle fertilizer was 3:3:4, and split panicle fertilizer were applicated at 3.5 and 1.5 leaf age from top) gave full play to water-nitrogen interaction advantage, and was beneficial to absorb and utilize water and nitrogen fertilizer at different growth period of rice, and on the premise of a certain amount of effective panicle and seed-setting rate, this condition of W2 and N3 nitrogen application regime had significantly increased grain number per spike and 1000-kernel weight, then to promoted yield. Optimum amount of nitrogen was 180 kg ha-1 under submerged irrigation, and the ratio of postponing nitrogen application to the total amount of nitrogen was suitable for 40%-60%. However, the treatment of dry cultivation with the proper decrement of nitrogen application amount at 90-180 kg ha-1, nitrogen rate of panicle fertilizer should be properly reduced in nitrogen application, and the ratio of postponing nitrogen application to the total amount of nitrogen was suitable for 20%-40%, could ease the negative effect of water- nitrogen interaction.
     2. The effect of water-nitrogen interaction on rice population quality
     The result indicated that the rice population quality was also influenced by different water-nitrogen treatment regimes, and there was an obvious interaction between irrigation regime and nitrogen management mode on some index of population quality. W2 and suitable nitrogen application amount (180 kg ha-1) with N3 nitrogen application regime could control the number of rice tillering in time; improve the rate of tiller panicle; guarantee the rice of heading to reach the appropriate leaf area index (LAI) and grain-leaf ratio; reduce the inclination of the top three leaves suitably; increase leaf area ratio and group efficient light transmission rate; promote leaf photosynthesis of the lower population, and it would improve plant photosynthetic capacity of grain-filling stage and the accumulation of photosynthetic products.
     3. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction
     The results showed that there was an obvious interaction between irrigation regime and nitrogen management mode on activities of key enzyme and nitrogen utilization. Compared with other irrigation treatments, the treatment W2 promoted the nitrogen uptake from tillering to heading, nitrogen dry matter production efficiency (NMPE) and nitrogen production efficiency (NPE). W2 and suitable nitrogen application amount (180 kg ha-1) in 2008, and W2 and suitable N3 application regime in 2009 enhanced activities of nitrogen metabolism enzymes, yield, and nitrogen use efficiency, being the best model in this paper referred as the water-nitrogen coupling management model. N4 nitrogen application regime (the ratio of base fertilizer to tillering fertilizer and to panicle fertilizer was 2:2:6, and split panicle fertilizer were applicated at 3.5 and 1.5 leaf age from top) and applying nitrogen 270 kg ha-1 resulted in negative effect of water-nitrogen interaction, slowing down the increase of activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT), decreasing nitrogen agronomy efficiency (NAE), nitrogen recovery efficiency (NRE), and yield. Correlation analysis indicated that there existed significantly or highly significantly positive correlations of activities of nitrogen metabolism enzymes with indices of nitrogen uptake and utilization and yield, with different correlation coefficients of different growth stages. According to the conditions above, GS activity in function leaves might be a candidate indicator for nitrogen uptake and accumulation at different growth stages, and activities of NR, GS, GOGAT and endopeptidase (EP) in flag leaves at heading stage for rice yield and NMPE, NPE, NAE, NRE.
     4. Effects of water-nitrogen interaction on rice senescence physiology during grain-filling period
     The results showed that W2 and suitable nitrogen application amount (180 kg ha-1) in 2008, and W2 and suitable N3 application regime in 2009 gave full play to water-nitrogen interaction advantage. Compare with other treatments, this condition of W2 and the best nitrogen application regime in different water-nitrogen interaction experiments from the past years delayed the increase of reactive oxygen species and malondialdehyde (MDA), had high photosynthetic rate (Pn) and promoted the accumulation of soluble protein content, etc., and enhanced the superoxide (SOD), catalase (CAT) and peroxidase (POD) activities, consequently, promoted material accumulation and promote yield. Applying nitrogen (270 kg ha-1) and nitrogen rate of panicle fertilizer account for too large proportion (N4) would result in a negative effect of water-nitrogen interaction and influence the normal physiological function of rice during grain-filling period. In addition, there was significant correlation between the physiological index, in which significant positive correlations was observed between O2, H2O2 and MDA, and a significant negative correlation between them with antioxidant enzyme activities, Pn and soluble protein content. Furthermore, in the process of leave senescence, underground was closely related to aboveground, and root vigor had high significant positive correlation with antioxidant enzyme activities, Pn and soluble protein, but it had high significant negative correlation with O2, H2O2 and MDA.
     5. Effects of water-nitrogen interaction on rice material transport during grain-filling period
     Effects of water-nitrogen interaction on rice material transport in stem-sheath also have a significantly or very significantly interaction effect from heading to maturity period. Under this condition, W2 and suitable nitrogen application amount (180 kg ha-1), and W2 and suitable N3 application regime enhanced activities of the rice roots to absorb water and nitrogen coordination, promoted the grain-filling stage of material transport, and corresponding with the best way of water-nitrogen logistics conclusion that was obtained anti-aging water-nitrogen control measures; while the other water-nitrogen treatment interaction advantage decreased or even generated negative effects. Correlation analysis indicated that there existed significantly or highly significantly positive correlations between the material transport in stem-sheath and nonstructural carbohydrate transformation(NSC), and between each of them and yield under water-nitrogen interaction from heading to maturity period. According to water-nitrogen interaction effects can be showed that applying nitrogen (270 kg ha-1), W3 treatment and nitrogen rate of panicle fertilizer account for too large proportion (N4) would result in a negative effect of water-nitrogen interaction and influence the normal physiological function of rice during grain-filling period, meanwhile, material transport and grain filling rate were decreased, and then that caused rice yield reduction
     6. Correlations of N, P and K absorption characteristics and its relationship with grain yield under water-nitrogen interaction
     The results showed that there was an obvious interaction between irrigation regime and nitrogen management mode on N, P and K absorption, transfer and distribution. Correlation analysis indicated that there existed significantly or highly significantly positive correlations between the amounts of N, P and K absorption, transfer, distribution, and between each of them and yield under water-nitrogen interaction at the mainly growth stages, and there existed highly significantly positive correlations between yield and the accumulations of N, P before heading stage and the amount of K absorption at tillering stage under water-nitrogen rate interaction, however, there existed highly significantly positive correlations between yield and the accumulations of N still at heading stage and the amount of P and K absorption relative delay of the growth stage at the experiment of water-nitrogen rate interaction under water-nitrogen application interaction. But N4 nitrogen application regime, applying nitrogen 270 kg ha-1 and W3 treatment would result in N accumulation too high or too low, which would aggravate negative effect of translocation conversion rate of vegetative organ.
