用户名: 密码: 验证码:
薄层纤维素醚改性水泥浆体水化历程和微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国目前正处于城镇化高速发展的关键时期,外墙外保温系统作为建筑节能的主要技术途径,其中,粘结砂浆和抗裂砂浆等薄层砂浆对于保证外墙外保温系统的节能效果和耐久性的实现起着重要的作用,在此背景下,研究薄层砂浆的水化关键问题具有特别重要的意义。本研究工作来源于“十二五”国家科技支撑计划项目(2011BAJ04802)和国家自然科学基金(50902107)。通过研究纤维素醚(cellulose ether,CE)改性水泥浆体的流变性能和热-电特性,探明多因素环境下水泥浆体的水化动力学过程。根据薄层CE改性水泥浆体的使用环境的不同,研究了快速失水条件下水泥浆体的水化规律。基于薄层水泥浆体流变特性、水化动力学过程和快速失水条件下的水化规律建立了薄层CE改性水泥浆体水化过程和界面过渡区微观结构模型,阐述了薄层CE改性水泥浆体的水化特征。
     本文主要的工作及所取得的重要成果如下:
     1.根据CE在水溶液(拌和阶段环境)和水泥浆体(水化阶段环境)2种液相环境中的流变特性,系统研究了CE成膜过程及溶液环境(温度、pH值、离子的种类和价态)对水溶液和水泥浆体流变特性的影响,揭示了CE在不同液相环境中成膜过程及温度、pH值、离子对其在水溶液和水泥浆体中的作用机理。
     以表观粘度、剪切应力、屈服应力和塑性粘度为评价指标,研究了CE种类和掺量对水溶液和水泥浆体流变特性的影响。探讨了不同温度和pH值时CE在水溶液和水泥浆体中的流变特性,确立了CE的低临界溶解温度和等电点。分别研究了阳离子、阴离子及其价态对CE溶液表观粘度的影响,基于“感胶离子序”的规律阐述了离子种类和价态对CE溶液表观粘度的作用机理,揭示了CE在复杂液相环境中的成膜特征,为研究塑性阶段CE改性水泥浆体的流变特性提供了理论依据。
     2.提出了CE-聚水与缓释组分(CWRC)改性水泥浆体水化动力学过程的设计与制备方法,基于对水化热和电阻率微分曲线分析,掌握了水泥水化初期的宏观热学效应及电化学特征变化规律,研究了水化热和电阻率与水泥水化进程的关系,建立了CE-CWRC-水泥三元体系水化热-电模型。
     分别研究了CE和CWRC对水泥水化热和电阻率的影响,指出CWRC对水泥水化各阶段的延迟作用小于CE。研究了电阻率和水化放热量与Ca(OH)2和化学结合水含量的关系,发现具有线性相关性,为研究水泥水化早期结构形成及水化进程提供了一种新的结构参数。通过对水化热和电阻率微分曲线分析,建立了CE-CWRC-水泥三元体系水化热-电模型,将水泥水化过程分为:溶解-析出平衡期、结构形成期、结构发展期和结构稳定期4个阶段,且模型中水化热和电阻率微分在表征水泥早期水化动力学过程具有较好的一致性,可以准确描述水泥水化历程及结构形成的瞬时状态。
     3.首次提出了CE改性薄层水泥浆体在快速失水条件下的试验设计与评价方法,通过改变水泥浆体厚度、养护温度和基体材料的种类,系统研究了CE改性薄层水泥浆体的早期失水特征、界面性能和微观分析,探明了薄层水泥浆体的水化规律和微观结构发展机制。
     以失水速度和失水率为评价指标,研究了薄层水泥浆体在快速失水条件下的早期失水特征,并阐述了其失水机制。分析了水泥浆体厚度、养护温度和基体材料的种类对薄层水泥浆体界面性能的影响,指出了不同龄期时的界面破坏形式。通过XRD、FTIR和TG-DSC分析,研究了薄层水泥浆体在快速失水条件下的水化规律。通过对快速失水条件下水泥浆体表层、中间层和界面层3个区域的微观分析,探明了水化产物沿水泥浆体厚度方向上的分布规律,揭示了薄层水泥浆体的界面破坏原理,为研究外墙外保温系统中保温层脱落和保护层的空鼓、开裂等问题奠定了理论基础。
     4.根据薄层水泥-CE浆体中水分和离子的迁移、CE成膜、水泥浆体的硬化过程,分析了水化产物沿薄层水泥浆体厚度方向上的分布规律,建立了实际服役环境下的薄层水泥-CE浆体水化过程和界面过渡区微观结构模型。
     根据CE成膜与溶解过程、薄层水泥浆体的失水机制与离子迁移过程、水化历程与微观结构发展机制、水化产物的分布规律,建立了实际服役环境下薄层水泥-CE浆体的水化过程模型。根据基体材料的孔结构与吸水特性,分析了薄层水泥浆体的失水特征、界面微结构的变化、水化产物的种类和数量分布,建立了薄层水泥浆体与基体材料间的界面过渡区微观结构模型,对于研究薄层水泥-CE浆体水化规律具有重要的理论与实际意义。
At present, urbanization in our country is in a rapid growth. External thermal insulation system is main technical approaches of building energy efficiency. Adhesive mortar and anti-crack mortar play an important role in protecting energy-saving effect and durability. Against this background, it has especially important significance of research of hydration key problems of thin layer mortar. The research was funded by National science and technology support project (No.2011BAJ04B02)" and Youth Fund of National Natural Science Foundation of China (No.50902107)". In multiple factors environment, kinetics of hydration process of cement paste modified with cellulose ether (CE) was verified by the research of rheological properties and heat-electrical characteristics. According to different service environment of cement paste, hydration mechanism of cement paste was studied under the condition of rapid water loss. To elaborate hydration characteristics of thin layer cement paste modified with CE, the model of hydration process and interface transition zone microstructure of thin layer cement paste modified with CE was established based on rheological properties, kinetics of hydration process and hydration mechanism under the condition of rapid water loss of cement paste modified with CE.
