用户名: 密码: 验证码:
移动床膜生物反应器脱氮除磷性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮、磷是导致水体富营养化的优势污染物。随着生物脱氮除磷技术研究的深入,工艺简单、处理效率高、能耗低的新工艺将成为脱氮除磷工艺的发展趋势。本论文用悬浮填料生物膜代替传统膜生物反应器(CMBR)的活性污泥,提出一种新型的移动床膜生物反应器(MBMBR),通过对其运行方式及操作参数的优化调整,强化其脱氮除磷能力,同时对不同工艺方式下MBMBR对有机物、氮磷的去除性能,微生物特性及膜污染情况等进行了考察。
     首先进行了好氧MBMBR与CMBR对比实验,比较在不同进水条件下,两者对营养物的去除能力和膜污染情况。结果表明:与CMBR相比,MBMBR对TN表现出良好的去除能力。进水COD/TN为8.9,进水TN负荷为7.58 mg TN/L.h时,TN的去除率仍可达到70%以上。通过同步硝化反硝化作用去除的TN占TN去除的89.1%。MBMBR中由于丝状菌的大量存在,形成了厚实致密的滤饼层,造成了更加严重的膜污染。采用间歇曝气方式运行好氧MBMBR实现了短程硝化反应。结果显示:间歇曝气方式下,曝气时间/间歇时间是实现短程硝化的关键因素,COD/TN是影响TN去除效果的主要因素。间歇曝气方式主要是通过抑制亚硝酸盐氧化菌(NOBs)的活性来实现短程硝化。
     序批式移动床膜生物反应器(SBMBMBR)具有良好的脱氮除磷能力。其中TP的去除效果和厌氧阶段和好氧阶段时间的长短密切相关。当厌氧阶段和好氧阶段均为2 h时,TP的平均去除率达到84.1%。好氧阶段的DO是影响氮磷去除效果的重要参数,在SBMBMBR中,好氧阶段最佳的DO为3 mg/L左右。荧光原位杂交(FISH)结果表明由于生物膜内层的DO较低,亚硝酸盐氧化菌和聚磷菌的含量较少。而生物膜外层和悬浮污泥中,氨氧化菌和亚硝酸盐氧化菌的比例基本相同,并且存在大量的聚磷菌。通过外加硝酸盐或亚硝酸盐引入缺氧段的研究方法证实,厌氧/缺氧/好氧运行的SBMBMBR中,以亚硝酸盐为电子受体的反硝化除磷性能优于以硝酸盐为电子受体的反硝化除磷性能。批实验结果也证实以亚硝酸盐为电子受体的缺氧吸磷速率大于以硝酸盐为电子受体的缺氧吸磷速率。当硝酸盐大量存在时,反硝化菌与聚磷菌竞争有限的有机碳源,占竞争优势。因此,当进水碳源不足时,硝酸盐的存在将严重影响释磷反应的发生,最终影响系统氮磷的去除效果。硝化反应与吸磷反应的竞争实验发现,溶解氧不足的条件下,硝化菌和聚磷菌对溶解氧均未表现出明显的利用优势。在SBMBMBR中,NO2--N的抑制浓度为50 mg/L。实验发现,序批式的运行方式有利于减缓移动床膜生物反应器的膜污染速率。
Nitrogen and phosphorus are key nutrients that result in water eutrophication. As the development of biological nutrients removal technology, a new technology with advantages of simple process, high efficiency and less energy consumption will be prevalent in domain of nutrients removal technology. In this sudy, a membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was operated to improve the nitrogen and phosphorus removal abilities by optimizing the operational modes and adjusting the operational parameters. The performances of MBMBR on nitrogen and phosphorous removal, the sludge characteristics and membrane fouling were examined in different operational modes.
     Firstly, the performances of MBMBR and a conventional membrane bioreactor (CMBR) on nutrients removal and membrane fouling were compared at different influent COD/TN ratios. Compared with CMBR, MBMBR demonstrated a good performance on TN removal via simultaneous nitrification and denitrification (SND) at different influent COD/TN ratios. Even running at low COD/TN ratio (COD/TN= 8.9) with 7.58 mg TN/L-h, TN removal efficiencies were maintained above 70.0%, and the TN removal efficiency via SND was 89.1%. Membrane fouling was more serious in MBMBR than in CMBR. Since the overgrowth of filamentous bacteria in MBMBR resulted in severe cake layer, which would do great harm to membrane filtration. An intermittently-aerated mode was conducted to achieve SND via nitrite in the aerobic MBMBR. Results demonstrated that intermittently-aerated mode was an effective approach to achieve nitrition. Intermittently-aerated time is an important factor for achieving short-cut nitrification and the COD/TN ratio is another key factor for achieving TN removal. Batch tests indicated that under the intermittently-aerated mode, short-cut nitrification was achieved because the activities of NOBs were inhibited.