引文
[1]Clark R. Water: The international crisis [M]. London: Earthscan Publication LTD.1991,3-40.
    [2]Yudelman M. Water and food in developing countries in the next century [M]. in:Water law J C. Feeding a World Population of More Than Eight billon People, A Challenge to Science. New York, Oxford.1998.57-68.
    [3]廖显辉.话说“节水农业”[J].农业考古.2002,(1):44-47.
    [4]隋聚艳,蔡小超.浅谈我国水资源利用的现状及对策[J].科技信息.2010,(1):367,389.
    [5]翁白莎,严登华.变化环境下中国干旱综合应对措施探讨[J].资源科学.2010,32(2):309-316.
    [6]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究.1998,16(1):11-17.
    [7]路庆斌,唐秀美,白艳英,等.农业面源污染防治的清洁生产对策[J].环境与可持续发展.2009,(6):21-23.
    [8]薛金义,荆宇,华玉凡.略论我国早稻的生产及发展[J].中国稻米,2002,(4):5-7.
    [9]程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响[J].应用生态学报.2006,17(10):1859-1865.
    [10]张晓宇,窦世卿.我国水资源管理现状及对策[J].自然灾害学报.2005,15(3):91-95.
    [11]梁永超,胡峰,杨茂成,等.水稻覆膜旱作高产机理研究[J].中国农业科学.1999,32(1):26-32.
    [12]张凤荣.生物能源热浪下的中国耕地保护[J].中国土地.2007,(4):33-37.
    [13]从源头控制化学氮肥污染环境[J].科技时报.2006.10.
    [14]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径[J].中国水稻科学.2002,16(3):261-264.
    [15]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学.2002,35(9):1095-1103.
    [16]朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤.1985,17(1):2-9.
    [17]Ahmad AR, Zulkefli M, Ahmed M, et al. Environmental impact of agricultural inorganic pollution on groundwater resources of the Klansman Plain, Malaysia. In: Aminuddin BY, Sharma MLand Willett IR ed. Agricultural impacts on ground water quality. ACIAR Proceedings.1996,61:8-21.
    [18]熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态坏境.2002,18(2):29-33.
    [19]Mackenzie A, Ball A S, Virdee R. Ecology [M].北京科学出版社.1999:31-39.
    [20]程旺大,赵国平,王岳均,等.浙江省发展水稻节水高效栽培技术的探讨[J].农业现代化研究,2000,21(3):197-200.
    [21]山仑.我国节水农业发展中的科技问题[J].干旱地区农业研究.2003,21(1):1-5.
    [22]张荣萍,马均,王贺正,等.不同灌水方式对水稻结实期一些生理性状和产量的影响[J].作物学报,2008,34(3):486-495.
    [23]Bruce A Linquist; Sylvie M Brouder; James E Hill. Winter straw and water management effects on soil nitrogen dynamics in California rice systems [J]. Agron J.2006.98:1050-1059.
    [24]Fan M S, Liu X J, Jiang R F, et al. Crop yield, internal nutrient efficiency and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation [J]. Plant and Soil.2005, 277:265-276.
    [25]龙旭,汪仁全,孙永健,等.不同施氮量下三角形强化栽培水稻群体发育与产量形成特征[J].中国水稻科学,2010,24(2):162-168.
    [26]Shekhar Kumar Sinha, Jayesh Talati. Productivity impacts of the system of rice intensification (SRI): A case study in West Bengal, India [J]. Agricultural Water Management.2007.87:55-60.
    [27]王昌全,曾莉,卢俊宇,等.土壤水分状况与水稻生长的关系[J].西南农业学报.1997,10(2):67-70.
    [28]Lu Jun, Taiichiro Ookawa, Tadashi Hirasawa. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice [J]. Plant and Soil.2000,223: 207-216.
    [29]彭世彰,朱成立.作物节水灌溉需水规律研究[J].节水灌溉.2003.2:5-9.
    [30]崔远来,李远华,李新健,等.非充分灌溉条件下稻田优化灌溉制度的研究[J].水利学报.1995.10:333-338.
    [31]方荣杰,李远华,张明灶.非充分灌溉条件下水稻根系生长发育特征研究[J].中国农村水利水电.1996,1:11-15.
    [32]魏海燕,张洪程,马群,等.不同氮肥利用效率水稻基因型剑叶光合特性[J].作物学报.2009.35(12):2243-2251.
    [33]王笑影,闻大中,梁文举.不同土壤水分条件下北方稻田耗水规律研究[J].应用生态学报.2003.14(6):925-929.
    [34]Tuong T P, Bhuiyan S I. Increasing water-use efficiency in rice production: farm-level perspectives [J]. Agriculcural Water Maagement,1999,40:117-122.
    [35]张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社.1993,87-88.
    [36]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制研究[J].土壤学报.1992,29(1):73-79.
    [37]Naoki M, Kiyoshi O, Toshihiro M. Genotypic differences in root hydraulic conductance of rice (Oryza sativa L.) in response to water regimes [J]. Plant and Soil.2009.316:25-34.
    [38]Haefele S M, Jabbar S M A, Siopongco J D L C, et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels [J].Field Crops Res. 2008,107:137-146.
    [39]张亚丽,樊剑波,段英华,等.不同基因型水稻氮效率的差异及评价[J].土壤学报.2008,45(2):267-273.
    [40]De Laulanie H. The intensive rice cultivation system in Madagascar [J]. Tropicultura,1993, 11(3):110-114.
    [41]Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated rice [J]. Agricultural Water Management,2001, (49):11-30.