     The main research and obtained important achievement of this article as follows:
     1. Based on rheological behavior of CE in aqueous solution (mixing stage environment) and (hydration stage environment),film-forming process of CE and influence of solution environment (temperature, pH, ion species and valence) on rheological behavior of aqueous solution and cement pastes were studied. Film-forming process of CE in different liquid phase environment and mechanism of temperature, pH, ion species and valence were obtained.
     Apparent viscosity, shear stress, yield stress and plastic viscosity were used as index system. The influence of kind and dosage of CE on rheological behavior was studied. Rheological properties of aqueous solution and cement paste which modified with CE were discussed under different temperature and pH. At the same time, the lower critical solution temperature and isoelectric point of CE were obtained. The sensitivity of HPMC, HEMC and HEC to pH is different. The influence of cations, anions and its valence on apparent viscosity of CE solution was respectively studied. Mechanism of ions species and valence was expounded based on lyotropic series and revealed the film-forming characteristics of CE in complex liquid phase environment. Theoretical basis was provided for studying the rheological properties of cement paste modified with CE in plastic stage.
     2. Design and preparation methods of kinetics of hydration process of cement pastes modified with CE and cohesion water and slow release components (CWRC) were put forward. Based on hydration exothermic rate curve and derivate of resistivity curve of cement hydration, macro thermal effect and electrochemical characteristics change rule of early stage of cement hydration were mastered and the relationship among hydration exothermic, resistivity and cement hydration process was studied. Heat-electric model of system composed of CE, CWRC and cement was established.
     The influence of CE and CWRC on hydration exothermic and resistivity of cement pastes was studied and delay effect of CWRC was less than CE on each stage of cement hydration was pointed out. It had linear dependence among Ca (OH)2content, chemically combined water content, hydration heat quantity and resistivity. A new structure parameter was provided to describe structure formation and hydration process. Heat-electric model of system composed of CE, CWRC and cement was established by analysis of hydration exothermic rate curve and derivate of resistivity curve of cement hydration. The process of cement hydration was divided into solution-precipitation equilibrium stage, structure formation stage, structure development stage and structure stability stage. It had a good consistency that description of hydration exothermic rate and derivate of resistivity on hydration kinetics process of cement in early stage. Instantaneous state of structure formation and process of cement hydration could be accurately described.
     3. Trial design and evaluation methods of thin layer cement pastes modified with CE under rapid water-loss were first proposed. Water loss characteristics, interface properties and microscopic analysis were studied of cement pastes modified with CE in early stage by change of thickness of cement pastes, curing temperature and kinds of matrix materials. Hydration mechanism and principle of microstructure formation of thin layer cement pastes were found out.
     Water-loss speed and water-loss rate were used as assessment criteria to study water-loss characteristics and mechanism of thin layer cement pastes under rapid water-loss. The influence of thickness of cement pastes, curing temperature and kinds of matrix materials on interface properties of thin layer cement pastes and described interface damage form of different ages. Hydration law of thin layer cement pastes under rapid water-loss was studied by XRD, FTIR and TG-DSC. Distribution regularities of hydration products along the thickness direction of cement paste were proved by microanalysis of surface layer, interlayer and interface layer of cement pastes under rapid water-loss. Principle of interfacial damage of thin layer cement paste was revealed and laid a theoretical basis for analysis of insulation layer drop and covering layer empty drum and cracking of external thermal insulation system.
     4. Based on water and ion migration, CE film formation and hardening process of cement paste of thin layer cement pastes modified with CE, distribution regularities of hydration products along the thickness direction of cement paste were analyzed. The model of hydration process and interface transition zone microstructure of thin layer cement paste modified with CE under actual service environment was established.
