用户名: 密码: 验证码:
铝盐混凝剂在给水处理中残留铝含量、组分及影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综述国内外大量文献的基础上,首先建立并确定了净化水中不同组分残留铝的分离及测定方法,然后针对腐植酸-高岭土模拟地表水和不同季节引黄水库水的特点,对比研究了混凝剂种类、混凝剂合成条件、混凝剂投加量、水体初始pH及水力条件对混凝效果、残留铝含量、残留铝组分及余铝率的影响;从混凝效果和不同组分残留铝含量分别确定了各铝盐混凝剂处理不同地表水的最佳投加量以及最佳处理pH,并明确了各铝盐混凝剂在不同季节引黄水库水处理中的最佳作用水力条件;同时分析了影响残留铝含量的主要因素,探讨了混凝效果(絮体特性操作参数)与各组分残留铝浓度之间的关系。主要结论如下:
     1.在腐植酸-高岭土模拟地表水混凝处理中,氯化铝、硫酸铝和聚合氯化铝(PAC)在不同投加量下的浊度和UV254去除率最高可达90%左右;PAC投加量较高时混凝效果较好,其混凝出水巾残留总铝量(约为0.9mg/L)和余铝率(-3.0%)均是三种混凝剂巾最低的,且PAC能够有效降低出水巾毒性较大的溶解性铝的含量(约为0.6mg/L);在pH为6.0-7.0之间,氯化铝、硫酸铝和PAC的浊度去除率分别可达到94%,91.5%和90.5%,UV254去除率可分别达到87%,88.5%和82%;不同pH下PAC混凝出水中残留铝含量及余铝率最低;三种混凝剂在投加量范围为10-12mg/L下处理腐植酸-高岭土模拟地表水时可以取得最佳的混凝去除效果和最低的残留铝含量;但它们取得最佳混凝效果和最低残留铝含量的pH范围分别为6.0-7.0和7.0-8.0;三种混凝剂净化后水中残留铝均大部分以溶解性总铝的形式存在(约60%-80%),溶解性有机铝在总溶解性铝巾所占比例较大,溶解性单体铝组分基本均为溶解性无机单体铝。
     2.PAC更适于春秋季节引黄水库水混凝处理,不同投加量和pH下具有比传统氯化铝混凝去除率更高、电中和能力更强、残留铝含量更低、混凝剂本身余铝率更低和对水体pH改变的适应性更强的优点;氯化铝和PAC的电中和能力在酸性条件下更强,两种混凝剂混凝出水中大部分是亲水性有机物,增加投加量以及中性和偏碱性条件更利于疏水性有机物的去除;不同条件下PAC中的铝不易残留,余铝率均明显低于氯化铝的余铝率,但其混凝出水中溶解性有机结合铝含量较高;PAC在春秋季节引黄水库水处理中,取得较好混凝效果的碱化度(B)为2.0、投加量范围为12-15mg/L、初始水体pH为6.0左右;净化后水中残留铝均大部分以溶解性总铝的形式存在,且溶解性有机铝在总溶解性铝中所占比例较大,溶解性单体铝主要以溶解性无机单体铝为主;各组分残留铝浓度及混凝剂余铝率均在投加量为12~15mg/L、pH为7.0-8.5下较低,可有效控制混凝出水中的残留铝含量;此外,B值为2.0的PAC在春季水库水处理巾余铝率较低。
     3.在冬季低温低浊引黄水库水处理中,聚硅氯化铝(PASiC)以吸附架桥和卷扫絮凝为主,B值为2.0、硅铝摩尔比为0.05时PASiC具有更好的混凝效果和更低的残留铝含量;不论B值和硅铝摩尔比如何变化,PASiC均在投加量范围为12-15mg/L、初始pH为6.0-7.0时对引黄水库水中的浊度和有机物具有良好的去除效果,而在投加量为10~15mg/L、初始pH为7.0-8.5下PASiC混凝后水巾含有较低浓度的残留铝;PASiC更适宜于去除水库水巾疏水性和具有芳香族特性的大分子有机物;PASiC在冬季低温低浊引黄水库水处理中,混凝出水巾残留铝中大部分是总溶解性铝,在总溶解性铝中溶解性单体铝的成分最大,溶解性单体铝主要以溶解性无机单体铝为主;同使用PAC处理春秋季引黄水库水相比,使用PASiC(?)昆凝处理冬季低温低浊引黄水库水时混凝剂的最佳投加量较高
     4.在夏季高藻引黄水库水处理中,向PAC中引入聚二甲基二烯丙基氯化铵(PDMDAAC)后制备出的聚合氯化铝-聚二甲基二烯丙基氯化铵(PAC-PDMDAAC)复合混凝剂的混凝特性受无机有机组分质量比(MR值)及B值的影响,B值为2.0、MR值为4:1时复合混凝剂的混凝效果较好;PAC-PDMDAAC处理夏季高藻引黄水库水的最佳投加量为6mg/L,最佳水体pH为6.0左右;B值为2.0、MR值为4:1的PAC-PDMDAAC()昆凝出水巾不同组分残留铝含量较低,更易降低出水中残留铝的浓度;投加量与pH值对复合混凝剂在水体中的残留铝量有一定的影响,在投加量为6-8mg/L、初始pH为7.0-8.5的条件下可有效控制净化水中残留铝含量;混凝剂混凝出水中残留铝中大部分是总溶解型铝,总溶解性铝溶解性有机铝成分最大,溶解性单体铝主要以溶解性无机单体铝为主。
     5.总铝、总溶解性铝、溶解性单体铝及溶解性有机铝的浓度随混凝沉淀水力条件的变化呈现出了不同的变化规律;从残留铝含量及组分分布来看,快速搅拌强度、快搅时间、慢速搅拌强度、慢速搅拌时间和沉淀时间对水中不同组分残留铝的含量具有不同程度的影响。使用PAC和PASiC处理相应季节引黄水库水中选择快速搅拌转速为200r/min、快速搅拌时间为1min、慢速搅拌转速为40r/min、慢速搅拌时间为15min时对不同组分残留铝的控制效果最佳;使用PAC-PDMDAAC处理夏季引黄水库水巾选择快速搅拌转速为100~200r/min、快速搅拌时间为1min、慢速搅拌转速为40~50r/min、慢速搅拌时间为15~20min、时能够使PAC-PDMDAAC(?)争化后水中含有较低浓度的残留铝:相对于混凝过程,沉淀过程对残留铝组分的影响略小。综合考虑水处理工艺的实际运行情况及不同残留铝组分的浓度,在使用不同的铝盐混凝剂处理相应季节引黄水库水中应选择沉淀时间为30min较好。
     6.使用同种混凝剂在不同水体pH下处理引黄水库水时存在一个最佳粒径、强度、生长速度和浊度去除率使净化后水中总铝和颗粒态铝浓度最低。复合混凝剂中MR=2:1时最佳粒径为335~347μm、最佳生长速度为35.2~35.7μm/min、最佳絮体强度为30、最适浊度去除率为75.2%-76.1%;MR=4:1时该最佳粒径为342-381μm、最佳生长速度为38.5~47.7μm/min、最佳絮体强度为26、最适浊度去除率为78.6%-80.9%;MR=8:1时该最佳粒径为278~300μm、最佳生长速度为32.1-33.7μm/min、最佳絮体强度为33、最适浊度去除率为74.6%-75.1%。在某一水体pH下采用具有不同MR值的复合混凝剂处理引黄水库水时,絮体粒径和生长速度越大、强度越低、浊度去除率越高,相应组分残留铝浓度尤其是颗粒态铝浓度越低;颗粒态铝浓度与絮体粒径或生长速度之间均呈现较明显的负线性相关性,其与絮体强度之间呈现较明显的正线性相关性;同种混凝剂下影响残留铝浓度的最主要因素是pH变化引起铝溶解度的变化;在某水体pH下采用不同MR值的混凝剂处理引黄水库水时影响铝浓度的最主要因素是混凝去除效果;溶解态有机结合部分残留铝的浓度与有机物去除率之间以及颗粒组分残留铝浓度与浊度去除率之间均呈现较弱的负线性相关性。