     Sequencing batch moving bed membrane bioreactor (SBMBMBR) performed well on nitrogen and phosphorus removal at different COD/TN ratios. The TP removal was closely correlated with the length of anaerobic phase and aerobic phase. When anaerobic time and aerobic time were both 2 h, the average TP removal efficiency reached to 84.1%. DO in aerobic phase was an important factor affecting nutrients removal, and the optimal DO was about 3 mg/L in SBMBMBR. Fluorescence in situ hybridization (FISH) results of microbes showed that in the inner layer of the biofilm, there existed only a small amount of NOBs and PAOs because of the low DO concentration. While for the outer layer of the biofilm and the suspended biomass, a large quantity of AOBs, NOBs and PAOs were observed. An anoxic phase was introduced with external nitrate or nitrite addition between anaerobic phase and aerobic phase to study the capability of denitrifying phosphorus removal. Results indicated that better capability of denitrifying phosphorus removal was observed with nitrite addition than that with nitrate addition. A series of batch tests using different type of election acceptors also indicated that compared with nitrate, nitrite is the more capable type of electron acceptor for denitrification phosphorus removal technology. The denitrifying bacteria were suggested to outcompete PAOs for competing limited carbon source. When influent carbon source was deficient, the exist of nitrate would indeed effect biological phosphorus release and finally result in a reduction of the TP removal efficiency. Batch tests indicated that neither nitrifying bacteria nor PAOs showed evident predominance for competing limited DO. In SBMBMBR, the ceiling inhibition concentration of nitrite was 50 mg/L. Furthermore, results indicated that the sequencing batch operation mode can reduce membrane fouling.
引文
[1]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    [2]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [3]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999.
    [4]任延丽,靖元孝.反硝化细菌在污水处理作用中的研究[J].微生物学杂志,2005,25(2):88-92.
    [5]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水,2000,(12).
    [6]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-18.
    [7]Halling S B, Hjuler H. Simultaneous nitrification and denitrification with an upflow fixed bed reactor applying clinoptilolite as media[J]. Water Treatment,1992,7:77-88.
    [8]Guo H Y, Zhou J T, Su J, et al. Integration of nitrification and denitrification in airlift bioreactor[J]. Biochemical Engineering Journal,2005,23:57-62.
    [9]Collivignarelli C, Bertanza G. Simultaneous nitrification and denitrification process in activated sludge plants:performance and applicability [J]. Water Science and Technology,1999,40(4-5):187-194.
    [10]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [11]Mosquera-Corral A, Gonzalez F, Campos J L. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry,2005,40(9):3109-3118.
    [12]Yoo H, Ahn K H, Lee H J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor[J]. Water Research,1999,33(1):145-154.
    [13]Abeling U, Seyfried C F. Anaerobic-aerobic treatment of high-strength ammonia wastewater-nitrogen removal via nitrite[J]. Water Science and Technology,1992,26(5-6):1007-1015.
    [14]吕锡武,李峰,稻森悠平,等.氨氮废水处理过程中的好氧反硝化研究[J].给水排水,2000,26(4):17-20.
    [15]Kim J K, Park K J, Cho K S, et al. Aerobic nitrification-denitrification by heterotrophic Bacillus strains[J]. Bioresource Technology,2005,96 1897-1906.
    [16]Joo H S, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4[J]. Journal of Bioscience and Bioengineering,2005,100(2):184-191.
    [17]Joo H S, Hirai M, Shoda M. Improvement in ammonium removal efficiency in wastewater treatment by mixed culture of Alcaligenes faecalis No.4 and L1[J]. Journal of Bioscience and Bioengineering, 2007,103(1):66-73.
    [18]Hao X D, Heijnen J J, van Loosdrecht M C M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process[J]. Biotechnology and Bioengineering,2000,77(3):266-277.
    [19]Strous M, Van G E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations [J]. Water Research,1997,31(8):1955-1962.
    [20]Mulder A, van de Graaf A A, Robertson L A. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-183.
    [21]Liu S, Yang F, Gong Z, et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology,2008,99(15):6817-6825.
    [22]Chen H, Liu S, Yang F, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009,100(4):1548-1554.
    [23]Hao X D, Heijnen J J, van Loosdreche MCM. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Research,2002,36: 4839-4849.