     The model of hydration process of cement paste modified with CE under actual service environment was established according to CE film formation and dissolve process, water-loss mechanism and ion migration process, hydration process and microstructure, distribution regularities of hydration products. Characteristics water-loss, changes of interface microstructure, kinds and amount of hydration products were analyzed on the basis of pore structure and water absorption of substrate materials and model between interface transition zone microstructure and matrix material of thin layer cement paste was established. It had important theoretical and practical significance of research on hydration mechanism of thin layer cement pastes modified with CE.
引文
[1]Jenni A, Holzer L, Zurbriggen R. Herwegh M. Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars [J]. Cement and Concrete Research, 2005, (35):35-50.
    [2]Y.Ohama. Polymer-based admixtures, Cement and Concrete Research,1998,20 (3):189-212.
    [3]J.E. Isenburg, J.W. Vanderhoff, Hypothesis for reinforcement of Portland cement by polymer latexes, J. Am. Ceram. Soc.1974,57 (6):242-245.
    [4]J.M. Gesit, S.V. Amagna, B.B. Mellor, Improved Portland cement mortars with polyvinyl acetate emulsions, Ind. Eng. Chem.1953,45 (4):759-768.
    [5]Alexandra A.P. Mansur, Otavio Luiz do Nascimento, Herman S. Mansur. Physico-chemical characterization of EVA-modified mortar and porcelain tiles interfaces. Cement and Concrete Research,2009,39(12):1199-1208.
    [6]R. Zurbriggen, Influence of redispersible powders on shrinkage, hydration behaviour and micro-structure of tile adhesives. Proc.2. Seminar:Beschichtung und Bauchemie, Kassel, Germany, Vincentz Network, Hannover, Germany.1998:47-62.
    [7]Laetitia Patural, Philippe Marchal, Alexandre Govin, Philippe Grosseau, Bertrand Ruot, Olivier Deves. Cellulose ethers influence on water retention and consistency incement-based mortars. Cement and Concrete Research,2011, (41):46-55.
    [8]A. Wetzel, M. Herwegh, R. Zurbriggen, F. Winnfield. Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cement and Concrete Research,2012, (42):39-50.
    [9]A.A.P. Mansur, O.L. do Nascimento, H.S. Mansur, Physical-chemical characterization of EVA-modified mortar and porcelain tiles interfaces, Cement and Concrete Research,2009, (39):1199-1208.
    [10]Y. Ohama, Handbook of Polymer-Modified Concrete and Mortars, Properties and Process Technology, Noyes Publications, Park Ridge, New Jersey,1995.
    [11]J. Pourchez, B. Ruot, J. Debayle, E. Pourchez, P. Grosseau, Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials. Cement and Concrete Research,2010,(40):242-252.
    [12]A.Messan, p.Ienny, D.Nectoux.Free and restrained early-age shrinkage of mortar:Influence of glass fiber, cellulose ether and EVA. Cement and Concrete Composites,2011, 3(33):402-410.
    [13]J. Pourchez, A. Peschard, P. Grosseau, R. Guyonnet, B. Guilhot, F. Vallee, HPMC and HEMC influence on cement hydration, Cement and Concrete Research,2006, (36):288-294.
    [14]Betioli AM, Gleize PJP, Silva DA, John VM, Pileggi RG Effect of HMEC on the consolidation of cement pastes:isothermal calorimetry versus oscillatory rheometry. Cement and Concrete Research,2009, (39):440-5.
    [15]Silva DA, Monteiro PJM. The influence of polymers on the hydration of Portland cement phases analyzed by soft X-ray transmission microscopy. Cement and Concrete Research, 2006, (36):1501-7.
    [16]A.M. Betioli, P.J.P. Gleize, D.A. Silva, V.M. John, R.G Pileggi. Effect of HMEC on the consolidation of cement pastes:Isothermal calorimetry versus oscillatory rheometry. Cement and Concrete Research,2009, (39):440-445.
    [17]N.K. Singh, P.C. Mishra, V.K. Singh, K.K. Narang. Effects of hydroxyethyl cellulose and oxalic acid on the properties of cement. Cement and Concrete Research,2003, (33):1319-1329.
    [18]E. Knapen, D. Van Gemert. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and Concrete Research,2008, (8):1-8.
    [19]J. Pourchez, P. Grosseau, R. Guyonnet, B. Ruot. HEC influence on cement hydration measured by conductometry. Cement and Concrete Research,2006, (36):1777-1780.
    [20]R. Zurbriggen, Influence of redispersible powders on shrinkage, hydration behaviour and micro-structure of tile adhesives. Proc.2. Seminar:Beschichtung und Bauchemie, Kassel, Germany, Vincentz Network,Hannover, Germany.1998:47-62.
    [21]A.Jenni, R.Zurbriggen, L.Holzer, M. Herwegh. Changes in microstructures and physical properties of polymer-modified mortars during wet storage. Cement and Concrete Research, 2006, (36):79-90.
    [22]Dale P. Bentz, Claus-Jochen Haecker, Max A. Peltz. X-ray absorption studies of drying of cementitious tile adhesive mortars. Cement and Concrete Composites,2008, (30):361-373.