Based on comprehensive analysis of numerous literatures, the fractionation and measurement of residual Al speciation was determined for drinking water treatment. Effect of coagulant type, synthesis condition, coagulant dosage, initial pH and hydraulic condition on coagulation performance, residual Al concentration, residual Al speciation distribution and residual Al ratio were investigated with respect to the coagulation treatment of humic acid-kaolin simulated water and reservoir water in this research. The optimal dosage and initial pH were confirmed for coagulation of two raw waters using various Al-based coagulants from the coagulation removal performance and residual Al concentration point of view. Optimum hydraulic condition was also clarified for seasonal reservoir water treatment using Al-based coagulants. The main factors influencing residual Al content and speciation distribution were also analyzed. In addition, relationship between coagulation performance (floc operational parameters) and residual Al speciation concentration was discussed in this paper. The main conclusions were summarized as follows:
     1. During humic acid-kaolin simulated water coagulation, turbidity and UV254removal efficiencies could reach about90%at the tested dosages for AICl3. Al2(SO4)3and polyaluminum chloride (PAC) coagulation. At higher dosage, PAC gave better coagulation effect. Residual total Al content and residual Al ratio of PAC (0.9mg/L and-3.0%, respectively) were greatly lower than those of AICl3and A12(SO4)3. PAC could effectively decrease the content of dissolved Al speciation (about0.6mg/L) with higher toxicity. At initial pH between6.0-7.0, turbidity removal rate of AICI3Al2(SO4)3and PAC was94%,91.5and90.5%, respectively, while UV254removal rate of AICI3, Al2(SO4)3and PAC was87%,88.5%and82%. respectively. PAC exhibited the least residual Al concentration and residual Al ratio regardless of pH variation. The optimal coagulation performance and lower residual Al content could be achieved at dosage of10~12mg/L. However, favorable pH range for efficient coagulation property and lower residual Al content was6.0-7.0and7.0~8.0. respectively. In addition, dissolved Al was the predominant content (60%-80%) in the effluent. In total dissolved Al, proportion of dissolved organic Al was markedly higher than that of other Al speciation. Dissolved nomomeric Al fraction was mainly present in dissolved inorganically bound Al.
     2. With respect to the coagulation treatment of reservoir water in spring and fall, PAC had the advantages of higher coagulation removal efficiency, stronger charge neutralization ability, lower residual Al concentration, lower residual Al ratio and wider suitable pH range compared to conventional AICI3. Charge neutralization was examined to be more efficient at acid conditions for AICl3and PAC coagulation. The organic material in treated water was mostly hydrophobic, and this material was removed better with higher dosages and in neutral or weakly alkaline conditions. It was not easy for Al fraction in PAC to transfer and remain in coagulated effluent and residual Al ratio of PAC was lower than that of AICl3. However, higher dissolved organically bound Al content was achievable for PAC coagulation. Coagulation performance of PAC could be optimized at basicity (B)=2.0, dosage=12~15mg/L and pH=6.0. The majority of total Al existed most in dissolved Al form, among which, dissolved organic Al was the predominant speciation. Most dissolved monomeric Al was inorganically monomeric Al. Lower values for concentration of various residual Al species and residual Al ratio were achievable at dosage=12-15mg/L and pH=7.0~8.5. Additionally, residual Al ratio was lowest at B of2.0.