    [42]Ramakrishnayya A, Murthy K S. Effect of soil moisture stress on tillering and grain yield in rice [J]. Indian Journal of Agricultural Sciences.1991,(61):198-200.
    [43]Sharma P K, Verma T S, Bhushan L. Effect of water deficit and varying nitrogen levels on growth and yield of rice [J]. Oryz.1997.34:244-279.
    [44]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture [J]. Journal of Experimental Botany,2004,55(407):2365-2384.
    [45]Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization [J].Agron J.1982,74:562-564.
    [46]Vlek P L G, Byrnes B H. The efficiency and loss of fertilizer N in lowland rice [J].Fertil Res.2000. 9:131-147.
    [47]王维金.关于不同籼稻品种和施肥时期稻株对15N的吸收及其分配的研究[J].作物学报.1994.4:169-172.
    [48]郑永美,丁艳锋,王强盛,等.起身肥对水稻分蘖和氮素吸收利用的影响[J].作物学报.2008,34(3):513-519.
    [49]李殿平,曹海峰,张俊宝,等.全层施肥对水稻产量形成及稻米品质的影响[J].中国水稻科学.2006.20(1):73-78.
    [50]杜建军,廖宗文,毛小云,等.控/缓释肥在不同介质中的氮素释放特性及其肥效评价[J].植物营养与肥料学报,2003,9(2):165-169.
    [51]杜建军,王新爱,廖宗文,等.不同浸提条件对包膜控/缓释肥水中溶出率的影响[J].植物营养与肥料学报,2005,11(1):71-78.
    [52]闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学.2008,41(2):450-459.
    [53]W. Kaewpradit, B. Toomsan, G. Cadisch, P., et al. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency[J]. Field Crops Res,2009,110:130-138.
    [54]孙永健,周蓉蓉,王长松,等.稻麦两熟农田土壤速效钾时空变异及原因分析——以江苏省仪征市为例[J].中国农业生态学报.2008,16(3):543-549.
    [55]黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报.2004.10(6):579-583.
    [56]Dobermann A, Cassman K G, Peng S, et al. Precision nutrient management in intensive irrigated rice systems [J]. Deptof Agriculture, Soiland Fertilizer Society of Thailand, Bangkok,1996. 11:133-154.
    [57]Dobermann A., Witt C., Dawe D. Increasing productivity of intensive rice systems trough site-Specific nutrient management [J]. Enfield, N.H. (USA) and LosBanos (Philippines): Science Publishers, Inc., and International Rice Research Institute.2004,75-101.
    [58]Peng S B, Garcia F V, Laza R C, Sanico A L, et al. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice [J]. Field Crops Res,1996,47:243-252.
    [59]Pampolino M F, Manguiat I J, Ramanathan S, et al. Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems [J]. Agricultural Systems, 2007.93:1-24.
    [60]汪德水.旱地农田肥水协同效应与耦合模式[M].北京,气象出版社,1999,44-85.
    [61]Arnon 1. Physiological principles of dry and crop production [A].In Gupta US Physiological Aspects of Dry land Farming[C].New York Universal Press 1975,3-124.
    [62]Sharma B D, Kar S, CheemaS S. Yield, water use and nitrogen uptake for different water and N levels in winter wheat [J]. Fert. Res.,1990,22:119-127.
    [63]Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield [A]. Turner N C(ed).Adoption of plant to water and high temperature stress [M]. New York: A Wiley-Intersci. Pub.,1980.38-136.
    [64]Begg J E, Turner N C. Crop and water deficits [J]. Adv. Agron.1976,28:161-218.
    [65]Bhan S, Misra D K. Efects of variety spacing and soil fertility on root development in groundnut under arid conditions, Indian [J].Agric. Sci.,1970:1050-1055.
    [66]沈荣开,王康,张瑜芳,等.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J].农业工程学报,2001,17(5):35-38.
    [67]James James R F, James J C. Water and nitronen effects on winter wheat in the southeastern coastal plain main. yield and kernel traits[J]Apron J,1995, (87):521-526.
    [68]黄明丽,邓西平,白登忠.N、P营养对旱地小麦生理过程和产量形成的补偿效应研究进展[J].麦类作物学报.2002,22(4):74-78.
    [69]王进鑫,张晓鹏,等.水肥耦合对矮化富士苹果幼树的促长促花作用研究[J].干旱地区农业研究.2004,22(3):47-50.
    [70]陈修斌,邹志荣.日光温室西葫芦水肥耦合效应化指标研究[J].西北农林科技大学学报.2004,32(3):49-58.
    [71]虞娜,张玉龙.温室滴灌施肥条件下水肥耦合对番茄产量影响的研究[J].土壤通报.2003,34(3):179-183.
    [72]梁智,周勃.滴灌施肥条件下长绒棉水肥耦合效应分析[J].中国棉花.2004,31(8):6-7.
    [73]梁运江,依艳丽.水肥耦合效应对辣椒产量影响初探[J].土壤通报.2003,34(4):262-266.
    [74]刘文兆,李玉山,李生秀.作物水肥优化耦合区域的图形表达及其特征[J].农业工程学报,2002,18(6):1-3.
    [75]田军仓,郭元裕,等.苜蓿水肥耦合模型及其优化组合方案研究[J].武汉水利水电大学学报,1997,30(2):18-22.
    [76]于亚军,李军,等.旱作农田水肥耦合研究进展[J].干旱地区农业研究.2005,23(3):220-224
    [77]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
    [78]陈新红,徐国伟,孙华山,等.结实期土壤水分与氮素营养对水稻产量与米质的影响[J].扬州大学学报(农业与生命科学版).2003.24(3):37-41.
    [79]陈新红,刘凯,徐国伟,等.结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响[J].上海交通大学学报·农业科学版,2004,22(1):48-53.
    [80]程建平,曹凑贵,蔡明历,等.不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J].植物营养与肥料学报,2008,14(2):199-206.
    [81]Cabangon R J, Tuong T P, Castillo E G, et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China [J].Paddy Water Environ,2004,2:195-206.
    [82]尤小涛,荆奇,姜东,等.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响[J]. 中国水稻科学,2006,20(2):199-204.