    [23]J. Pourcheza, P. Grosseau, B. Ruot. Current understanding of cellulose ethers impact on the hydration of C3A and C3A-sulphate systems. Cement and Concrete Research,2009, (39):664-669.
    [24]王培铭.纤维素醚和乳胶粉在商品砂浆中的作用[J].硅酸盐通报,2005,(5):136-139.
    [25]管学茂,罗树琼,杨雷,谢玉芬.纤维素醚对加气混凝土用抹灰砂浆性能的影响研究[J].混凝土,2006,(10):15-17.
    [26]李玉海.乳胶粉、纤维素醚及养护条件对抹面砂浆抗冲击性能影响的研究[J].中国建材,2007,(3):85-87
    [27]张义顺,李艳玲,徐军等.纤维素醚对砂浆性能的影响[J].建筑材料学报,2008,(3):21-23.
    [28]杨雷,罗树琼,管学茂.(?)HEMC对加气混凝土用抹灰砂浆性能的影响.混凝土与水泥制品,2010,(2):65-67.
    [29]王军,徐芬莲,孙克平,陈景,吴雄.膨润土与纤维素醚复掺在预拌砂浆中的试验研究.第三届全国商品砂浆学术交流会论文集[C].北京:化学工业出版社,2009:136-140.
    [30]张建新,彭家惠,李青,李志坤,白冷.羟丙基甲基纤维素醚对特细砂水泥砂浆性能的影响[J].混凝土与水泥制品,2009,(1):7-9.
    [31]王培铭,许绮,李纹纹.羟乙基甲基纤维素对水泥砂浆性能的影响[J].建筑材料学报,2000,(4):305-309.
    [32]马保国,欧志华,蹇守卫,徐如林HEMC对水泥浆早期水化产物形成历程的影响[J].建筑材料学报,2011,14(6):798-802.
    [33]张国防,王培铭.羟乙基甲基纤维素对水泥水化产物形成的影响[J].建筑材料学报,2010,13(5):573-577.
    [34]张国防,王培铭.羟乙基甲基纤维素影响水泥浆体微观结构的研究,第三届全国商品砂浆学术交流会论文集[C].北京:化学工业出版社,2009:150-157.
    [35]张国防,王培铭.羟乙基甲基纤维素对水泥水化的影响[J].同济大学学报(自然科学版),2009,37(3):369-373.
    [36]Ou Zhi Hua, Ma Bao Guo, Jian Shou Wei. Influence of cellulose ethers molecular parameters on hydration kinetics of Portland cement at early ages. Construction and Building Materials,2012, (33):78-83.
    [37]王培铭,张国防.羟乙基甲基纤维素和乙烯基可再分散聚合物对水泥水化产物的影响.第三届全国商品砂浆学术交流会论文集[c].北京:化学工业出版社2009:131-140.
    [38]尚建丽,赵鹏,刘加平.膨胀珍珠岩/有机羧酸复合相变储能材料试验研究[J].西安建筑科技大学学报,2007,39(5):680-683.
    [39]邱小华.玻化微珠保温砂浆的研制[D].昆明:昆明理工大学,2008.
    [40]胡曙光.先进水泥基复合材料[M].北京:科学出版社,2009:142-144.
    [41]方萍,吴懿,龚光彩.膨胀玻化微珠的显微观结构及其吸湿性能研究[J].材料导报,2009,23(5):112-114.
    [42]Li zongjin,Li wenlai.Contactless, transformer-based measurement of the resistivity of materials:US patent.6639401 [P],2003.
    [43]魏小胜,肖莲珍,李宗津等.钢纤维水泥基材料的导电机理和水化特性[J].混凝土,2006,(4):11-13.
    [44]董荣珍.化学外加剂对高性能水泥水化及初始结构形成的调控机理的研究[D].武汉:武汉理工大学,2005.
    [45]张慢.化学外加剂对水泥水化历程的调控及作用机理研究[D].武汉:武汉理工大学,2010.
    [46]苏雷.纤维素醚改性水泥浆体性能研究[D].武汉:武汉理工大学,2011.
    [47]黄连根.纤维素醚对水泥砂浆性能的影响[J].江西建材,1995(3):14-17.
    [48]裴重华,孙中亮,庞素娟等,颗粒粒度对高粘度羧甲基纤维素钠水溶液粘度的影响,海南大学学报(自然科学版),2002,20(2):172-174.
    [49]万顺,邵自强,郝红英等,天然植物秸秆制备的两性纤维素PCGD水溶液性质的研究,纤维素科学与技术,2003,11(1):14-18.
    [50]李利,杨虎,程鎔时等,高低温处理对乙基纤维素稀溶液特性的影响,高等学校化学学报,2002(12):2378-2381.
    [51]陈慧钊.粘度测量[M].北京:中国计量出版社,2003.
    [52]袁晓露.矿物掺合料与外加剂对水泥净浆、砂浆流变性能及经时损失的影响[D].重庆:重庆大学,2005.
    [53]贾晓辉.羟丙基甲基纤维素热引发水凝胶的制备与性能研究[D].上海:东华大学,2007.