     3. Adsorption bridging and sweep flocculation were main and effective mechanisms for coagulation treatment of reservoir water with low temperature and low turbidity in winter using polvaluminum silicate chloride (PASiC). With OH-/Al3-molar ratio=2.0and Si/Al molar ratio=0.05in PASiC coagulant. PASiC exhibited beneficial coagulation property and relatively lower content of residual Al. Regardless of B value and Si/Al ratio, the most efficient turbidity and organic matter removal rate were achieved at dosage of12-15mg/L and initial pH of6.0-7.0for PASiC coagulation. Yet. dosage=10~15mg/L and pH1=7.0-8.5were beneficial to the reduction of residual Al content. It was suitable for PASiC to remove macromolecular organics with hydrophobic and aromatic characteristics in reservoir water. In addition, majority of residual Al in the effluent existed in form of soluble or dissolved Al fraction. Monomeric Al was almost the major speciation in dissolved Al and dissolved inorganically-bound monomeric Al was the only component in dissolved monomeric Al. Compared to the coagulation of reservoir water in spring and fall using PAC, the optimum coagulant dosage was comparatively higher for the coagulation of reservoir water in winter using PASiC
     4. With respect to the coagulation treatment of high algae-laden reservoir water in summer, coagulation characteristics of polyaluminum chloride-poly-diallyl dimethyl ammonium-chloride (PAC-PDMDAAC) were largely influenced by hydroxyl to Al molar ratio and Al to PDMDAAC mass ratio. PAC-PDMDAAC performed better coagulation performance and relatively lower residual Al speciation concentration at B=2.0and A1/PDMDAAC=4:1. The optimal coagulant dosage and initial pH for PAC-PDMDAAC coagulation were6mg/L and6.0. respectively. Concentration of various residual Al species in finished water was dramatically affected by coagulant dosage and initial pH for the composite PAC-PDMDAAC Coagulation conditions of dosage=6-8mg/L and initial pH=7.0~8.5were favorable for the control of residual Al speciation concentration. Majority of the total Al in treated water was dissolved Al. In the dissolved Al fraction, organically bound Al forms were present at a higher proportion. There existed almost no dissolved organically bound nomomeric Al fraction in treated water.
     5. Concentrations of total Al, total dissolved Al, dissolved monomeric Al and dissolved organically bound Al showed different variation tendency along with the variation of hydraulic conditions during coagulation. For the coagulation treatment of reservoir water using PAC and PASiC, concentrations of various residual Al speciation could be effectively reduced at conditions of rapid mixing speed=200r/min, rapid mixing time=l min. slow mixing speed=40r/min. slow mixing time=15min and settlement time=30min. For PAC-PDMDAAC coagulation in high algae-laden reservoir water in summer, the rapid mixing speed, rapid mixing time, slow mixing speed, slow mixing time and settlement time for minimal residual Al content were 100~200r/min,1min,40~50r/min,15~20min,respectively. The effect of settlement procedure on residual Al concentration was comparatively lower compared to the coagulation process. Considering actual water treatment process and residual Al speciation concentration, settlement time should be determined at30min for seasonal reservoir water treatment using various Al-based coagulants.
     6. The moderate (optimum) floc size, strength factor, growth rate and turbidity removal efficiency were favorable to the reduction of total Al and suspended Al content for one coagulant under various pH conditions. For PAC-PDMDAAC (MR=2:1) coagulation, concentration of total Al and suspended Al could be reduced effectively at floe size of335~347μm, floc growth rate of35.2~35.7μm/min,floc strength of30and turbidity removal rate of75.2%~76.1%. In case of MR=4:1,the optimum parameters for residual Al content minimization were:floc size=342~381μm, floc growth rate=8.5~47.7μm/min, floc strength=26and turbidity removal efficiency=78.6%~80.9%. In case of MR=8:1, content of of total Al and suspended Al could be minimized at floc size of278~300μm, floc growth rate of32.1~33.7μm/min, floc strength of33and turbidity removal rate of74.6%~75.1%. Under these conditions, residual Al content was mainly affected by Al solubility due to pH variation. For different coagulation system under same pH condition, comparatively lower corresponding residual Al content was achieved at larger floc size, higher floc growth rate, lower floc strength and higher turbidity removal efficiency. And residual Al concentration was primarily related to coagulation removal performance for different coagulation system under the same pH condition. Residual Al content and floc operational parameters (coagulation efficiency) exhibited a linear correlation.
引文
[1]Huang J, Yang Z H, Zeng G M, et al. Influence of composite flocculant of PAC and MBFGA1 on residual aluminum speices distribution [J]. Chem. Eng. J., 2012,191:269-277.
    [2]胡万里.混凝·混凝剂·混凝设备[M].北京:化学工业出版社.2001:29-32.
    [3]韩宏大,叶伟,叶长青,等.新型聚合铝的生产性试验研究[J].环境科学.2006,27(4):704-708.
    [4]刘海龙,夏忠欢,王东升,等.典型南方水强化混凝有机物分级处理研究[J].环境化学,2006,27(5):909-912.
    [5]Dentel S K, Gossett J M. Mechanisms of coagulation with aluminum salts [J].J Am Water Works Assoc,1988,80 (4):187.
    [6]Dentel S K.. Coagulation control in water treatment [J]. CRC Critical Reviews in Environ. Control,1991,21 (1):41.
    [7]Guibaud G, Gauthier C. Study of aluminum concentration and speciation of surface water in four catchments in the Limousin region (France) [J]. J. Inorg. Biochem.,2003,97:16-25.
