北京山区坡面土壤流失方程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤流失是国际社会广泛关注的环境问题,严重的土壤流失加剧了生态环境的恶化,造成了水资源短缺、洪涝灾害、水环境恶化等突出问题,严重地制约了经济社会的可持续发展和人类生存环境的改善。洁净的淡水和可耕作的土壤已成为21世纪人类最为重要的战略资源,水是生命之源,土是生存之本,保护水土资源是世界各国人民的共同责任。
     北京地处华北平原北端,全市总面积16410km~2,其中山区面积10072km~2,占全市总面积的62%。山区是首都主要的水源涵养及供给源地,是天然生态屏障,也是居民休闲旅游度假胜地。但北京山区坡陡土薄,坡度大于25°的面积占山区总面积的40%左右,近50%的地区土层厚度小于30cm;据2000年土壤侵蚀遥感调查,全市土壤侵蚀面积4089km~2,水土流失导致山区土地生产力降低,生态环境恶化,同时,水土流失及携带的污染物污染了水资源,加重了北京水资源的短缺程度。因此,水土保持工作是北京山区经济可持续发展的基本保障。
     北京市从实际出发,提出了以水源保护为中心,根据水土流失的发生发展规律,构筑“生态修复、生态治理、生态保护”三道防线,治理水土流失,建设生态清洁型小流域的水土保持思路。为此,我们需要一门技术和工具来定量评价北京市土壤流失和泥沙输移规律,调查土壤流失的现状、规模和发展趋势,确定最佳治理管理方案,减少直至避免土地退化,为水土保持生态环境建设提供科学依据,为政府决策提供依据。
     土壤侵蚀预报模型及土壤流失调查是有效“诊断”土壤流失现状和进行土壤流失评价的工具。参考国外较为完善且广泛使用的土壤侵蚀预报模型结合北京地区的观测资料来建立适合北京山区的土壤流失方程显得尤为重要。根据调研认为,物理模型由于参数多且获取难度大的特点,还处于研究阶段;而经验模型通过应用区域大量的观测统计数据就可建立,实用性强,因此,选用最成熟、世界上应用最广的经验模型美国通用土壤流失方程式为北京地区土壤流失方程的基本模型框架。
     北京的坡地水土流失观测始于1987年,2000年对坡地径流场又进行了系统的补充完善,在全市7个山区区(县)均布设了坡地径流场。本文利用北京市水务局在7个山区区(县)的11个坡地径流场127个径流小区近1000个坡面径流小区的年降雨、径流和泥沙资料、60多场次人工降雨试验资料和北京地区10个水文站1980-2004年25年2894次降雨过程资料以及24个水文站1980-2004年日雨量等资料,在总结国内外学者研究成果的基础上,研发计算土壤流失方程式中各个水土流失因子在北京地区的计算方法或参数值,确定了北京山区坡面土壤流失方程降雨侵蚀力因子R、土壤可蚀性因子K、坡度和坡长因子SL、植被覆盖与管理因子C以及水土保持工程措施因子P的计算公式或计算值。
     研究中发现,在石质山区,土壤表层常有大量的砾石(土壤中直径大于等于2mm的矿物颗粒)存在,通过小区实际观测资料及人工降雨模拟试验,发现土壤侵蚀量随砾石覆盖度增大而减少。因此在北京土壤流失方程中,增加砾石覆盖因子(R_F)作为一个单独因子在方程中加以考虑,通过人工降雨模拟试验,得出土壤侵蚀量和砾石覆盖二者关系,最终得到适合于北京山区的土壤流失方程A=RKLSCPR_F。利用实际坡地径流场观测资料验证,该模型确定性系数为0.974,模型计算结果与实测值非常接近,证明土壤流失方程及其参数的取值合理。
     以该方程为技术工具应用抽样调查法和网格法,在北京已开展大范围土壤侵蚀现状调查,并取得阶段性成果;2004年-2006年的《北京市水土流失监测公报》中,利用该方程及全市123个雨量点年降雨资料,得到全市年降雨侵蚀力等值线图,通过年降雨侵蚀力的分布,用全市山区7个坡地径流场的水土流失观测数据推算全市坡地土壤流失量,大大提高了公报的准确性与科学性。
     北京将继续进行坡地径流场的观测,用长序列的观测资料对模型参数不断进行率定与模型修正,使模型更加完善。同时,将加强模型应用的研究,特别是模型在水土流失预测和水土保持规划应用方面的研究,为北京山区水土资源管理、水土流失防治及生态建设服务。
Soil erosion is now regarded as a global environment problem, which gets more and more attention from all people in the world. Serious soil causes many the eco-environment problems, such as water shortage, flood disaster, deterioration of water environmental and so on. Clean water and cultivable lands have become the most important strategic resource in 21st century, water and soil is the foundation of the life. It's the shared responsibility of all the people in the world to protect soil and water resources.