    [54]Li L., Shan H.,Yue C.Y., etal. Thermally indueed assoeiation and dissociation of methylcellulose in aqueous solutions [J], Langmuir,2002, (18):7291-7298.
    [55]Gao J.,Haidar G LuX.H., etal. Self-assoeiation of hydroxypropyl cellulose in water [J].Maeromoleeules,2001, (34):2242-2247.
    [56]Li L. Thermal gelatin of methyl cellulose in water:Scaling and thermoreversibility [J].Maeromoleeules,2002,(35):5990-5998.
    [57]曹光群,龚蕾,刘机关,杨建中,杨成,刘晓亚,陈明清.阳离子纤维素醚溶液的流变性能[J].江南大学学报(自然科学版),2007,6(5):610-613.
    [58]龚蕾.阳离子纤维素醚溶液性质的研究[J].无锡:江南大学,2007.
    [59]梁亚琴.改性羟乙基纤维素醚的制备及其溶液性质研究[J].太原:中北大学,2006.
    [60]王丽莎,陈国华,王娟,高从增.羧甲基甲壳素溶液的流变学性质[J].高分子材料科学与工程,2005,21(6):174-177.
    [61]林海燕,罗学刚.纤维素溶液的流变特性及应用研究进展[J].纤维素科学与技术,2004,12(3):54-60.
    [62]Petrovan S, Collier JR, Morton G H, Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions, J. Appl. Polym. Sci.,2000,77:1369-1377.
    [63]严吴南等.建筑材料性能学[M].重庆:重庆大学出版社,1996.
    [64]沈威.水泥工艺学[M].武汉:武汉理工大学出版社,2010:169-171.
    [65]曾晓辉,隋同波,李宗津.水泥水化放热与电阻率变化[J].硅酸盐学报,2009,37(4):601-604.
    [66]Michael Gerstig, Lars Wadso. A method based on isothermal calorimetry to quantify the influence of moisture on the hydration rate of young cement pastes [J]. Cement and Concrete Research,2010, (40):867-874.
    [67]H. Kada-Benameur, E. Wirquin, B. Duthoit. Determination of apparent activation energy of concrete by isothermal calorimetry [J]. Cement and Concrete Research,2000, (30):301-305.
    [68]Sihai Wen, D.D.L. Chung. Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions [J]. Cement and Concrete Research,2001, (31):297-301.
    [69]P.J.Tumidajski, AS. Schumacher, S. Perron, P. Gu and J.J. Beaudoin. On the relationship between porosity and electrical resistivity in cementitious systems [J]. Cement and Concrete Research,1996,26(4):539-544.
    [70]G. Levita, A. Marchetti, G. Gallone, A. Princigallo, G.L. Guerrini. Electrical properties of fluidified Portland cement mixes in the early stage of hydration [J]. Cement and Concrete Research,2000, (30):923-930.
    [71]廖宜顺,李国卫,魏小胜.电阻率法研究快硬硫铝酸盐水泥的水化过程[J].武汉理工大学学报,2009,31(17):74-77.
    [72]隋同波,曾晓辉,谢友均,李宗津,魏小胜,范磊,文寨军.电阻率法研究水泥早期行为[J].硅酸盐学报,2008,36(4):431-435.
    [73]GORUR K, SMIT M K, WITTMANN F H. Microwave study of hydration cement paste at early age [J]. Cement and Concrete Research,1982,12(4):447-454.
    [74]NOBUHIRO MIURA, NAOKI SHINYASHIKI, SHIN YAGIHARA. Microwave dielectric study of water structure in the hydration process of cement paste [J]. J Am Ceram Soc, 1998,81(1):213-216.
    [75]YE Q LURA P, van BREUGEL K, et al. Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement [J]. Cement and Concrete Research,2004,26(5):491-497.
    [76]Mindess S, Young J F. Concrete [M]. Englewood Cliffs:Prentice-Hall,1981.
    [77]张立华.多组分水泥基材料水化特征与产物性质的研究[D].武汉理工大学,2002.
    [78]D. Jansen, J. Neubauer, F. Goetz-Neunhoeffer, R. Haerzschel, W.-D. Hergeth. Change in reaction kinetics of a Portland cement caused by a superplasticizer-Calculation of heat flow curves from XRD data [J]. Cement and Concrete Research,2012 (42):327-332.
    [79]Xiao-Yong Wang, Han-Seung Lee. Modeling of hydration kinetics in cement based materials considering the effects of curing temperature and applied pressure [J]. Construction and Building Materials,2012, (28):1-13.
    [80]J. Young, A review of the mechanisms of set-retardation in Portland cement pastes containing organic admixtures, Cement and Concrete Research,1972,2 (4):415-433.
    [81]N. Thomas, J. Birchall, The retarding action of sugars on cement hydration, Cement and Concrete Research,1983,13 (6):830-842.