    [8]白术杰.多种饮用水水质中铝含量的测定和分析[J].佳木斯大学学报(自然科学版),2006,24(3):441-443.
    [9]曹雷.饮用水及地表水中痕量铝的测定[J].2005.18(增刊):102-104.
    [10]Devoto E, Yokel R A. The biological speciation and tocokinetics of aluminum. Environ Health Pers,1994,102 (11):940.
    [11]陆九韶,覃东立,孙大江,等.间接火焰原子吸收光谱法测定水和废水中[J].环境保护科学,2008,34(3):111-113.
    [12]Corain B. Bombi G G. Tapparo A. et al., Aluminium toxicity and metal speciation: established data and open questions [J]. Coordination Chem. Reviews.1996.149: 11-22.
    [13]Domingo J L. Reproductive and development tosicity of aluminum:A Review [J]. Neutrotoxilogy and Teratology.1995,17(4):515-521.
    [14]高宝平,李婧芳,武五爱,等.铝形态分析的研究进展[J].理化检验-化学分析,2011,47(3):371-376.
    [15]George S, Pandit P, Gupta A B. Residual aluminium in water defluridated using activated alumima adsorption-Modelling and simulation studies [J]. Water Res.. 2010,44:3055-3064.
    [16]王志红.给水处理厂测定水中微量铝的方法探讨[J].工业水处理.2007.27(5):70-72.
    [17]庄玉贵,叶瑞洪,颜文强,等.饮用水巾微量铝测定方法的改进[J].中国卫生检验杂志,2005,15(10):1262-1263.
    [18]刁晓霞.水中微量铝的分析[J].环境与健康杂志.2007,24(12):1016-1018.
    [19]Sanz-Medel A, Soldado Cabezuelo A B, Milacic R, et al. The chemical speciation of aluminum in human serum [J]. Coordination Chem. Reviews.2008.228: 373-383.
    [20]Gauthier E, Fortier I, Courchesne F, et al. Aluminum forms in drinking water and risk of Alzheimer's disease [J]. Environ. Res.,2000,84:234-246.
    [21]Srinivasan P T, Viraraghavan T, Surbramanian K S. Alumnium in drinking water: An overview [J]. Water SA,1999,25(1):47-56.
    [22]Emma L. S, Simon A. P, Bruce J. Seasonal variations in natural organic matter and its impact on coagulation in water treatment [J]. Sci. Total Environ.,2006, 363:183-194.
    [23]Srinivasan P T, Viraraghavan T. Characterisation and concentration profile of aluminium during drinking-water treatment [J]. Water SA,2002.28:99-106.
    [24]Van Alstyne R, McDowell L R, Davis P A. Effect of an aluminum-water treatment residual on performance and mineral status of feeder lambs [J]. Small Ruminant Res.,2007.73(1-3):77-86.
    [25]Drabek O. Boruvka L. Mladkova L. et al. Possible method of aluminum speciation in forest soils [J]. J. Inorg. Biochem..2003.97:8-15.
    [26]Berthon G. Aluminum speciation in relation to aluminum bioavailability metabolism and toxicity [J]. Coord Chem Rev..2002.228(2):319-341.
    [27]练鸿振,康玉芬,艾尔肯·牙森等.荧光分光光度法分析天然水中铝形态的研究[J].光谱学与光谱分析,2004,24(11):1391-1394.
    [28]赵华章,杨宏伟,蒋展鹏,师绍琪.利用凝胶层析分离测定胶休态铝和溶解态铝的研究[J].环境科学学报,2006,26(10):1683-1687.
    [29]Matus P, KubovaJ. Complexation of labile aluminium species by chelating resins Iontosorb-a new method for Al environmental risk assessment [J]. J. Inorg. Biochem.,2005,99:1769-1778.
    [30]Van Benschoten J E, K. Edzwald J, Measuring aluminum during water treatment: methodology and application [J]. J. Am. Water Works Ass.1990:71-78.
    [31]邓慧萍.对饮用水中剩余铝问题的研究和探讨[J].净水技术.1995.54(4):11-14.
    [32]Hoff J. The relationship of turbidity to disinfection of potable water [C]. Conf. on the Evaluation of Microbiology Standards for Drinking Water, USEPA Office of Water Supply-Washington, D.C.,1977:17-22.
    [33]Perry C C, Shafran K L. The systematic study of aluminium speciation in medium concentrated aqueous solutions [J]. J. Inorg. Biochem.,2001,87: 115-124.
    [34]段跟定,吴奇,王晓昌.自来水中残余铝的健康危害风险评价方法[J].华北水利水电学院学报,2007,28(5):74-76.
    [35]黄国伟,康静,张文治,等.氟铝联合对体外人胚大脑神经细胞的毒性作用的研究[J].环境与健康杂志,1999,16(4):196-198.
    [36]Reiber S. Drinking Water:Aluminum and Bioavailability [J]. J. AWWA,1995, 87(85):86-99.
    [37]黄国伟,康静,高玉霞等.铝氟联合对体外人胚大脑神经细胞超微结构的影响[J].中国地方病防治杂志,2000,15(1):1-3.
    [38]Harrington C R. Alzheimer's-olisease-like changes in tauprotein processing: association with aluminum accumulation in brains of renal dialysis patients [J]. The Lancet.1994.343:993.
    [39]黄国伟,康静,董亚利,等.铝对体外培养人胚成骨细胞毒性作用的研究 [J].中国公共卫生,2000.16(4):297-298.
    [40]Amador FC, Santos MS, Oliveira CR. Lipid peroxidation facilitates aluminum accumulation in rat brain synaptosomes [J]. J Toxicol Environ Health A,1999, 58(7):427-35.