    Beijing , with a total area of 16,410 km~2, locates in the north part of North China Plain. Us mountain area is 10,072km~2, accounts for 62% of the total area. Mountain area is the main conservation area of the water, the main resort for the capital people.The soil in the mountain area is very thin and the slope is very deep. The degree of the slope more than 25° accounts for 40% of the whole mountain area, and the soil layer less than 30cm accounts for over 50%. According to remote sensing survey of soil erosion in 2000, the soil erosion area of the whole city is 4,089km~2. Soil erosion and water loss lead to the land productivity decreasing, eco-environment exacerbating and water pollution, and further aggravates the water shortage problem in Beijing. So soil and water conservation is the basic guarantee for economic sustainable development in Beijing mountains area.
    Set out from practice, Beijing put forward an idea of soil and water conservation that takes water resource protection as a center, according to the law of soil erosion to build the Three Conservation Belts: ecological restoration, ecological management and ecological protection, finally to construct ecological-clean small watershed. So we need a technology and a tool to quantitatively evaluate the rules of soil loss and sediment transport for Beijing, to investigate the status, scale and development trend of soil erosion, determine the best land harness and management program, reduce or try to avoid land degradation, provide a scientific basis for soil and water conservation and eco- environment construction, and a decision-making basis for government to make decision.
    Soil erosion prediction model and soil loss equation are now the quantitatively evaluation tool to investigate soil erosion status. It is very important to set up a soil loss equation suitable for the Beijing mountainous area by referring to soil erosion prediction models out-seas which are relatively perfect and widely-use and combining with the
    practice observation data in Beijing. According to the research ,we find out the physical model is still in the research phase because the parameters relatively more and difficult to get, while the empirical model has more practicability as it could be established only depending on a large number of observation and statistics data. So we choose the most mature and widely used experience mode, the USLA general soil loss equation, as the basic model frame for the Beijing mountains soil loss equation.
    The slop soil loss observation was stared in 1987 in Beijing, and the slope runoff plots were completed and improved in 2000, the entire seven mountain districts (counties) have emplaced the slop runoff stations. According to use the field observation date of the rainfall, runoff and sediment content in 127 runoff plots and almost 1000 slope runoff fields, artificial rainfall test data of more than 60 times, rainfall process data of 2894 times of 10 hydrometric stations and daily rainfall data of 24 hydrometric stations, and all these data are 25 years from 1980-2004, summarizing the research results both of overseas and domestic, this paper research the calculation methods or the parameter value of all the soil loss factors of soil loss equation suitable for the Beijing area,find and make sure the calculation methods or the calculation value of factors the of Beijing mountain soil loss equation, which are rainfall erosion force factor R, soil erosion possibility factor K, slope length and grade factor SL, vegetation cover and manage factor C, soil and water conservation measures factor P.
    The researcher also find that in the rocky mountains the soil surface often has a lot of gravel (mineral particles with diameter larger than 2mm ), according to field observation data and artificial rainfall tests, we find that the soil erosion decreases with the increase of gravel coverage. So in the Beijing soil loss equation, adds the gravel cover factor (R_F )as an independent factor, according to artificial rainfall tests to educe the relationship between soil erosion and gravel coverage, and at last put forward the soil loss equation
    A = RKLSCPR_F which suitable for Beijing mountains. By using the observation data of slope runoff stations, the definite coefficient of this mode is 0.974; the calculated result is very near to the observed value, which proves that both the soil loss equation and the paramcter value are reasonable.