    [82]SU Lei, MA Baoguo, JIAN Shouwei, ZHAO Zhiguang, LIU Min. Hydration heat effect of cement pastes modified with hydroxypropyl methyl cellulose ether and expanded perlite [J]. Journal of Wuhan University of technology,2013,28 (1):122-126.
    [83]马保国,赵志广,蹇守卫,苏雷,刘敏.玻化微珠保温材料吸水性研究[J].武汉理工大学学报,2012,34(7):14-17
    [84]马保国,赵志广,蹇守卫,苏雷,刘敏.无机保温砂浆及研究进展[J].第四届商品砂浆学术交流会议,2011:13-18
    [85]苏雷,马保国,蹇守卫,赵志广,刘敏.纤维素醚-膨胀珍珠岩耦合作用下水泥浆体早期水化规律[J],功能材料,2012,43(15):2102-2105
    [86]TAMAS F D. Electrical conductivity of cement paste [J]. Cement and Concrete Research, 1982,12(1):115-120.
    [87]TAMAS F D. Low-frequency electrical conductivity of cement, clinker and clinker mineral pastes [J]. Cement and Concrete Research,1987,17(2):340-348.
    [88]BRAMESHUBER W, BROCKMANN T. Electrical conductivity measurements to characterize the setting and hardening of mortars [A]//International Symposium of NDT in Civil Engineering [C], Berlin, Germany,2003:16-19.
    [89]BACKE K R, LILE O B, LYOMOV S K. Characterizing curing cement slurries by electrical conductivity [J]. SPE Drilling & Completing,2001,16(4):201-207.
    [90]LI Zongjin, WEI Xiaosheng, LI Wenlai. Preliminary interpretation of hydration process of Portland cement using resistivity measurement [J]. ACI Mater J,2003,100(3):253-257.
    [91]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报,2004,32(1):34-38.
    [92]肖莲珍,李宗津,魏小胜.用电阻率法研究新拌混凝土的早期凝结和硬化[J].硅酸盐学报,2005,33(10):1271-1275.
    [93]BARNES P.水泥的结构与性能[M].吴兆琦,汪瑞芬译.北京:中国建筑工业出版社,1991:243-277.
    [94]曾晓辉.无电极电阻率仪在早龄期水泥水化行为的应用研究[D].北京:中国建筑材料科学研究总院,2007.
    [95]赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1984.1-2.
    [96]Jeffrey J. Thomas, Joseph J. Biernacki, Jeffrey W. Bullard, Shashank Bishnoi, Jorge S. Dolado, George W. Scherer, Andreas Luttge. Modeling and simulation of cement hydration kinetics and microstructure development [J]. Cement and Concrete Research,2011, (41):1257-1278.
    [97]Qinwu Xu, J. Mauricio Ruiz, Jiong Hu, Kejin Wang, Robert O. Rasmussen. Modeling hydration properties and temperature developments of early-age concrete pavement using calorimetry tests [J]. Thermochimica Acta,2011, (512):76-85.
    [98]Klaus Meinhard, Roman Lackner. Multi-phase hydration model for prediction of hydration-heat release of blended cements [J]. Cement and Concrete Research,2008, (38):794-802.
    [99]George W. Scherer, Jie Zhang, Jeffrey J. Thomas. Nucleation and growth models for hydration of cement [J]. Cement and Concrete Research,2012, (42):982-993.
    [100]SCHUTTER G. Hydration and temperature development of concrete made with blast-furnace slag cement [J]. Cement and Concrete Research,1999,29(1):143-149.
    [101]SCHUTTER G. Fundamental study of early age concrete behavior as a basis for durable concrete structures [J]. Mater Struct,2002,35(1):15-21.
    [102]阎培渝,郑峰.水泥基材料的水化动力学模型[J].硅酸盐学报,2006,34(5):555-559.
    [103]李锐.利用电阻率法对早龄期水泥水化与微观结构的研究[D].北京:中国建筑材料科学研究总院,2011.
    [104]马保国,董荣珍,张莉,朱洪波,蹇守卫,许婵娟.硅酸盐水泥水化历程与初始结构形成的研究[J].武汉理工大学学报,2004,26(7):17-19.
    [105]Steven H.Kosmatka,Beatrix Kerkhoff,William C.Panarese混凝土设计与控制.钱觉时,唐祖全,卢忠远,王智译,14版.重庆大学出版社,2005:58-59.
    [106]石明霞,谢友均,刘宝举.水泥-粉煤灰复合胶凝材料的水化性能研究[J].建筑材料学报,2002,5(2):114-119.
    [107]丰曙霞,王培铭,刘贤萍.水泥-煤矸石复合体系水化进程研究[J].山东建材,2007,(5):20-24.
    [108]王培铭,丰曙霞,刘贤萍.水泥水化程度研究方法及其进展[J].建筑材料学报,2005,8(6):646-652.
    [109]马保国,张琴,蹇守卫.纤维素醚对水泥砂浆力学性能的影响.第三届商品砂浆学术交流会论文集[C].北京:化学工业出版社,2009:172-177.