    [41]Walton J. Vptace of trke aluninum into the brain from drinking water [J]. Neurotoxico,1995.16(1):187.
    [42]王林,苏德昭,王水芳.等.中国居民每日摄铝量及面制食品中铝限量卫生标准研究[J].中国食品卫生杂志.1996,8(2):1-5.
    [43]高秀清.水中残留铝对水质的影响及其检测必要性[J].环境与健康杂志,2000.17(6):381-383.
    [44]中华人民共和困国家标准CJ/206-2005.城市供水水质标准[S].
    [45]GB5749-2006,中华人民共和国国家标准-生活饮用水卫生标准[S].
    [46]肖定华.降低饮用水残余铝的中试研究[J].供水技术,2011,5(4):14-17.
    [47]赵立新,王其侠.泓凝剂对水中残余铝的影响研究[J].佳木斯大学学报(自然科学版),2001,19(2):187-190.
    [48]杨忠莲,高宝玉,岳钦艳,姜义帅.铝盐混凝剂的混凝效果与残留铝含量和组分之间的关系研究[J].环境科学,2010,31(5):1542-1547.
    [49]Yang Z, Gao B. Yue Q. Coagulation performance and residual aluminum speciation of Al2(SO4)3 and polyaluminum chloride (PAC) in Yellow River water treatment [J]. Chem. Eng. J.,2010.165:122-132.
    [50]杨忠莲,高宝玉,岳钦艳.投加量与与pH对氯化铝和聚合氯化铝(PAC)在黄河水中的混凝效果与残留铝含量及组分的影响[J].科学通报,2011,56(14):1103-1111.
    [51]Yang Z, Gao B. Wang Y. et al. The effect of additional poly-diallyl dimethyl ammonium-chloride on the speciation distribution of residual aluminum (Al) in a low DOC and high alkalinity reservoir water treatment [J]. Chem. Eng. J.,2012, 197:56-66.
    152] Yang Z. Gao B. Wang Y. et al. Fractionation of residual Al in natural water treatment from reservoir with poly-aluminum-silicate-chloride (PASiC):Effect of OH/A1. Si/Al molar ratios and initial pH [J]. J. Environ. Sci.,2012,24(11): 1908-1916.
    [53]郑淑娟,王炳建高宝玉.新型混凝剂聚合硅酸铝铁处理模拟水样后的残余铝含量研究[J].精细石油化工进展,2003,4(12):23-26.
    [54]王燕,高宝玉,岳钦艳,等.聚合铝基复合混凝剂残余铝及混凝性能的初步研究[J].环境化学,2003,22(5):475-478.
    [55]王志红,崔福义.水厂残余铝的影响因素试验研究[J].水处理技术,2004,3(2):110-112.
    [56]Yang Z L, Gao B Y, Yue Q Y. et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water [J]. J. Hazard. Mater.,2010,178 (1-3): 596-603.
    [57]Yang Z, Gao B, Wang Y, et al. Aluminum fractions in surface water from reservoirs by coagulation treatment with polyaluminum chloride (PAC): influence of initial pH and OH-/Al3+ ratio [J]. Chem. Eng. J.,2011,170:107-113.
    [58]Exall K N, Van Loon G W. Effects of raw water conditions on solution-state aluminum speciation during coagulation dilution [J]. Water Res.,2003,37: 3341-3350.
    [59]王志红,崔福义.自来水中残余铝去除的影响因素[J].工业用水与废水,2003,34(2):15-17.
    [60]Zhao H, Hu C, Liu H, et al. Role of Aluminum Speciation in the Removal of Disinfection Byproduct Precursors by a Coagulation Process [J]. Environ. Sci. Technol.,2008,42:5752-5758.
    [61]徐秀明,王燕,高宝玉,等.聚合氯化铝巾Alb形态去除腐植酸的效果及机制研究[J].环境科学,2008,29(11):3064-3070.
    [62]许伟颖,高宝玉,王燕.等.Alb形态处理模拟染料废水的效果及机制研究[J].环境科学,2010,31(1):117-123.
    [63]陈捷,吴一微.胡斌,等.用离子交换/ICP-AES(?)联用技术研究溶液中配合铝的形态及分布[J].高等学校化学学报,2003,4(6):1000-1004.
    [64]赵华章.杨宏伟,蒋展鹏,等.混凝沉淀过程中铝系混凝剂的形态转化规律 [J].中国环境科学,2005,25(2):183-187.
    [65]王文东,杨宏伟.祝万鹏,等.凝胶层析-荧光分光光度法联用分析饮用水中铝的形态[J].环境化学,2007,26(1):79-81.
    [66]王文东,杨宏伟,祝万鹏,等.北方某市给水管网系统中铝含量及形态分布状况调查[J].环境科学,2007,28(11):2557-2561.
    [67]李玉珍,陈德勋.环境样品中铝的形态分析[J].岩矿测试.1999,189(4):241-246.
    [68]Yang Z, Gao B, Xu W, et al. Effect of OH-/Al3+ and Si/Al molar ratios on the coagulation performance and residual Al speciation during surface water treatment with poly-aluminum-silicate-chloride (PASiC) [J]. J. Hazard. Mater., 2011,189:203-210.
    [69]刘文新,栾兆坤,李莉莉,等.天然水体及生活饮用水中铝的含量及形态分布[J].环境科学学报,1997,17(2):167-173.
    [70]刘振儒,安娣.矿物助凝除藻及其对残余铝形态的影响[J].供水技术.2008,2(1):8-10.
    [71]刘振儒,安娣.PAC与粘土矿物混凝去除颤藻及残余铝形态研究[J].环境工程学报,2008,2(12):1647-1650.