    Taking this soil loss equation as technology tool, applying both sample survey and grid investigation methods to implement large scale soil erosion status investigation in Beijing has received some initial results. In the bulletin of Beijing Soil Loss Monitoring from 2004 to 2006, combining this soil loss equation with rainfall data of 123 rainfall station all over the city to draw up a rainfall erosivity contour map, according to the distribution of rainfall erosivity and by using the observation data of the 7 slope runoff stations all over the city to calculate the slope soil loss of the whole city, which greatly enhance the veracity and science of the bulletin.
    We will continue to do the observation in the slope runoff stations in Beijing, using the observation data with long years to revise the parameter and improve the mode, and go on
    to do the further research on the mode application, especially on the aspects of soil loss forecast and soil and water conservation plan, provide service for the land and water resource management, soil loss prevention and ecological construction of Beijing mountains.
引文
[1] (美)H.詹尼著.土壤资源起源与性状(M).北京:科学出版社.1988.51-56.
    [2] 包为民,陈耀庭.中大流域水沙耦合模拟物理概念模型(J).水科学进展,1994,5(4):287-292.
    [3] 毕小刚,段淑怀,李永贵,等.北京山区土壤流失方程探讨(J),中国水土保持科学,2006,4(4)6-13.
    [4] 毕小刚,段淑怀.北京市从小流域治理走向小流域管理的实践(J).中国水土保持,2007,1:10-11.
    [5] 卞正富,张国良,胡喜宽.矿区水土流失及其控制研究(J).土壤侵蚀与水土保持学报,1998,4(4):31-36.
    [6] 卜兆宏,卜字行,陈炳贵,等.用定量遥感方法监测UNDP试区小流域水土流失研究(J).水科学进展.1999,10(1):31-35.
    [7] 卜兆宏,董勤瑞,周伏建,等.降雨侵蚀力因子新算法的初步研究(J).土壤学报,1992,29(4):408-417.
    [8] 卜兆宏,李士鸿.水土流失调查的遥感数据处理(M).南京:东南大学出版社.1989,209-216.
    [9] 范瑞瑜,黄河中游地区小流域土壤流失量计算方程的研究(J),中国水土保持,1985(2):12-18
    [10] 卜兆宏,唐万龙,李士鸿.像元坡度新算法的初步研究(J)遥感技术与应用.1993,8(1):1-7.
    [11] 卜兆宏,唐万龙,潘贤章.土壤流失量遥感监测中GIS像元地形因子算法的研究(J).土壤学报,1994,31(3):322-328.
    [12] 卜兆宏,赵宏夫,刘绍清,等.用于土壤流失量遥感监测的植被因子算式的初步研究(J).遥感技术与应用,1993,8(4):16-22.
    [13] 蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模拟(J).地理学报,1996,51(2):108-116.
    [14] 蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟(M).北京:科学出版社,1998.144-147.
    [15] 曹文洪.土壤侵蚀的坡度界限研究(J),水土保持通报,1993,13(4):1-5.
    [16] 曹银真.黄土地区梁坡的坡地特征与土壤侵蚀(J).地理研究,1983,2(3):19-29.
    [17] 柴宗新,范建荣.长江上游未来50年水体流失变化预测(J).自然灾害学报,2001,10(4):15-19.
    [18] 陈法扬,王志明.通用土壤流失方程在小良水土保持试验站的应用(J),水土保持通报,1992,12(1):23-41
    [19] 陈法扬.不同坡度对土壤冲刷量影响试验(J),中国水土保持,1985,18-19.
    [20] 陈克平,宁大同.基于GIS非点源污染模型地形因子分析(J).北京师范大学学报(自然科学版),1997,33(2):281-284.
    [21] 陈雷.中国的水土保持(J).中国水土保持,2002,(4):4-6.
    [22] 陈奇伯,齐实,孙立达.土壤容许流失量研究的进展与趋势(J).水土保持通报,2000,20(1):9-13.
    [23] 陈奇伯,王克勤,齐实,等.半干早黄土丘陵区坡耕地土壤容许流火量研究(J).水土保持通报,2003,23(4):1-4.