    [110]许绮,王培铭,J. Stark.掺矿渣粉和减水剂的HEMC水泥砂浆力学性能[J].建筑材料学报,2001,4(3):232-237.
    [111]Baoguo Ma, Lei Su, Shouwei Jian, Xuefeng Song. Early stage hydration mechanism of cellulose ether modified thin layer cement pastes [J]. Journal of Wuhan University of technology,2012,27 (6):1172-1176.
    [112]姜德民,高振林.高性能自密实混凝土的配合比设计[J].北方工业大学学报,2001,13(3):89-91.
    [113]潘志宏.自密实高性能混凝土配合比优化及制备技术研究[D].长沙:中南大学,2004.
    [114]黄士元,李志华,程吉平.粉煤灰-Ca(OH)2-H2O系统中的反应动力学[J].硅酸盐学报,1986,14(2):191-197.
    [115]张守治,田倩,邱建军,齐亮.养护方式对水泥砂浆力学性能的影响[J].混凝土,2012,(6)120-122.
    [116]张浩,符军放,冯克满,赵琥,陈凡斌,王永松.不同温度下偏高岭土对油井水泥抗压强度影响[J].的研究科学技术与工程,2012,12(17):4278-4280.
    [117]胡听,洪宝宁,闵紫超.从微观结构分析温度对水泥土强度形成的影响[J].西安建筑科技大学学报,2007,39(5):628-633.
    [118]黄颖星,严生,蔡安兰,邓敏养护条件对水泥砂浆干缩性能的影响[J].南京工业大学学报,2006,28(3):20-23.
    [119]闫战彪,刘加平,田倩,张守治.掺MgO膨胀剂水泥浆体不同养护制度下的变形特性[J].新型建筑材料,2010,(12):4-7.
    [120][蔡安兰,李顺凯,严生,许仲梓.养护温度对高掺量粉煤灰硅酸盐水泥砂浆干缩性能的影响.硅酸盐学报,2005,33(1):100-104.
    [121]胡曙光,何永佳,王晓,吕林女,丁庆军.不同养护制度下混合水泥反应程度的研究[J].武汉科技学院学报,2005,18(15):33-36.
    [122]李秋英,芦令超,王守德,王辉.养护温度对贝利特-硫铝酸钡钙水泥水化的影响[J].硅酸盐通报,2010,29(5):1016-1020.
    [123]Manh-Huyen Vu, Jean Sulem, Jean-Benoit Laudet. Efffect of the curing temperature on the creep of a hardened cement paste [J].Cement and Concrete Research,2012, (42):1233-1241.
    [124]M. Heikal, M.S. Morsy, I. Aiad. Effect of treatment temperature on the early hydration characteristics of superplasticized silica fume blended cement pastes [J].Cement and Concrete Research,2005, (35):680-687.
    [125]I. Elkhadiri, F. Puertas. The effect of curing temperature on sulphate-resistant cement hydration and strength [J]. Construction and Building Materials,2008, (22):1331-1341.
    [126]马保国,吴媛媛,张风臣,尹耿,戴璐.聚合物改性砂浆界面粘接特性的研究[J].材料导报,2009,23(6):62-64.
    [127]梅迎军,王培铭,李志勇,梁乃兴.SBR乳液改性砂浆与水泥基体界面粘结性能[J].西安建筑科技大学学报(自然科学版),2009,41(3):404-408.
    [128]李芳,王培铭.不同水灰比下聚合物改性水泥砂浆的力学性能[J].化学建材,2002,(6):33-35.
    [129]苏雷,马保国,蹇守卫.纤维素醚对水泥浆体性能的影响.第三届商品砂浆学术交流会论文集[C].北京:化学工业出版社,2009:165-171.
    [130]刘琳,王国建,刘启志.硅丙乳液对水泥砂浆性能的影响[J].建筑材料学报,2004,7(1):117-121.
    [131]蒋林华,林宝玉,蔡跃波.高掺量粉煤灰水泥胶凝材料的水化性能研究[J].硅酸盐学报,1998,26(6):695-701.
    [132]Lam L, Wong Y L, Poon C S. Degree of hydration and gel/space ratio of high volume fly ash/cement systems [J]. Cement and Concrete Research,2000,30(5):747-756.
    [133]袁龙.粉煤灰页岩烧结制品高效节能的研究[D].武汉:武汉理工大学,2011.
    [134]杨南如,钟白茜,董攀等.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,28(2):155-165.
    [135]DENG Min, TANG Ming shu. Formation and expansion of ettringite crystals [J]. Cement and Concrete Research,1994,24(1):119-126.
    [136]薛君.钙矾石相的形成、稳定和膨胀[J].硅酸盐学报,1983,27(2):247-251.
    [137]FU Y, GU P, XIE P, et al. A kinetic study of delayed ettringite formation in hydrated Portland cement paste [J]. Cement and Concrete Research,1995,25(1):63-70.