    [24]Honda N, Hirai M, Ano T, et al. Antifungal effect of a heterotrophic nitrifier Alcaligenes faecalis[J]. Biotechnolgy Letter,1998,20(5):703-705.
    [25]章非娟.生物脱氮技术[M].北京:中国环境科学出版社,1992.
    [26]Robertson L A, Niel E W, Torremans R M, et al. Simultaneous nitrification and denitrification in aerobic chemostat culture of thiosphaera patotropha[J]. Applied Environmental Microbiology,1988, 54(11):2812-2818.
    [27]Zhao H W, Mavinic D S. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J]. Water Research,1999,33(4): 961-970.
    [28]Daigger G T, Littleton H X. Orbal-氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水,1999,15(3):1-7.
    [29]Masuda S, Watanable Y, Ishiguro M. Biofilm Properties and Simultaneous Nitrification and Denitrification in Aerobic Rotating Biologieal Contaetors[J]. Water Science and Technology,1991, 23(12):1355-1363.
    [30]Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures [J]. Archives of Microbiology,1993,159:453-459.
    [31]Cecen F, Gonenc I E. Nitrogen removal characteristics of nitrification and denitrification filters[J]. Water Science and Technology,1994,29(10-11):409-416.
    [32]Broda E. Two kinds of lithotrophs missing in nature[J]. Zeischrift fur Allgemeine Mikrobiologie,1977, 17:491-493.
    [33]Siegrist H, Reithaar S, Lais P. Nitrogen loss in a nitrifying rotating contactor treating ammonium rich leachate without organic carbon[J]. Water Science and Technology,1998,37(4-5):589-591.
    [34]Gali A, Dosta J, van Loosdrecht M C M, et al. Two ways to achieve an anammox influent from real reject water treatment at lab-scale:Partial SBR nitrification and SHARON process[J]. Process Biochemistry,2007,42(4):715-720.
    [35]Jetten M S M, Strous M, van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews,1998,22(5):421-437.
    [36]Sliekers A O, Derwort N, Gomez J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research,2002,36:2475-2482.
    [37]Third K A, Slikers A O, Kuenen J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limittion:interaction and competition between three groups of bacteria[J]. Systematic and Applied Microbiology,2001,24:588-596.
    [38]Third K A, Paxman J, Schmid M, et al. Treatment of nitrogen-rich wastewater using partial nitrification and anammox in the CANON process[J]. Water Science and Technology,2005,52: 47-54.
    [39]Mulder J W, van Loosdrecht M C M, Hellinga C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001,43(11):127-134.
    [40]Hellinga C, Schellen A A J C, Mulder J W, et al. The Sharon-process:an innovative method for nitrogen removal from ammonia rich wastewater [J]. Water Science and Technology,1998,37(9): 135-142.
    [41]Hippen A, Rosenwinkel K H, Baumgarten G, et al. Aerobic deammonification:A new experience in the treatment of wastewaters[J]. Water Science and Technology,1997,35(10):111-120.
    [42]沈耀良,王宝贞.废水生物除磷工艺中聚磷菌的作用机制及运行控制要点[J].环境科学与技术,1995,69(2):11-16.
    [43]魏琛,张晚凉.废水除磷工艺中聚磷菌及其缺氧态下吸磷现象[J].重庆环境科学,2000,22(4):44-46.
    [44]罗志腾.污染控制工程微生物学[M].北京:北京科学技术出版社,1988.
    [45]Lemos P C, Viana C, Salgueiro E N, et al. Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture[J]. Enzyme and Microbial Technology,1998,22(8):662.
    [46]Pereira H, Lemos P C, Reis M A M, et al. Model for carbon metabolism in biological phosphorus removal processes based on in vivo13C-NMR labelling experiments [J]. Water Research,1996,30(9): 2128-2138.
    [47]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念--可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(6):6-11.
    [48]Pijuan M, Guisasola A, Baeza J A, et al. Aerobic phosphorus release linked to acetate uptake: Influence of PAO intracellular storage compounds[J]. Biochemical Engineering Journal,2005,26(2-3): 184-190.
    [49]Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal,2006,27(3):191-196.
    [50]Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research,1996,30(7):1702-1710.
    [51]Jorgensen K S, Pauli A S L. Polyphosphate accumulation among denitrifying bacteria in activated sludge[J]. Anaerobe,1995,1(3):161-168.
    [52]Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus removal activated sludge systems[J]. Water Research,1996,30(4):769-780.