    [83]Begg J E, Turner N C. Crop and water deficits [J]. Adv Agron.1976,28:161-218.
    [84]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学.1996,29(4):58-66.
    [85]De Datta, Malabuyac J, Agragon E, et al. A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage [J]. Field Crops Res; 1988:624-632.
    [86]朱庆森,邱泽森,羌长鉴,等.水稻各生育期不同土壤水势对产量的影响[J].中国农业科学.1994,27(6):15-22.
    [87]张亚洁,周或然,杜斌,等.不同种植方式下氮素营养对陆稻和水稻产量的影响[J].作物学报.2008,34(6):1005-1013.
    [88]龚少红,崔远来,黄介生,等.不同水肥处理条件下水稻生理指标及产量变化规律[J].节水灌溉.2005,2:1-4.
    [89]陈新红,刘凯,徐国伟,等.氮素与土壤水分对水稻养分吸收和稻米品质的影响[J].西北农林科技大学学报(自然科学版).2004.32(3):15-21.
    [90]陈新红,徐国伟,王志琴,等.结实期水分与氮素对水稻氮素利用与养分吸收的影响[J].干旱地区农业研究.2004.22(2):35-40.
    [91]Vassilis Z. Antonopoulos. Modeling of water and nitrogen balance in the ponded water of rice fields [J]. Paddy Water Environ,2008.6:387-395.
    [92]钱晓晴,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报.2003,26(4):9-12.
    [93]王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学.2004,37(4):497-501.
    [94]崔远来,李远华,吕国安,等.不同水肥条件下水稻氮素运移与转化规律研究[J].水科学进展,2004,15(3):280-285.
    [95]蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响[J].中国水稻科学.2000,14(4):219-224.
    [96]Qi Jing, Bas Bouman, Herman van Keulen, et al. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia [J]. Agricultural Systems.2008.98:177-188.
    [97]Hong Wang, Joel Siopongco, Len J. Wad, et al. Fractal analysis on root systems of rice plants in response to drought stress [J]. Environmental and Experimental Botany.2009,65:338-344.
    [98]J.E. Cairns, A. Audebert, C.E. Mullins, et al. Mapping quantitative trait loci associated with root growth in upland rice(Oryza sativa L.) exposed to soil water-deficit in fields with contrasting soil properties [J]. Field Crops Res.2009,114:108-118.
    [99]樊小林,史正军,吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林科技大学学报(自然科学版).2002,4(30):1-5.
    [100]魏海燕,张洪程,张胜飞,等.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报.2008,34(3):429-436.
    [101]稽庆才,周明耀,张风翔,等.水培条件下水肥耦合对水稻根系形态及其活力的影响[J].水利与建筑工程学报.2005,3(3):18-22.
    [102]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报.2006,22(5):197-200.
    [103]陆景陵.植物营养学(第2版)[M].中国农业大学出版社.2003.22-34.
    [104]Lin Z W, Tang Y W. Regulation of nitrate reductase activity in rice [J]. Chem Sci China,1989, 19(4):379-385.
    [105]汤玉玮.硝酸还原酶活力与作物耐肥性的相关及其在生化育种上的应用的探讨[J].中国农业科学.1985,6:39-45.
    [106]洪剑明,柴小清,曾晓光,等.小麦硝酸还原酶活性与营养诊断和品种选育研究[J].作物学报.1996,22(5):633-637.
    [107]Griffiths H, Parry M A J. Plant responses to water stress. [J] Annal of Botany,2002, (89):801-802
    [108]张自常,孙小淋,陈婷婷,等.覆盖旱种对水稻产量与品质的影响[J].作物学报.2010.36(2):285-295.
    [109]王维,蔡一霞,张建华,等.适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节[J].作物学报.2005.31(3):289-296.
    [110]刘保国,李长明,任昌福,等.水稻旱种的生理基础研究[J].西南农业大学学报,1993,15(6):407-481.
    [111]路兴花,吴良欢,庞林江.节水栽培水稻某些氮代谢生理特性研究[J].植物营养与肥料学报2009,15(4):737-743.
    [112]李泽松,林清华,张楚富,等.不同氮源对水稻幼苗根氨同化酶的影响[J].武汉大学学报(自然科学版),2000,46:729-732.
    [113]刘强,荣湘民,朱红梅,等.不同水稻品种在不同栽培条件下氮代谢的差异[J].湖南农业大学学报(自然科学版).2001,27(6):415-420.
    [114]Markino A, Mae T, Ohiro K. Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence [J]. Plant Cell Physiology,1984, (25):429-437.
    [115]邓志瑞,陆巍,张荣铣,等.水稻叶片光合功能衰退过程中内肽酶活力的变化[J].中国水稻科学.2003,17(1):47-51.
    [116]胡健,杨连新,周娟,等.开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响[J].中国水稻科学,2008,22(2):155-160.
    [117]周升明,荣湘民,刘强,等.生物有机肥和化肥配合施用对水稻氮代谢关键酶活性的影响[J].湖南农业科学2007,2:90-92,97.
    [118]刘道宏.植物叶片的衰老[J].植物生理学通讯.1983,2:14-19.
    [119]Thomas H, Smart C M.Crops that stays green [J]. Ann. Appl. Biol.,1993,123:193-219.
    [120]王忠.植物生理学[M].北京:中国农业出版社,2000.422-423.
    [121]林植芳.水稻叶片的衰老和叶绿素中超氧阴离子和有机自由基浓度的变化[J].植物生理学报, 1988,14(3):238-243.
    [122]Xing X. Degradation of Rbulose-1.5- Bisphosphate Carboxylase/Oxygenase in naturally senescing rice leaves [J]. Acta Phytophysiologica Sinica,2000,24(1):46-52.
    [123]焦德茂,李霞,黄雪清,等.不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J].中国农业科学.2002,35(5):487-492.
    [124]Jiu W S, Wang Y Q, Zhang S Q, et al. Salt-stress-induced ABA accumulation is moue sensitively triggered in roots than in shoots [J]. Journal of experimental botany,2002,53(378):2201-2206.