    [138]LAWRENCE C D. Mortar expansions due to delayed ettringite formation-Effects of curing period and temperature [J]. Cement and Concrete Research,1995,25(4):903-914.
    [139]王培铭,徐玲琳,张国防.0-20℃养护下硅酸盐水泥水化时钙矾石的生成及转变[J].硅酸盐学报,2012,40(5):646-650.
    [140]BARBARULO R, PEYCELON H, LECLERCQ S. Chemical equilibria between C-S-H and ettringite, at 20 and 85℃ [J]. Cement and Concrete Research,2007,37(8):1176-1181.
    [141]Lybimove J C T Y, Pinns E R. Crystallization structure in concrete contact zone between aggregate and cement in concrete [J]. Colloid T,1962, (24):491-498.
    [142]Dannys B, Gerard B, Jacques G. Contribution to the formation mechanism of the transition zone between rock-cement [J]. Cement and concrete Research,1993, (23):335-346.
    [143]彭军芝.蒸压加气混凝土中孔的形成、特征及对性能的影响研究[D].重庆大学,2011.
    [144]尚建丽,王秀芬.加气混凝土等温吸湿性质的试验研究[J].新型建筑材料,2005,(4):25-27.
    [145]贾兴文.粉煤灰加气混凝土吸水性能研究[J].2006,34(4):9-11.
    [146]周春英,韦江雄,余其俊,殷素红,庄梓豪,雷振华.蒸压加气混凝土砌块的吸水特性研究[J].武汉理工大学学报,2007,29(4):22-26.
    [147]马文超,陈冠益,颜蓓蓓等.生物质燃烧技术综述[J].生物质化学工程,2007,(1):43-44.
    [148]刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望[J].农业工程技术(新能源产业),2007,(4):23-28.
    [149]林灏,王方,阎德忠.我国动力用煤燃烧特性的研究[J].煤炭科学技术,1982,(10):12-14.
    [150]H.M.Jennings. Design of high strength cement based materials:Part 2 Microstructure [J]. Material Science and Technology,1988, (4):285-290.
    [151]K. Mehta, P. J. M. Monteiro. Concrete:Structure, Properties and Materials. New Jersey: Prentice-Hall Inc.,1986.
    [152]王晓明,王培铭.聚合物干粉对水泥砂浆凝结时间的影响[J].新型建筑材料,2005,32(3):51.
    [153][马保国,苏雷,蹇守卫,赵志广.快速失水条件下纤维素醚改性水泥浆体水化规律[J],土木建筑与环境工程,2013,35(2):151-156.
    [154]Ki-Bong Park, Takafumi Noguchi, Joel Plawsky. Modeling of hydration reactions using neural networks to predict the average properties of cement paste [J]. Cement and Concrete Research,2005, (35):1676-1684.
    [155]Powers T C. Physical properties of cement paste. In:Proceeding of The fourth International Symposium on The Chemistry of Cement, Washingdon,1960.
    [156]LOCHERF W,RICHARTZ W,SPRUNG S,et al.Erstarren von ze ment,teil I:reaktion land gefU geentwicklung. Zement-Kalk-Gips,1976.
    [157]王培铭,刘贤萍,胡曙光,吕林女,马保国.硅酸盐熟料-煤歼石/粉煤灰混合水泥水化模型研究[J].硅酸盐学报,2007,35(S1):180-186.
    [158]廉慧珍,董良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [159]J. Schulze, Influence of water-cement ratio and cement content on the properties of polymer-modified mortars [J]. Cement and Concrete Research,1999, (29):909-915.
    [160]M.U.K. Afridi, Y. Ohama, M.Z. Iqbal, K. Demura, Water retention and adhesion of powdered and aqueous polymer-modified mortars [J]. Cement and Concrete Composite, 1995, (17):113-118.
    [161]Z. Su, K. Sujata, J.M.J.M. Bijen, H.M. Jennings, A.L.A. Fraaij, The evolution of the microstructure in styrene acrylate polymer modified cement pastes at the early stage of cement hydration [J]. Advanced Cement Based Material,1996, (3):87-93.
    [162]D.A. Silva, V.M. John, J.L.D. Ribeiro, H.R. Roman, Pore size distribution of hydrated cement pastes modified with polymers [J]. Cement and Concrete Research,2001, (31):1177-1184.
    [163]Alexandra A.P. Mansur, Otavio Luiz do Nascimento, Herman S. Mansur. Physico-chemical characterization of EVA-modified mortar and porcelain tiles interfaces [J]. Cement and Concrete Research,2009,39(12):1199-1208.
    [164]Y. Ohama. Polymer-based admixtures [J]. Cement and Concrete Research,1998,20 (2-3):189-212.
    [165]E. Sakai, J. Sugita. Composite mechanism of polymer modified cement [J]. Cement and Concrete Research,1995,25 (1):127-135.
    [166]A. Jenni, M. Herwegh, R. Zurbriggen, T. Aberle, L. Holzer. Quantitative microstructure analysis of polymer-modified mortars [J]. Journal of Microscopy,2003,212(2):186-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700