    [72]Wang W, Yang H, Wang X, et al. Factors effecting aluminum speciation in drinking water by laboratory research [J].2010,22(1):47-55.
    [73]Wang W, Yang H, Wang X, et al. Effects of fulvic acid and humiv acid on aluminum speciation in drinking water [J].2010.22(2):211-217.
    [74]尤婷婷.PAC复合海泡石絮凝对去除水体中藻类及对残余铝形态分布的影响[J].青岛科技大学学报(自然科学版).2010.31(5):473-476.
    [75]Yang Z, Gao B, Wang Y, et al. Relationship between residual Al species, floc operational parameters and coagulation performance during reservoir water treatment by PAC-PDMDAAC [J]. Sep. Purif. Technol.,2013.102:147-156.
    [76]崔福义,胡明成,张燕,等.我国部分城市饮用水中铝含量调查[J].中国给水排水,2002,18(1):5-8
    [77]蒋绍阶,梁建军.净水中残余铝的危害与控制[J].重庆建筑大学学报.1999.21(6):27-30.
    [78]Kim T H, Park C, Yang J, et al. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation [J]. J. Hazard. Mater., 2004,112:95-103.
    [79]齐心,黄文龙.无机高分子聚合铁盐混凝剂的新研究进展[J].化学工程与装备,2011,9:188-189.
    [80]Cheng W P. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution [J]. Chemosphere,2002,47: 963-969.
    [81]肖定华,柯水洲,曲志军.采用混凝剂和助凝剂控制水正残余铝的试验研究[J].给排水技术(增刊),2007,33:134-137.
    [82]工志红,崔福义.混凝沉淀工艺对残余铝去除的影响[J].水处理技术.2005.31(7):69-72.
    [83]Gao B, Yue Q, Wang B. Coagulation efficiency and residual aluminum content of polyaluminum silicate chloride in water treatment [J]. Acta hydrochim. hydrobiol.,2004,32(2):125-130.
    [84]杨海燕,陈忠林李圭白,等.聚硅酸金属盐混凝剂处理低浊水定语残余铝的影响[J].哈尔滨工业大学学报,2004,36(3):313-316.
    [85]王晓峰.聚合硅酸铝铁混凝处理水中残余铝含量的研究[J].山西建筑,2007,33(15):198-199.
    [86]Yang Z, Gao B, Cao B, et al. Effect of OH-/A13+ ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment [J]. Sep. Purif. Technol.,2011,80:59-66.
    [87]王志红,崔福义.pH值和水温对残余铝的影响试验研究[J].广东工业大学学报,2003,20(3):71-75.
    [88]张飞翔,陈仲赟.聚合氯化铝处理低温低浊水时通过控制pH值控制出水残余铝含量[J].内蒙古石油化工,2008,(4):37-38.
    [89]Wang W, Li H, Ding Z. et al. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification [J].J. Environ. Sci.,2011,23(7):1079-1085.
    [90]张娣,王东田,赵升培.降低饮用水中残余铝浓度研究[J].渤海大学学报(自然科学版).2011,32(5):274-278.
    [91]盛力,马军,高乃云.金属氧化物改性滤料过滤去除水中残余铝的效能与机理研究[J].给水排水,2007,33(5):128-131.
    [92]孙钦荣.文继卿,付君善.壳聚糖及其衍生物对饮用水中残余铝吸附性能研究[J].精细石油化工进展,2009,10(3):45-47.
    [93]Wang W, Yang H. Zhao H, et al. Transfer and transport of aluminum in filtration unit [J]. J. Environ. Sci.,2007,19:897-901.
    [94]王燕,高宝玉,岳钦艳,等.铁盐类无机有机复合絮凝剂的水解特性及脱色效能[J].环境化学,2006,25(6):730-734.
    [95]Qin J J, Htun Oo M, A. Kekre K, et al. Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water [J]. Sep. Purif. Technol.2006.49:295-298.
    [96]Guigui C, Rouch J C, Durand-Bourlier L. et al. Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production [J]. Desalination.2002.147:95-100.
    [97]岳钦艳,高宝玉,苗晶.高浓度聚合氯化铁(PFC)混凝剂的电动特性及其混凝机理探讨[J].山东大学学报(理学版).2003,38(4):92-96.
    [98]Pesavento M, Alberti G, Biesuz R. Investigation of the speciation of aluminum in drinking waters by sorption on a strong anionic-axchange resin AG1X8 [J]. Analytical Chimica Acta.1998.367:215-222.
    [99]曲久辉,崔福义,李圭白.混凝剂的水溶液形态与流动电流的相关特性分[J].环境科学学报,1996,16(2):168-173.
    [100]Hem J D, Roberson C E. Aluminum reactions and products in mildly acidic aqueous systems [M]. In Chemical Modeling and Aqueous systems Ⅱ.429. 1990.
    [101]李小云,黄晓菊.絮凝沉降技术在水处理中的应用研究[J].北方环境,2011,23(10):34-36.
    [102]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,(3),1-12.
    [103]Baes C F. Jr. Mesmer R E. The hydrolysis of cations [M]. Wiley-Interscience. NewYork,1976.
    [104]高廷耀,顾国维.水污染控制工程(下册,第二版)[M].北京:高等教育出版社.1999:206-209.
    [105]徐世平,许春华,高宝玉,等.水体中悬浮颗粒物浓度对混凝效果的影响及机理探讨[J].山东大学学报(工学版),2006,36(5):89-93.
    [106]Sharp E L, Jarvis P, Parsons S A, et al. Impact of fractional character on the coagulation of NOM [J] Colloid. Surface. A,2006,286:104-111.
    [107]Golob V, Vinder A, Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents [J]. Dyes Pigments,2005,67, 93-97.