    [125]蒋明义,郭绍川.渗透胁迫下稻苗中铁催化的膜脂过氧化作用[J].植物生理学报,1996,22(1):6-12.
    [126]Yoichiro Kato, Akihiko Kamoshita, Junko Yamagishi. Preflowering abortion reduces spikelet number in upland rice (Oryza sativa L.) under water stress [J]. Crop Sci.2008,48:2389-2395.
    [127]Tsukamoto S, Morita S, Hirano E, et al. A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice [J]. Plant Physiology,2005,137:317-327.
    [128]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539-543.
    [129]蔡昆争,吴学祝,骆世明,等.抽穗期不同程度水分胁迫对水稻产量和根叶渗透调节物质的影响[J].生态学报,2008,28(12):6148-6158.
    [130]蔡永萍,杨其光,黄义德.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响[J].中国水稻科学,2000,14(4):219-224.
    [131]Rizhsky L, Liang H, Mittler R. The water-water cycle is essential for chloroplast protection in the absence of stress [J]. JBiol Chem 2003, (278):38921-38925.
    [132]戴高兴,彭克勤,萧浪涛,等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学,2006,20(5):557-559.
    [133]Seel W E, Hendry G A, Lee G E, et al. Effect of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses [J]. JExp Bot,1992,43:1031-1037.
    [134]Scandalios J G. Oxygen stress and super oxide dismutases [J]. Plant Physiol,1993,101:7-12.
    [135]Zhang M Y, Bourbouloux A, Cagnac O, et al. A novel family of transporters mediating the transport of glutathione derivatives in plants [J]. Plant Physiology,2004, (134):482-491.
    [136]May M J, Vernoux T, Leaver C, et al. Glutathione homeostasis in plants:implications for environmental sensing and plant development [J]. J Exp Bot,1998,49:649-667.
    [137]Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control [J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279.
    [138]陈坤明,张承烈.干早期间春小麦叶片多胺含量与作物抗旱性的关系[J].植物生理学报,2000,26(5):381-386.
    [139]唐连顺,李广敏.干旱对玉米杂交种及其亲本自交系幼苗膜脂过氧化及其保护性酶活性的影响[J].作物学报,1995,21(4):409-512.
    [140]郭振飞,卢少云,李宝盛,等.不同耐旱性水稻幼苗对氧化胁迫的反应[J].植物学报,1997, 39(8):748-752.
    [141]林文雄,陈逸鹏.不同氮素条件下杂交水稻生育后期保护酶活性的初步研究[J].生态学报,1997,16(1):14-18.
    [142]王维,张建华,杨建昌,等.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响[J].作物学报.2004,30(3):196-204.
    [143]沈荣开,张瑜芳,黄冠华.作物水分生产函数与农田充分灌溉研究述评[J].水科学进展.1995,6(3):248-254.
    [144]Jalota S K, Singh K B, Chahal G B S, et al. Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study[J].Agric Water Manage,2009,96:1096-1104.
    [145]李顺江.非充分灌溉下水稻和早稻对氮钾的吸收利用及水分生产率的研究[学位论文].华中农业大学.2003年.
    [146]Tao Hongbin, Breck Holger, Dittert Maus, et al. Growthand yield for mation of rice in the water-saving ground cover rice production system (GCRPS) [J]. Field Crops Res.2006,95:1-12.
    [147]周毅,郭世伟,宋娜,等.供氮形态和水分胁迫对苗期—分蘖期水稻光合与水分利用效率的影响[J].植物营养与肥料学报.2006,12(3):334-339.
    [148]卢从明,张其德,匡廷云,等.水分胁迫下氮素营养对水稻光合作用及水分利用效率的影响[J].中国科学院研究生学报.1993,10(2):197-202.
    [149]刘广明,杨劲松,姜艳,等.节水灌溉条件下水稻需水规律及水分利用效率研究[J].灌溉排水学报.2005,24(6):49-54.
    [150]Mahler R I, Koehler F E, Lutcher L K. Nitrogen source, timing of application and placement effects on winter wheat production [J]. Agron J.1994,86:637-642.
    [151]Angus JF, AF van Hawarden. Increase water use and water use efficiency in dryland wheat [J]. Agron J.2001,93:290-298.
    [152]Mahdi Gheysari, Seyed Majid Mirlatifi, Mohammad Bannayan, et al. Interaction of water and nitrogen on maize grown for silage [J] Agric Water Manage,2009,96:809-821.
    [153]Onken A B, Wendt C W, Halorson A D. Soil fertility and water use efficiency. Proceedings of International Conference on Dryland Farming: Challenge in Dry Agriculture - A Global Perspective Texas: Amarillo/Bushland.1988,441-444.
    [154]杨建昌,王维,王志琴,等.水稻早秧大田水特性与节水灌溉指标研究[J].中国农业科学.2000,33(2):34-42.
    [155]王忠.植物生理学[M].中国农业出版社,2000,73.
    [156]Kramer P J. Water Relations of Plants [M]. New York: Academic Press,1983.
    [157]邱泽森,丁艳峰,童晓明,等.土水势在水稻节水灌溉中的应用[J].江苏农业科学.1993,(2):7-10.
    [158]朱庆森,邱泽森,姜长鉴,等.水稻各生育期不同土壤水势对产量的影响明.中国农业科学.1994,27(6):15-22.
    [159]朱庭芸,秦琦,刘志柯,等.水稻优化灌溉制度的土壤水分调节[J].沈阳农业大学学报.1990,21(1):23-28.
    [160]王绍华,丁艳峰.水稻间歇灌溉水分胁迫指数研究[J].中国农业科学.1994,(1):45-50.
    [161]胡继超,姜东,曹卫星,等.短期干旱对水稻时水势、光合作用及干物质分配的影响[J].应用生态学报.2004,15(1):63-67.
    [162]田永超.基于冠层反射光谱的水稻水分及稻麦生长监测[学位论文].南京农业大学;2003年.
    [163]陈新平,李志宏,王兴仁,等.土壤、植株快速测试推荐施肥技术体系的建立与应用[J].土壤肥料.1999,(2):6-10.