    [53]Kuba T, van Loosdrecht M C M. Phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science and Technology,1993,27(5-6):241-252.
    [54]Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Water Research,1993,27(4):617-624.
    [55]Mino T, Liu W T, Kurisu F, et al. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes [J]. Water Science and Technology,1995,31(2):25-34.
    [56]Wachtmeister A, Kuba T, Van Loosdrecht M C M, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Water Research,1997,31(3):471-478.
    [57]Hu J Y, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research,2003,37:3463-3471.
    [58]KubaT, Van Loosdrecht M C M. Biological dephosphatation by activated sludge under denitrifying conditions:pH Influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant[J]. Water Science and Technology,1999,36(12):75-82.
    [59]Sorm R, Bortone G, Saltarelli R, et al. Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system[J]. Water Research,1996,7(30):1573-1584.
    [60]Van Loosdrecht M C M, Pot M A, Heijnen J J. Importance of bacterial storage polymers in bioprocesses[J]. Water Science and Technology,1997,35(1):41-47.
    [61]Marrot B, Barrios-Martinez A, Moulin P, et al. Industrial wastewater treatment in a membrane bioreactor:A review[J]. Environmental Progress,2004,23(1):59-68.
    [62]Adham S, Gagliardo P, Boulos L, et al. Feasibility of the membrane bioreactor process for water reclamation[J]. Water Science and Technology,2001,43(10):203-209.
    [63]Scott J A, Neilson D J, Liu W, et al. A dual function membrane bioreactor system for enhanced aerobic remediation of high-strength industrial waste[J]. Water Science and Technology,1998, 38(4-5):413-420.
    [64]刘锦霞,顾平.城市环境与城市生态[J].2001,膜生物反应器脱氮除磷工艺的研究进展,14(2):27-29.
    [65]顾国维,何义亮.膜生物反应器—在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [66]Lesjean B, Leiknes T, Hochstrat R, et al. MBR:Technology gets timely EU cash boost[J]. Filtration and Separation,2006,43(9):20-23.
    [67]Yang W, Cicek N, Ilg J. State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America[J]. Journal of Membrane Science,2006,270(1-2): 201-211.
    [68]李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性[J].环境科学,1999,20(2):53-56.
    [69]吴春英,吴盈禧,夏俊林,等.动态膜生物反应器的运行稳定性及其影响因素研究[J].中国给水排水,2009,25(21):21-25.
    [70]初里冰,李书平.动态膜生物反应器的过滤性能及运行特性研究[J].工业水处理,2000,26(4):66-69.
    [71]张志超,黄霞,肖康,等.脱氮除磷膜-生物反应器的除磷效果及特性[J].清华大学学报,2008,48(9):92-94.
    [72]黄志金,黄光团,史春琼,等.溶解氧对膜生物反应器处理高氨氮废水的影响[J].环境科学与技术,2010,33(1):138-145.
    [73]齐美富,吴建平,彭小明,等.UASCB/PVA膜生物反应器工艺处理啤酒废水[J].中国给水排水,2009,25(23):92-94.
    [74]Jefferson B, Laine A L, Judd S J, et al. Membrane bioreactors and their role in wastewater reuse[J]. Water Science and Technology,2000,41(1):197-204.
    [75]Buttiglieri G, Malpei F, Daverio E, et al. Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor[J]. Desalination,2005,178(1-3):211-218.
    [76]Wasik E, Bohdziewicz J, Blaszczyk M. Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane[J]. Process Biochemistry,2001,37(1):57-64.
    [77]Wasik E, Bohdziewicz J, Blaszczyk M. Removal of nitrate ions from natural water using a membrane bioreactor[J]. Separation and Purification Technology,2001,22-23:383-392.
    [78]Ergas S J, Rheinheimer D E. Drinking water denitrification using a membrane bioreactor[J]. Water Research,2004,38(14-15):3225-3232.
    [79]Crespo J G, Velizarov S, Reis M A. Membrane bioreactors for the removal of anionic micropollutants from drinking water[J]. Current opinion in biotechnology,2004,15(5):463-468.
    [80]Chang J, Manem J, Beaubien A. Membrane bioprocesses for the denitrification of drinking water supplies[J]. Journal of Membrane Science,1993,80:233-239.
    [81]Reemtsma T, Zywicki B, Stueber M, et al. Removal of sulfur-organic polar micropollutants in a membrane bioreactor treating industrial wastewater[J]. Environmental Science and Technology,2002, 36(5):1102-1106.