    [108]郭瑾,马军.不同性质天然有机物对水中颗粒稳定性影响的机理研究[J].环境科学,2006,27(3):461-468.
    [109]Bolto B, Gregory J. Organic polyelectrolytes in water treatment [J]. Water Res.. 2007,41(11):2301-2324.
    [110]Wei J C, Gao B Y, Yue Q Y, et al. Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water [J]. J. Hazard. Mater.,2009, 165(1-3):789-795.
    [111]曹百川,高宝玉,许春华,等.pH对铁盐混凝剂处理黄河水效果及生成絮体的影响[J].科学通报,2010,55(9):758-763.
    [112]Zhao H, Peng J, Lin S, et al. Covalently bound organic silicate aluminum hybrid coagulants:preparation, characterization and coagulation behavior [J]. Environ. Sci. Technol.,2009,43:2041-2046.
    [113]Dihang D, Aimar P, Kayem J, et al. Coagulation and flocculation of laterite suspensions with low levels of aluminum chloride and polyacrylamids [J]. Chem. Eng. Processing,2008,47(9-10):1509-1519.
    [114]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61-64.
    [115]Costa A R, Pinho M N, Performance and cost estimation of nanofiltration for surface water treatment in drinking water production [J]. Desalination,2006,196: 55-65.
    [116]中华人民共和国国家标准GB 5476-85,离子交换树脂预处理方法[S].
    [117]邵林.水处理用离子交换树脂[M].北京:水利电力出版社.1989:125-130.
    [118]钟佩珩.分析化学[M].北京:化学工业出版社.2001.
    [119]刘丽菁,张成敏.薛新望.离子交换树脂再生方法的改进[J].海峡预防医学杂志,2000,6(5):44-45.
    [120]中华人民共和国国家标准GB/T5750.6-2006.生活饮用水标准检验方法金属指标[S].
    [121]吴彦瑜,陈文纳.聚合硫酸铝铁处理水后残留铝量的测定[J].广西师范学院学报(自然科学版),2008,25(1):46-49.
    [122]Gregory J. Turbidity fluctuation in flowing suspensions [J]. J. Colloid. Interface Sci..1985.105:357-371.
    [123]Burgess M S. On-line optical determination of floc size [J]. Part I:Principles and techniques[J]. J. Pulp Paper Sci.,2002.28:63-65.
    [124]Cory H D.. Ducoste J J. Characterizing flocculation under heterogeneous turbulence[J]. J Colloid Interface Sci.,2003.264:184-194.
    [125]Francois R J. Strength of aluminum hydroxide floes [J]. Water Res..1987,21(9): 1023-1030.
    [126]Yukselen M A. Gregory J. The reversibility of floe breakage [J]. Int. J. Miner. Process..2004.73 (2-4).251-259.
    [127]Jarvis P. Jefferson B. Parsons S A. Breakage, regrowth. and fractal nature of natural organic matter floes [J]. Environ. Sci. Technol..2005,39(7):2307-2314.
    [128]Jekel M R. Ueinmann B. Residual aluminum in drinking-water treatment [J]. J WSRT Aqua.1989.38:281-288.
    [129]Miller R G. Kopfler F C. The occurrence of aluminum in drinking water [J]. JAWWA.1981.84:84-91.
    [130]高宝玉,岳饮艳,王占生,等.聚硅氯化铝(PASC)(?)混凝剂的混凝性能[J].环境科学,2000,21(2):46-49.
    [131]王东升.汤鸿霄,John Gregory. IPF-PACl混凝动力学研究:形态组成的的重要 性[J].环境科学学报,2001,(增刊):17-22.
    [132]Amuda O S. Amoo I A. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment [J].J. Hazard. Mater.. 2007,141:778-783.
    [133]Shi B, Wei Q, Wang D. et al. Coagulation of humic acid:The performance of preformed and non-preformed Al species [J]. Colloid Surface A.2007.296. 141-148.
    [134]Zhang P, Wu Z, Zhang G. et al. Coagulation and characteristics of polyaluminum chlorides PAC-Al30 on humic acid removal from water [J]. Sep. Prif. Technol., 2008,63:642-647.
    [135]石健,王东升.不同聚合铝对水中有机物的去除研究[J].环境科学与技术2008,31(12):128-131.
    [136]Yan M, Wang D, Qu J, et al. Relative importance of hydrolyzed Al(Ⅲ) species (Ala, Alb, and Ale) during coagulation with polyaluminum chloride:A case study with the typical micro-polluted source waters [J].J Colloid Interf Sci.2007.316: 482-489.
    [137]Lin J L. Huang C, Pan J R, et al. Effect of Al(Ⅲ) speciation on coagulation of highly turbid water [J]. Chemosphere.2008.72:189-196.
    [138]李晓东,蔡国庆,马军.水中有机成分及其对饮用水水质的影响[J].给水排水,25(5):12-15.
    [139]Wang D S, Sun W, Xu Y, et al. Speciation stability of inorganic polymer flocculant-PACl [J]. Colloids Surf. A,2004.243:1-10.
    [140]Li C W, M. Benjamin M, V. Korshin G. Use of UV spectroscopy to characterize the reaction between NOM and free chlorine [J]. Environ. Sci. Technol.,2000. 34:2570-2575.
    [141]张水吉,周玲玲刘志生.等.水中天然有机物的分类特性及其卤代活性[J].环境科学,2005.26(1):104-107.
    [142]L. Sharp E. A. Parsons Simon. Jefferson B. The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts[J]. Environ. Pollut..2006.140:436-443.
    [143]Bolto B. Dixon D, Eldridge R, et al. Cationic polymer and clay or metal oxide combinations for matural organic matter removal [J]. Water Res..2001.35(11): 2669-2676.