    [164]Geraldson C M. Plant analysis as an aid in fertilizing vegetable crop.In: Welsh L M, et al. (ed). Soil testing and plant analysis. Madison, Wisconsin, USA:Soil Sci. Soc. Amer.,1990:365-379.
    [165]李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮营养诊断及追肥推荐研究.Ⅱ.植株硝酸盐快速诊断方法的研究[J].植物营养与肥料学报,1997,3(3):268-274.
    [166]陈新平,周金迟,王兴仁,等.应用土壤无机氮测试进行冬小麦氮肥推荐的研究[J].土壤肥料.1997,(5):19-21.
    [167]李俊华,董志新,朱继正.氮素营养诊断方法的应用现状及展望[J].石河子大学学报(自然科学版).2003,7(1):80-83.
    [168]陶勤南,方萍,吴良欢,等.水稻氮素营养的叶色诊断研究[J].土壤1990,22(4):190-193,197.
    [169]Thomas J R, Gausman H W. Leaf reflection vs. leaf chlorophyll and carotenoid concentration for eight crops [J].Agron J,1977,69:799-802.
    [170]赵镛洛,鄂文顺,肖免.日本水稻氮素营养诊断简介[J].世界农业,1992,11:27.
    [171]Fen F L, Le F Q, Jing S D, et al. Investigation of SPAD meter-based indices for estimating rice nitrogen status [J].Computers and Electronics in Agriculture.2010,715:60-65.
    [172]Peng S, Laza R C, Garcia F V, et al. Chlorophyll meter estimates leafarea-based nitrogen concentration of rice [J]. Commun. Soil Sci. Plant Anal.,1995,26(5-6):927-935.
    [173]李志宏,刘宏斌,张福锁.应用叶绿素仪诊断冬小麦氮营养状况的研究[J].植物营养与肥料学报.2003,9(4):401-405.
    [174]王秀珍,王人潮,李云梅.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    [175]薛利红,曹卫星,罗卫红,等.小麦叶片氮素状况与光谱特性的相关性研究[J].植物生态学报,2004,28(2):172-177.
    [176]唐延林,王人潮,张金恒,等.高光谱与叶绿素计快速测定大麦氮素营养状况研究[J].麦类作物学报,2003,23(1):63-66.
    [177]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73-79.
    [178]田永超,曹卫星,姜东,等.不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J].植物生态学报.2005,29(2):318-323.
    [1]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学.1993,26(6):1-11.
    [2]凌启鸿,作物群体质量[M].上海:上海科学技术出版社,2000.1-36,84-85.
    [3]凌启鸿等.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007.35-56.
    [4]钱银飞,张洪程,李杰,等.不同穗型水稻品种直播产量及其群体质量特征的研究[J].江西农 业大学学报.2008,30(5):766-772.
    [5]王绍华,曹卫星,姜东,等.水稻强化栽培对植株生理与群体发育的影响[J].中国水稻科学.2007,27(1):31-36.
    [6]张玉烛,曾翔,瞿华香,等.地膜覆盖早直播栽培对水稻产量及群体冠层特性的影响[J].杂交水稻,2009,24(3):63-67.
    [7]曾勇军,石庆华,潘晓华,等.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报.2008,34(8):1409-1416.
    [8]丁艳锋.氮素营养调控水稻群体质量的研究[学位论文].南京农业大学博士学位论文.1997.
    [9]闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻科学.2007,27(5):530-536.
    [10]张荣萍,戴红燕,蔡光泽,等.不同栽插密度对有色稻产量和群体质量的影响[J].中国农学通报.2009,25(16):123-127.
    [11]翟孝勋.多效唑在水稻群体质量控制中的作用[学位论文].南京农业大学硕士学位论文.2005.
    [12]房辉,周江鸿,王云月,等.优化水稻群体种植模式与稻瘟病控制研究[J].中国农业科学.2007,40(5):916-924.
    [13]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报.2009,35(6):1106-1114.
    [14]史鸿儒,张文忠,解文孝,等.不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J].作物学报.2008,34(11):1985-1993.
    [15]杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体库源质量的影响[J].耕作与栽培.1999(2):20-23.
    [16]杨安中,李孟良,牟筱玲,等.氮肥运筹方式对地膜早作水稻抽穗后光合性能剑叶衰老及产量的影响[J].土壤学报.2006,43(4):703-707.
    [17]任万军,伍菊仙,卢庭启,等.氮肥运筹对免耕高留茬抛秧稻干物质积累、运转和分配的影响[J].四川农业大学学报.2009,27(2):162-166.
    [18]万靓军,张洪程,霍中洋,等.不同氮肥施用比例对两优培九产量及品质的影响[J].扬州大学学报(农业与生命科学版).2005,36(1):69-72.
    [19]刘立军,王志琴,桑大志,等.氮肥运筹对水稻产量及稻米品质的影响[J].扬州大学学报(农业与生命科学版).2002,23(3):46-50.
    [20]吴文革,张四海,赵决建,等.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响[J].植物营养与肥料学报.2007,13(5):757-764.
    [21]毛达如,申建波.植物营养研究方法[M].第二版.北京:中国农业大学出版社,2005.
    [22]董桂春,李进前,董燕萍,等.产量构成因素及穗部性状对籼稻品种库容的影响[J].中国水稻科学,2009,23(5):523-528.
    [23]苏祖芳,王辉斌,等.水稻生育中期群体质量与产量形成关系的研究[J].中国农业科学,1998,31(5):19-25.
    [24]杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25(4):7-14.
    [25]Yingdian Wang, Eiki Kuroda, Mitsugu Hirano, et al. Analysis of high yielding mechanism of rice varieties belonging to different plant types. I. Comparison of growth and yield characteristics and dry matter production [J]. Japan J.Crop Sci.1997,66(2):293-299.
    [26]凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究[J].中国农业科学.1986,(3):1-8.
    [27]赵春江.数字农业信息标准研究——作物卷[M],中国农业出版社,2004.361-362.
    [28]杨建昌,袁莉民,常二华,等.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J].作物学报,2005,31(8):1052-1057.
    [29]梁永超,胡峰,杨茂成,等.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32(1):26-32.