    [24] 陈一兵,TmuwborstKO.土壤侵蚀建模中ANSWERS及地理信息系统ARC/INFO的应用研究(J).土壤侵蚀与水土保持学报,1997,3(2):1-13.
    [25] 陈永宗,景可,蔡强国.黄_十高原现代侵蚀与治理,1988,北京:科学出版社.
    [26] 陈永宗.黄河中游黄土丘陵地区坡地的发育(J).地理集刊,1976,第10集:35-51.
    [27] 邓南荣,李定强,王继增,等.广东省东江流域土壤侵蚀空间分布特征研究,中国水土保持,1999,5,21-23.
    [28] 董光荣.中国北方半干旱和半湿润地区沙漠化的成因(J).第四纪研究,1998,(2):136-144.
    [29] 段建南,李保国,石元春.应用于土壤变化的坡面土壤侵蚀过程模拟(J).土壤侵蚀与水士保持学报,1998,4(1):47-53.
    [30] 段淑怀.利用3S技术进行北京市土壤侵蚀调查(J).北京水利,2003-3.
    [31] 樊振国译.保持长期土壤生产力的容许土壤流失量.水土保持科技情报,1988,28(2):39-41,23.
    [32] 符素华,段淑怀,刘宝元.密云石匣小流域土地利用对土壤粗化的影响(J).地理研究,2001,20(6):697-702.
    [33] 陈洪经.黄土高原小流域动态监测信息系统研究(C).北京:测绘出版社,1992.110-118.
    [34] 付炜.土壤重力侵蚀灰色系统模型研究(J).水土保持学报,1996,2(4):9-17.
    [35] 高维森,王幼民.土壤抗冲性研究综述(J).水土保持通报,1992,12(5):59-63.
    [36] 贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制(J).环境科学,1998,19(5):87-91.
    [37] 胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究(J).土壤学报,2001,38(2):169-174.
    [38] 胡世雄,勒长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究(J)地理学报,1999,54(4):347-356.
    [39] 黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训(J).科学通报,1955,(12):15-24.
    [40] 黄秉维.陕西黄土区域土壤侵蚀的因素和方式(J).科学通报,1953,(9):63-75.
    [41] 黄炎和,卢程隆,付勤,等.闽东南土壤流失预报研究(J).水土保持学报,1993,7(4):13-18.
    [42] 黄炎和.闽东南降雨侵蚀力指标R值的研究(J).水土保持学报,1992,6(4):1-5.
    [43] 江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究(J).中国水土保持,1983,(3):32-36.
    [44] 江忠善,宋文径.黄河中游黄土丘陵沟壑区小流域产沙量计算(A).见:第一次河流泥沙国际学术讨论会论文集(C).北京:光华出版社,1980.A3-1-A3-10.
    [45] 江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究(J).水土保持研究,1996,3(2):84-97.
    [46] 江忠善.黄土丘陵区小流域土壤侵蚀空间变化定量研究.土壤侵蚀与水土保持学报,1996,2(1):1-10.
    [47] 蒋定生,李新华,范兴科,等.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置(J).水土保持学报,1995,9(1):1-7.
    [48] 解明曙.关于中国土壤侵蚀类型和土壤侵蚀类型区的划分(J).中国水土保持.1993,8-10
    [49] 金争平,赵焕勋,和泰,等.皇甫川区小流域土壤侵蚀量预报方程研究(J).水土保持学报,1991,5(1):8-18
    [50] 靳长兴.论坡面侵蚀的临界坡度.见:蔡强国等编,永定河上游张家口市水土流失规律与坡地改良利用.北京:环境科学出版社,1995,59-65.
    [51] 景可,陈永宗,李风新.黄河泥沙与环境(M).北京:科学出版社,1993.
    [52] 李建牢,刘世德.罗玉沟流域坡面土壤侵蚀量的计算,中国水土保持,1989(3):28-31
    [53] 李景保,梁成军,蔡松柏.论土壤侵蚀对山地致灾因子链的复合效应.以湖南四水流域中上游地区为例(J).自然灾害学报,2002,11(4):101-105.
    [54] 李矩章,景可,李风新.黄土高原多沙粗沙区侵蚀模型探讨(J).地理科学进展,1999,18(1):46-53.