    [144]Gibbs R J. Effect of natural organic coating on the coagulation of particles [J]. Environ. Sci. Technol.,1983,17:237-240.
    [145]石明岩,崔福义,张海龙,等.低温低浊受污染水处理中混凝剂的优化选择[J].工业水处理.2002,22(10):29-31.
    [146]王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂的混凝性能[J].环境科学学报,2001,21:37-42.
    [147]Cheng W P, Chi F H, Li C C, et al. A study on the removal of organic substances from low-turbidity and low-alkalinity water with metal-polysilicate coagulants [J]. Colloid. Surface. A,2008.312(2-3):238-244.
    [148]Wang D S, Tang H X. Modified inorganic polymer flocculant-PFSi:its preparation, characterisation and coagulation behaviour [J]. Water Res..2001, 35(14):3418-3428.
    [149]Moussas P A. Zouboulis A I. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant-polyferric silicate sulphate (PFSiS) [J]. Sep. Purif. Technol.,2008,63(2):475-483.
    [150]顾夏声,黄铭荣,王占生.水处理工程[M].清华大学出版社,1985:53-80.
    [151]Dubbin W E, Sposito G. Copper-glyphosate sorption to microcrystalline gibbsite in the presence of soluble Keggin Al13 polymer [J]. Environ. Sci. Technol.,2005, 39:2509-2514.
    [152]邱俊明.邱祖民.铁改性聚硅酸盐类絮凝剂的研究进展[J].江西化工2003,1:1-3.
    [153]Fu Y., Yu S. L., Yu Y. Z.,et al. Reaction mode between Si and Fe and evaluation of optimal species in poly-silicic-ferric coagulant [J]. J. Environ. Sci.2007.19(6): 678-688.
    [154]张声,谢曙光,张晓健,等.利用强化混凝去除水中天然有机物的研究进展[J].环境污染治理技术与设备,2003,4:19-22.
    [155]Julien F, Giieroux B. Mazet M. Comparison of organic compounds removal by coagulation-flocculation by adsorption onto performed hydroxide floes [J]. Water Res.,1994,28:2567-2574.
    [156]Zhao H, Liu H, Qu J. Effect of pH on the aluminum salts hydrolysis during coaglations process:formation and decomposition of polumeric aluminum speices [J]. J. Colloid Interface Sci.,2009,330:105-112.
    [157]Yan M, Wang D, Yu J, et al. Enhanced coagulation with polyaluminum chlorides:role of pH/Alkalinity and speciation [J]. Chemosphere,2008,71: 1665-1673.
    [158]江丽,蒋文举,谈牧.微波法复合絮凝剂PAFC-PAM的制备及脱色性能[J].环境科学与技术.2009,32(6):72-75.
    [159]Pinotti A, Zaritzky N. Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes [J]. Waste Manage.,2001,21: 535-542.
    [160]Wei J, Gao B. Yue Q, et al. Strength and regrowth properties of polyferric-polymer dual-coagulant floes in surface water treatment [J]. J. Hazard. Mater.,2010.175:949-954.
    [161]高宝玉.水和废水处理用复合高分子絮凝剂的研究进展[J].环境化学.2011,30(1):337-345.
    [162]Gao B Y, Wang Y, Yue Q Y. The chemical species distribution of aluminum in composite flocculants prepared from polyaluminum chloride (PAC) and polydimethyldiallylammonium chloride (PDMDAAC) [J]. Acta Hydroch. Hydrob.,2005.33(4):365-371.
    [163]Sun C, Yue Q. Gao B, et al. Synthesis and floe properties of polymeric ferric aluminum chloride-polydimethyl diallylainmonium chloride coagulant in coagulating humic acid-kaolin synthetic water [J].Chem. Eng. J.,2012.185-186: 29-34.
    [164]张灵燕.吴波,张芮铭.强化混凝与优化混凝在常规水处理中的运用[J].环境科学导刊.2008,27(1):56-59.
    [165]Mhaisalkar V A. Paramasivam R. Bhole A G. Optimizing physical parameters of rapidmix design for coagulation-flocculation of turbid waters [J]. Water Res 1991,25(1):43-52.
    [166]刘海龙,王东升,王敏,等.强化混凝对水力条件的要求[J].中国给水排水,2006.22(5):1-4.
    [167]Biggs C A, Lant P A. Activated sludge flocculation:on-line determination of floe size and the effect of shear [J]. Water Res..2000.34:2542-2550.
    [168]Parker D S. Kaufman W J, Jenkins D. Floe breakup in turbulent flocculation processes [J]. J. Sanit. Eng. Div.:Proc. Am. Soc. Civ. Eng..1972, SA1:79-99.
    [169]Wang Y. Gao B Y, Yue Q, et al. Flocculation performance of epichlorohydrin-dimethylamine polyamine in treating dyeing wastewater [J]. J. Environ. Manage., 2009,91:423-431.
    [170]Wang Y, Gao B Y, Xu X, et al. Characterization of floe size, strength and structure in various aluminum coagulants treatment [J]. J. Colloid. Interf. Sci., 2009,332:354-359.
    [171]Yukselen M A, Gregory J. The effect of rapid mixing on the break-up and re-formation of floes [J]. J. Chem. Technol. Biot..2004,79:782-788.
    [172]付英,于水利.于衍真,等.聚硅酸铁混凝剂絮凝与破碎的定量研究[J].环境科学,2008,29(1):92-98.
    [173]Li T, Zhu Z, Wang D, et al. The strength and fractal dimension characteristics of alum-kaolin floes [J]. Int. J. Miner. Process.,2007,82:23-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700