    [82]Alvarez-Vazquez H, Jefferson B, Judd S J. Membrane bioreactors vs conventional biological treatment of landfill leachate:A brief review[J]. Journal of Chemical Technology and Biotechnology,2004, 79(10):1043-1049.
    [83]Quintana J B, Weiss S, Reemtsma T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor[J]. Water Research,2005,39(12):2654-2664.
    [84]Fuchs W, Resch C, Kernstock M, et al. Influence of operational conditions on the performance of a mesh filter activated sludge process[J]. Water Research,2005,39(5):803-810.
    [85]Ahn K H, Song K G, Cho E, et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process[J]. Desalination,2003,157(1-3): 345-352.
    [86]Setiadi T, Fairus S. Hazardous waste landfill leachate treatment using an activated sludge-membrane system[J]. Water Science and Technology,2003,48(8):111-117.
    [87]Wintgens T, Gallenkemper M, Melin T. Occurrence and removal of endocrine disrupters in landfill leachate treatment plants[J]. Water Science and Technology,2003,48(3):127-134.
    [88]Wintgens T, Gallenkemper M, Melin T. Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse[J]. Water Science and Technology,2004,50(5):1-8.
    [89]Gander M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment:a review with cost considerations[J]. Separation and Purification Technology,2000,18(2):119-130.
    [90]Le-Clech P, Chen V, Fane T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. Journal of Membrane Science,2006,284:17-53.
    [91]Comerton A M, Andrews R C, Bagley D M. Evaluation of an MBR-RO system to produce high quality reuse water:Microbial control, DBP formation and nitrate[J]. Water Research,2005,39(16): 3982-3990.
    [92]Chang I S, Clech P L, Jefferson B, et al. Membrane fouling in membrane bioreactors for wastewater treatment[J]. Journal of Environmental Engineering,2002,128(11):1018-1029.
    [93]Kang I J, Yoon S H, Lee C H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor[J]. Water Research,2002,36(7):1803-1813.
    [94]Defrance L, Jaffrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:Application to a membrane bioreactor used for wastewater treatment[J]. Journal of Membrane Science,1999,152(2):203-210.
    [95]Reihanian H, Robertson C R, Michaels A S. Mechanisms of polarization and fouling of ultrafiltration membranes by proteins[J]. Journal of Membrane Science,1983,16:237-246.
    [96]Hong S P, Bae T H, Tak T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors [J]. Desalination,2002,143(3):219-228.
    [97]Zhang S, Yang F, Liu Y, et al. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45℃[J]. Desalination,2006,194(1-3):146-155.
    [98]Zhang J, Chua H C, Zhou J, et al. Effect of sludge retention time on membrane bio-fouling intensity in a submerged membrane bioreactor[J]. Separation Science and Technology,2006,41(7):1313-1329.
    [99]Nagaoka H, Yamanishi S, Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system[J]. Water Science and Technology,1998,38(4-5):497-504.
    [100]Ji L, Zhou J. Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors [J]. Journal of Membrane Science,2006,276(1-2):168-177.
    [101]Qin J J, Kekre K A, Tao G. New option of MBR-RO process for production of NEWater from domestic sewage[J]. Journal of Membrane Science,2006,272(1-2):70-77.
    [102]Lee S A, Fane A G, Waite T D. Impact of natural organic matter on floc size and structure effects in membrane filtration[J]. Environmental Science and Technology,2005,39:6477-6486.
    [103]Rosenberger S, Laabs C, Lesjean B, et al. Impact of colloidal and soluble organic material on Membrane performance in membrane bioreactors for Municipal wastewater treatment[J]. Water Research,2006,40(4):710-720.
    [104]Sponza D T. Extracellular polymer substances and physi cochemical properties of flocs in steady-and unsteady-state activated sludge systems[J]. Process Biochemistry,2002,37:983-998.
    [105]Field R W, Wu D, Howell J A. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science,1995,100:259-272.
    [106]Lee J, Ahn W Y, Lee C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research,2001, 35(10):2435-2445.
    [107]Meng F G, Zhang H M, Li Y S, et al. Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis[J]. Separation and Purification Technology,2005,44:250-257.
    [108]Meng F G, Yang F L, Xiao J N, et al. A new insight into membrane fouling mechanism during membrane filtration of bulking and normal sludge suspension[J]. Journal of Membrane Science,2006, 285:159-165.
    [109]Lim A L, Bai R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater[J]. Journal of Membrane Science,2003,216:279-290.
    [110]Meng F G, Chae S R, Drews A, et al. Recent advances in membrane bioreactors (MBRs):membrane fouling and membrane material[J]. Water Research,2009,43:1489-1512.