    [30]张荣萍,马均,王贺正,等.不同灌水方式对水稻结实期一些生理性状和产量的影响[J].作物学报,2008,34(3):486-495.
    [31]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):762-767.
    [32]曾勇军,石庆华,潘晓华,等.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报,2008,34(8):1409-1416.
    [33]陈新红,刘凯,徐国伟,等.结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响[J].上海交通大学学报·农业科学版,2004,22(1):48-53.
    [34]蔡一霞,王维,朱智伟,等.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响[J].应用生态学报,2006,17(7):1201-1206.
    [35]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
    [36]Cabangon R J, Tuong T P, Castillo E G, et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China [J].Paddy and Water Environment,2004,2:195-206.
    [37]Sharma B D, Kar S, Cheema S S. Yield, water use and nitrogen uptake for different water and N levels in winter wheat [J]. Fertilizer Research,1990,22:119-127.
    [38]Lahiri A N. Interaction of water stress and mineral nutrition on growth and yield [M]//Turner N C. Adoption of Plant to Water and High Temperature Stress. New York:A Wiley Interscience Pub,1980:38-136.
    [39]李义珍,张达聪.杂交水稻的高产结构和调控.农牧情报研究[J].1981,21:31-33.
    [40]谭中和,兰太元,方文,等.氮素供应时期对杂交中稻产量因素形成的影响.四川农业科技[J].1981(2):8-11.
    [41]Howell T A. Enhancing water use efficiency in irrigated agriculture [J]. Agronomy Journal,2001, 93:281-289.
    [42]尤小涛,荆奇,姜东,等.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响[J].中国水稻科学,2006,20(2):199-204.
    [43]Ishii R. Leaf photosynthesis in rice in relation to grain yields. In: Abrol YP(ed) photosynthesis-photoreactions to plant productivity [M]. Kluwer Dordrecht,1993,561-569.
    [1]杨建昌,袁莉民,常二华,等.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J].作物学报,2005,31(8):1052-1057.
    [2]张荣萍,马均,王贺正,等.不同灌水方式对水稻结实期一些生理性状和产量的影响[J].作物学报,2008,34(3):486-495.
    [3]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):762-767.
    [4]曾勇军,石庆华,潘晓华,等.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报,2008,34(8):1409-1416.
    [5]王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学,2004,37(4):497-501.
    [6]陈新红,刘凯,徐国伟,等.结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响[J].上海交通大学学报·农业科学版,2004,22(1):48-53.
    [7]Lam H M, Coschigano K T, Oliveira I C. The molecular-genetics of nitrogen assimilation into amino acids in higher plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:569-593.
    [8]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003.pp 23-35.
    [9]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.pp 125-127.
    [10]Lea P J, Blackwell R D, Chen F L. Enzymes of primary metabolism [M]. In: Harborne J B. Methods in Plant Biochemistry. Vol.3. New York: Academic Press,1990. pp 260-273.
    [11]Singh R D, Srivastava H S. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen [J]. Physical Plant,1986,66:413-416.
    [12]高玲,叶茂炳,张荣铣,等.小麦旗叶老化期间的内肽酶[J].植物生理学报,1998,24(2):183-188.
    [13]莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展[J].植物营养与肥料学报,2001,7(2):223-231.
    [14]Chen S H, Kao C H. The role of proteolytic enzymes in protein degradation during senescence of rice leaves [J]. Physiol Plant,1984,62:231-237.
    [15]Munjal N, Sawhney S K, Sawhney V. Activation of nitrate reductase in extracts of water stressed wheat [J]. Phytochemistry,1997,45(4):659-665.
    [16]岳寿松,于振文,余松烈.小麦剑叶与根系衰老的研究[J].作物学报,1996,22(1):55-58.
    [17]何园球,李成亮,王兴祥,等.土壤水分含量和施磷量对旱作水稻磷素吸收的影响[J].土壤学报,2005,42(4):628-633.
    [18]Peng S B, Huang J H, Zhong X H, et al. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China [J]. Agric Sci China,2002,1(7):776-785.
    [19]Lin Z W, Tang Y W. Regulation of nitrate reductase activity in rice [J]. Chem Sci China,1989, 19(4):379-385.
    [20]洪剑明,柴小清,曾晓光,等.小麦硝酸还原酶活性与营养诊断和品种选育研究[J].作物学报,1996,22(5):633-637.
    [21]胡健,杨连新,周娟,等.开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响[J].中国水稻科学,2008,22(2):155-160.
    [1]刘道宏.植物叶片的衰老[J].植物生理学通讯,1983,(2):14-19.
    [2]Thomas H,Smart C M.Crops that stays green[J].Ann.Appl.Biol.,1993,123:193-219.
    [3]王忠.植物生理学[M].北京:中国农业出版社,2000.422-423.
    [4]杨建昌,张亚洁,张建华,等.水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J].作物学报,2004,30(11):1069-1075.
    [5]杨安中,李孟良,牟筱玲,等.氮肥运筹方式对地膜旱作水稻抽穗后光合性能、剑叶衰老及产量的影响[J].土壤学报,2006,43(4):703-707.
    [6]聂军,郑圣先,戴平安,等.控释氮肥调控水稻光合功能和叶片衰老的生理基础[J].中国水稻 科学,2005,19(3):255-261.
    [7]Tang R S, Mei C S, Wu G N. Effects of 4PU-30 on leaf senescence and degration of protein and nucleic acid in rice [J]. Chin. Rice Res. Newsl.,1995,3(4):8-9.
    [8]Lin Y J, Cao M L, Xu C G et al. Cultivating rice with delaying leaf-senescence by PSAG12-IPT gene transformation [J]. Acta Bot. Sin.,2002,44 (11):1333-1338.
    [9]晏娟,尹斌,张绍林,等.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,2008,14(5):835-839.
    [10]张耀鸿,张亚丽,黄启为,等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616-621.
    [11]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
    [12]陈新红,刘凯,徐国伟,等.结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响[J].上海交通大学学报(农业科学版),2004,22(1):48-53.
    [13]Cabangon R J, Tuong T P, Castillo E G et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China [J]. Paddy Water Environ,2004,2:195-206.