    [111]Yamato N, Kimura K, Miyoshi T, et al. Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials[J]. Journal of Membrane Science,2006,28(1-2): 911-919.
    [112]Xu-Jiang Y, Dodds J, Leclerc D, et al. A technique for the study of the fouling of microfiltration membranes using two membranes in series[J]. Journal of Membrane Science,1995,105(1-2):23-30.
    [113]Fang H H P, Shi X. Pore fouling of microfiltration membranes by activated sludge[J]. Journal of Membrane Science,2005,264(1-2):161-166.
    [114]Le-Clech P, Jefferson B, Judd S J. Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor[J]. Journal of Membrane Science,2003,218(1-2):117-129.
    [115]Bouhabila E H, Ben A R, Buisson H. Fouling characterisation in membrane bioreactors [J]. Separation and Purification Technology,2001,22-23:123-132.
    [116]Ma L, Li X F, Du G C, et al. Influence of the filtration modes on colloid adsorption on the membrane in submerged membrane bioreactor[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2005,264(1-3):120-125.
    [117]Park H, Choo K H, Lee C H. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor[J]. Separation Science and Technology,1999,34(14):2781-2792.
    [118]张军,王宝贞,张立秋,等.复合淹没式膜生物反应器脱氮除磷效能研究[J].中国给水排水,2000,16(9):9-11.
    [119]张西旺,金奇庭.一体式MBR处理高氨氮小区生活污水中试研究[J].环境工程,2003,21(1):23-26.
    [120]耿琰,周琪,屈计宁.SMSBR反应器去除焦化废水中的氨氮[J].中国给水排水,2002,18(7):8-11.
    [121]迟军,王宝贞,荆国林.应用淹没式膜生物反应器处理含磷污水[J].大庆石油学院学报,2003,27(2):40-55.
    [122]Yoon S H, Kim H S, Park J K, et al. Influence of important operational parameters on performance of a membrane biological reactor[J]. Water Science and Technology,2000,41(10-11):235-242.
    [123]Ueda T, Hata K. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration[J]. Water Research,1999,33(12):2888-2892.
    [124]Bae T H, Han S S, Tak T M. Membrane sequencing batch reactor system for the treatment of dairy industry wastewater [J]. Process Biochemistry,2003,39(2):221-231.
    [125]Zhang H M, Xiao J N, Cheng Y J, et al. Comparision between a sequencing batch membrane bioreactor and a conventional membrane bioreactor[J]. Process Biochemistry,2006,41(1):87-95.
    [126]迟军,王宝贞,吕斯濠.一体化复合式膜生物反应器除磷研究[J].水处理技术,2003,29(1):47-49.
    [127]Ahna K H, Song K G, Cho E. Enhanced biological phophorus and nitrogen remvoal using a sequencing anoxic/anaerobic membrane bioreactor(SAM) process[J]. Desalination,2003,157: 345-352.
    [128]肖景霓.膜生物反应器强化除磷脱氮性能研究:[博士学位论文thesis].大连理工大学,2007.
    [129]成英俊,张捍民,张兴文,等.生物膜-膜生物反应器脱氮除磷性能[J].中国环境科学,2004,24(1):72-75.
    [130]桂萍,黄霞,汪城文,等.膜-复合式生物反应器组合系统操作条件及稳定运行特性[J].环境科学,1998,19(2):35-38.
    [131]张军,王宝贞,聂梅生.复合淹没式中空膜生物反应器处理生活污水的特性研究[J].中国给水排水,1999,15(9):13-16.
    [132]何圣兵,王宝贞,王琳.生物膜-膜生物反应器处理生活污水的试验研究[J].给水排水,2002,28(11):21-24.
    [133]Lee J C, Kim J S, Cho M H, et al. Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor [J]. Water Science and Technology,2001,43(11): 59-66.
    [134]Jun B H, Miyanaga K, Tanji Y, et al. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment[J]. Biochemical Engineering Journal,2003,14:37-44.
    [135]Fujii T, Sogino H, Rouse J D. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biobass carrier [J]. Journal of Bioscience and Bioengineering,2002,94(5):412-418.
    [136]水和废水检测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [137]Hahn S K, Chang Y K, Kim B S, et al. Communication to the editor optimization of microbial poly(3-hydroxybutyrate) recovery using dispersions of sodium hypochlorite solution and chloroform[J]. Biotechnology and Bioengineering,1994,44(2):256-261.
    [138]王景峰,王暄,季民,等.聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化[J].环境科学,2006,27(3):473-477.
    [139]Third K A, Burnett N, Ruwisch R C. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron doner in an SBR[J]. Biotechnolgy and Bioengineering,2003,83(6): 706-720.
    [140]Meinhold J, Filipe C D M, Daigger G T, et al. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal[J]. Water Science and Technology,1999,39(1):31-42.
    [141]Frolund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research,1996,30(8):1749.
    [142]耿霞,梁冰,梁玉祥,等.苯酚-硫酸导数光谱法快速测定中药中多糖的研究[J].四川大学学报,2002,34(3):62-64.
    [143]Lowery O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biochemistry,1951,193:265-275.
    [144]Mobarry B K, Wagner M, Urbain V, et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J]. Applied and Enviromental Microbiology,1996,62(6): 2156-2162.
    [145]Crocetti G R, Hugenholtz P, Bond P L, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J]. Applied Environmental Microbiology,2000,66(3):1175-1182.
    [146]Daims H, Bruhl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:development and evaluation of a more comprehensive probe set[J]. Systematic and Applied Microbiology,1999,22:434-444.
    [147]Manz W, Amann R I, Ludwig W, et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria:problems and solutions[J]. Systematic and Applied Microbiology,1992, 15:593-600.
    [148]Chiemchaisri C, Yamamoto K. Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment[J]. Journal of Membrane Science,1994,87:119-129.
    [149]Holakoo L, Nakhla G, Bassi A S, et al. Long term performance of MBR for biological nitrogen removal from synthetic municipal wastewater [J]. Chemosphere,2007,66(5):849-857.
    [150]Arnot T C, Zahir N. Membrane bioreactors as an alternative to conventional waste water treatment processes[J]. Resource and Environmental Biotechnology,1996,1:145-162.
    [151]Chae S R, Shin S H. Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater at various temperatures[J]. Process Biochemistry,2007,42(2):193-198.
    [152]Yeom I T, Nah Y M, Ahn K H. Treatment of household wastewater using an intermittently aerated membrane bioreactor [J]. Desalination,1999,124(1-3):193-204.
    [153]Puznava N, Payraudeau M, Thornberg D. Simultaneous nitrification and denitrification in biofilters with real-time aeration control[J]. Water Science and Technology,2000,43(1):269-276.
    [154]邹联沛,刘旭东,王宝贞,等.MBR中影响同步硝化反硝化的生态因子[J].环境科学,2001,22(4):51-55.
    [155]李丛娜,吕锡武,稻森悠平.同步硝化反硝化研究[J].给水排水,2001,27(1):22-24.
    [156]Bang D Y, Watanabe Y, Noike T. An experiment study on aerobic denitrification with polyvinyl alcohol as a carbon source in biofilms[J]. Water Science and Technology,1996,32(8):235-242.
    [157]Robertson L A, Kuenen J G. Thiosphaera pantotropha gen.nov.sp.nov., a facultative autotrophic sulphur bacterium[J]. Journal of General Microbiology,1983,129(8):2847-2855.
    [158]Huang H, Tseng S K. Nitrate reduction by Citrobacter diversus under aerobic environment[J]. Applied Microbiology and Biotechnology,2001,55(1):90-94.
    [159]Loosdrecht M C, Pot M A, Heijnen J J. Importance of bacterial storage polymers in bioprocesses[J]. Water Science and Technology,1997,35(1):41-47.
    [160]Meng F, Zhang H, Yang F, et al. Identification of activated sludge properties affecting membrane fouling in membrane bioreactor[J]. Separation and Purification Technology,2006,51:95-103.
    [161]Meng F, Zhang H, Yang F, et al. Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor[J]. Journal of Membrane Science,2006,272:161-168.
    [162]王勇,孙寓姣,黄霞.丝状菌对膜-生物反应器中膜污染过程的影响[J].中国环境科学,2004,24(2):247-251.
    [163]Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science,2003,216(1-2):217-227.
    [164]Chang I S, Lee C H. Membrane filtration characteristics in membrane-coupled activated sludge system--the effect of physiological states of activated sludge on membrane fouling[J]. Desalination, 1998,120(3):221-233.
    [165]Meng F, Yang F, Xiao J, et al. A new insight into membrane-fouling mechanism during membrane filtration of bulking and normal sludge suspension[J]. Journal of Membrane Science,2006,285: 159-165.
    [166]Choi J G, Bae T H, Kim J H, et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system[J]. Journal of Membrane Science,2002,203(1-2):103-113.
    [167]Kumar M, Adham S S, Pearce W R. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type[J]. Environmental Science and Technology,2006,40(6):2037-2044.