    [14]Sharma B D, Kar S, Cheema S S. Yield, water use and nitrogen uptake for different water and N levels in winter wheat [J]. Fert. Res.,1990,22:119-127.
    [15]程建平,曹凑贵,蔡明历,等.不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J].植物营养与肥料学报,2008,14(2):199-206.
    [16]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,16(6):55-57.
    [17]沈文飚,叶茂炳,徐朗莱,等.小麦旗叶自然衰老过程中清除活性氧能力的变化[J].植物学报,1997,39(7):634-640.
    [18]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [19]任红旭,陈雄,吴冬秀.CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,200 1,27(6):729-736.
    [20]杨建昌,朱庆森,王志琴,等.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报,1997,23(1):82-88.
    [21]蔡武城,袁厚积.生物物质常用化学分析法.北京:科技出版社.1982,15-16.
    [22]毛达如,申建波.植物营养研究方法(第二版)[M].北京:中国农业大学出版社,2005.52-53.
    [23]段俊,粱承邺,黄毓文.杂交水稻开花结实期间叶片衰老[J].植物生理学报,1997,23(2):139-144.
    [24]岳寿松,于振文,余松烈.小麦旗叶与根系衰老研究[J].作物学报,1996,22(1):55-58.
    [25]朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水稻科学,2002,16(4):326-330.
    [26]何园球,李成亮,王兴祥,等.土壤水分含量和施磷量对旱作水稻磷素吸收的影响[J].土壤学报,2005,42(4):628-633.
    [1]江立庚,甘秀芹,韦善清,等.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系[J].应用生态学报,2004,15(2):226-230.
    [2]杜永,刘辉,杨成,王志琴,等.超高产栽培迟熟中粳稻养分吸收特点的研究[J].作物学报,2007,33(2):208-215.
    [3]刘立军,薛亚光,孙小淋,等.水分管理方式对水稻产量和氮肥利用率的影响[J].中国水稻科学,2009,23(3):282-288.
    [4]何园球,李成亮,王兴祥,等.土壤水分含量和施磷量对旱作水稻磷素吸收的影响[J].土壤学报,2005,42(4):628-633.
    [5]敖和军,王淑红,邹应斌,等.不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积[J].中国农业科学,2008,41(10):3123-3132.
    [6]徐明岗,李冬初,李菊梅,等.化肥有机肥配施对水稻养分吸收和产量的影响[J].中国农业科学,2008,41(10):3133-3139.
    [7]徐国伟,杨立年,王志琴,等.麦秸还田与实地氮肥管理对水稻氮磷钾吸收利用的影响[J].作物学报,2008,34(8):1424-1434.
    [8]张亚洁,杨建昌,杜斌.种植方式对陆稻和水稻磷素吸收利用的影响[J].作物学报,2008,34(1):126-132.
    [9]王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学,2004,37(4):497-501.
    [10]陈新红,徐国伟,王志琴,等.结实期水分与氮素对水稻氮素利用与养分吸收的影响[J].干旱 地区农业研究,2004,22(2):35-41.
    [11]陈新红,刘凯,徐国伟,等.氮素与土壤水分对水稻养分吸收和稻米品质的影响[J].西北农林科技大学学报.自然科学版,2004,3(32):15-21.
    [12]Dobermann A, Witt C, Dawe D, et al. Site-specific nutrient management for intensive rice cropping systems in Asia [J]. Field Crops Res.2002,74:37-66.
    [13]刘立军,徐伟,吴长付,等.实地氮肥管理下的水稻生长发育和养分吸收特性[J].中国水稻科学.2007,21(2):167-173.
    [14]徐国伟,杨立年,王志琴,等.麦秸还田与实地氮肥管理对水稻氮磷钾吸收利用的影响[J].作物学报.2008,34(8):1424-1434.
    [15]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报.2009,35(6):1106-1114.
    [16]史鸿儒,张文忠,解文孝,.等.不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J].作物学报.2008,34(11):1985-1993.
    [17]莫润秀,江立庚,郭立,等.氮肥运筹对水稻植株不同形态氮素含量的影响[J].中国水稻科学.2010,24(1):49-54.
    [18]吴迪,黄绍文,金继运.氮肥运筹、配施有机肥和坐水种对春玉米产量与养分吸收转运的影响[J].植物营养与肥料学报.2009,15(2):317-326.
    [19]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.pp 264-271.
    [20]田秀英,石孝均.不同施肥对稻麦养分吸收利用的影响[J].重庆师范学院学报·自然科学版,2003,20(2):44.47.
    [21]孙永健,孙园园,李旭毅,等.水氮互作对水稻氮磷钾吸收、转运及分配的影响[J].作物学报.2010.36(4):655-664.
    [22]邹长明,秦道珠,徐明岗,等.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南京农业大学学报,2002,25(4):6-10.
    [23]殷春渊,魏海燕,张庆,等.不同氮肥水平下中熟籼稻和粳稻产量、氮素吸收利用差异及相互关系[J].作物学报,2009,35(2):348-355.
    [1]Bahrun A, Je nsen C R, Asch F, et al. Drought-induced changes in xylem pH, ionic comosition, and ABA concentration act as early signals in field-grown maize [J]. Journal of Experimental Botany, 2002,53:251-263.
    [2]Jongdee. B. Fukai. S, Cooper. M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice [J]. Field Corps Res.2002.76:153-163.
    [3]邓勋飞,张后勇,何勇,等.水稻叶水势与不同水分处理定量关系研究[J].浙江大学学报(农业与生命科学版).2005,31(5):581-586.
    [4]徐国伟,吴长付,刘辉,等.麦秸还田水稻产量的形成及其氮肥管理技术的研究[J].作物学报.2007,33(2):284-291.
    [5]Dobermann A., Witt C., Dawe D. Increasing productivity of intensive rice systems trough site-Specific nutrient management [M]. Enfield, N.H. (USA) and LosBanos (Philippines): Science Publishers, Inc., and International Rice Research Institute.2004,75-101.
    [6]Peng S B, Garcia F V, Laza R C, Sanico A L, et al. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice [J]. Field Crops Res,1996,47:243-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700