    [168]Jarusutthirak C, Amy G. Role of soluble microbial products (SMP) in membrane fouling and flux decline[J]. Environmental Science and Technology,2006,40(3):969-974.
    [169]Kimura K, Yamato N, Yamamura H, et al. Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater[J]. Environmental Science and Technology,2005,39(16): 6293-6299.
    [170]Ivnitsky H, Katz I, Minz D, et al. Characterization of membrane biofouling in nanofiltration processes of wastewater treatment[J]. Desalination,2005,185(1-3):255-268.
    [171]Jarusutthirak C, Amy G, Croue J P. Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes[J]. Desalination,2002,145(1-3):247-255.
    [172]Cho J, Amy G, Pellegrino J, et al. Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization[J]. Desalination,1998,118(1-3):101-108.
    [173]Howe K J, Ishida K P, Clark M M. Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters[J]. Desalination,2002,147(1-3):251-255.
    [174]Van Kempen R, Mulder J W, Uijterlinde C A, et al. Overview:Full scale experience of the SHARON [registered trademark] process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology,2001,44(1):145-152.
    [175]Peng Y, Zhu G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology,2006,73(1):15-26.
    [176]Laanbrock H J, Bodelier P L E, Gerards S, et al. Oxygen consumption kinetics of nitrosomonas europaea and nitrobacter grown in mixed continuous cultures at different oxygen concentrations[J]. Archives of Microbiology,1994,161:156-162.
    [177]Kuai L P, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied and Environmental Microbiology,1998,64: 4500-4506.
    [178]Lishman L A, Legge R L, Farquhar G J, et al. Temperature effects on wastewater treatment under aerobic and anoxic conditions [J]. Water Research,2000,34(8):2263-2276.
    [179]Ip S Y, Bridger J S, Mills N F. Effect of alternating aerobic and anaerobic conditions on the economics of the activated sludge system[J]. Water Science and Technology,1987,19:911-918.
    [180]Chen G H, Yip W K, Mo H K, et al. Effect of sludge fasting/feasting growth of activated cultures[J]. Water Research,2001,35(4):1029-1037.
    [181]Nowak O, Svardal K, Schweighofer P. The dynamic behavior of nitrifying activated sludge systems influenced by inhibiting wastewater compounds[J]. Water Science and Technology,1995,31(2): 115-124.
    [182]Henze M, Gujer W, Mino T, et al. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3[M]. IWA Publishing,2000.
    [183]Alleman J E. Elevated nitrite occurrence in biologicalwastewater treatment systems[J]. Water Science and Technology,1984,17:409-419.
    [184]Manser R. Population dynamics and kinetics of nitrifying bacteria in membrane and conventional activated sludge:[Ph.D thesis]. Swiss Federal Institute for Environmental Science and Technology, Swiss Federal Institute of Technology,2005.
    [185]Blackburne R, Yuan Z, Keller J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation,2008,19:303-312.
    [186]Blackburne R, Yuan Z, Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater [J]. Water Research,2008,42:2166-2176.
    [187]Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Water Science and Technology,1999,39(6):61-68.
    [188]Muller E B, Stouthamer A H, van Verseveld H W, et al. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Water Research,1995,29(4): 1179-1189.
    [189]Cicek N, Winnen H, Suidan M T, et al. Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds[J]. Water Research,1998,32(5):1553-1563.
    [190]Konopka A, Zakharova T, Oliver L, et al. Biodegradation of organic wastes containing surfactants in a biomass recycle reactor[J]. Applied and Environmental Microbiology,1996,62:3292-3297.
    [191]He S, Xue G, Kong H, et al. Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite power[J]. Journal of Hazardous Materials,2007,142(2-3):493-499.
    [192]Li J, Xing X H, Wang B Z. Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR)[J]. Biochemical Engineering Journal,2003,16(3):279-285.
    [193]Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Research,1999,33(8):1871-1883.
    [194]Nielsen J L, Nielsen P H. Quantification of functional groups in activated sludge by microautoradiography[J]. Water Science and Technology,2002,46(1-2):389-395.
    [195]Lee D S, Joen C K, Park J M, et al. Biological nitrogen removal with enhanced phosphate removal in a SBR using single sludge system[J]. Water Research,2001,35(16):3968-3976.
    [196]Jiang Y F, Wang L, Wang B Z, et al. Biological nitrogen removal with enhanced phosphate removal in (AO)2SBR using single sludge system[J]. Journal of Environmental Science,2004,16(6): 1037-1040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700