    [55] 李全胜,王兆骞.坡面承雨强度和土壤侵蚀临界坡度的理论探讨,水士保持学报,1995,9(3):50-53.
    [56] 李文银,王治国,蔡继清.工矿区水土保持(M).北京:科学出版社,1996.
    [57] 廉杰.森林土壤容许流失量的研究.水土保持学报,1993,7(1):18-22.
    [58] 林承坤.长江三峡与葛洲坝的泥沙及环境(M).南京:南京大学出版社,1989.
    [59] 林素兰,黄毅,聂振刚,等.辽北低山丘陵区坡耕地土壤流失方程的建立.土壤通报,1997,28(6):251-253.
    [60] 刘宝元,唐克丽.王东沟流域坡度分类与坡度分布特征,水土保持通报,1987.7(3):59-64.
    [61] 刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用(J).自然资源学报,1999,14(4):345-350.
    [62] 刘昌明,王会肖著.土壤-作物-大气界面水分过程与节水调空(M).北京:科学出版社.1999,P101.
    [63] 刘东生.黄土组成与黄土结构.1966.北京:科学出版社.
    [64] 刘光崧,蒋能慧.土壤理化分析与剖面描述(M).中国标准出版社,1996。
    [65] 刘志,江忠善.降雨因素和坡度对片蚀影响的研究,水土保持通报,1994,14(6):19-22.
    [66] 马志尊.应用卫星影象估算通用土壤流失方程各因子值方法的探讨,中国水土保持,1989(3):24-27
    [67] 牟金泽,孟庆枚.降雨侵蚀土壤流失方程的初步研究(J).中国水土保持,1983,(6):25-27.
    [68] 牟金泽,孟庆枚.陕北部分中小流域输沙量计算(J).人民黄河,1983,(4):35-37.
    [69] 牟金泽.降雨侵蚀土壤流失预报方程的初步研究.中国水土保持,1983,第6期,23-26.
    [70] 牟金泽.雨滴速度计算公式(J).中国水土保持,1983,(3):40-41.
    [71] 钱易,对北京水资源保护战略的思考(A),环首都水资源保护与生态环境建设学术研讨会论文集(C),2001.1-3
    [72] 钱正英.全国贯彻执行执行《水土保持工作条例》,为防治水土流失,根本改变山区面貌而奋斗(J).水土保持通报,1982,2(5):5-13.
    [73] 阮伏水,吴雄海.福建省花岗岩地区土壤容许侵蚀量的确定.福建水土保持,1995(2):26-31.
    [74] 沙际德,将允静.试论初生态侵蚀性坡面薄层水流的基本特性(J).水土保持学报,1995,9(5):29-35.
    [75] 史德明,韦启潘,梁音,等.中国南方侵蚀土壤退化指标体系研究.水土保持学报,2000,14(3):1-9.
    [76] 史德明.长江流域土壤侵蚀的特点及其潜在危险(J).中国水土保持,1983,(3):16-18.
    [77] 史德明.三峡库周地区土壤侵蚀对库区泥沙来源的影响及其对策(A).长江三峡工程对生态与环境影响及其对策研究文集(C).北京:科学出版社,1987.
    [78] 史德明.中国水土流失及其对旱涝灾害的影响(J).自然灾害学报,1996,5(4):36-46.
    [79] 史景汉.黄丘一区坡面水土流失规律的研究,中国水土保持,1991,7:26-31.
    [80] 孙保平,赵廷宁,齐实.USLE在西吉县黄土丘陵媾和区的应用.中科院西北水土保持研究所集刊,1990,第12集,50-58.
    [81] 孙保平.USLE在西吉县黄土丘陵沟壑区的应用(J).西北水土保持研究所集刊.1990,50-58
    [82] 孙虎,甘枝茂.城市周边地区侵蚀景观特征分析(J).土壤侵蚀与水土保持学报,1998,4(4):37-43.
    [83] 孙立达,孙保平,陈禹,等.西吉县黄土丘陵沟壑区小流域土壤流失量预报方程(J).自然资源学报,1988,3(2):141-153
    [84] 汤立群.流域产沙模型的研究(J).水科学进展.1996,7(1):47-53.
    [85] 唐克丽,王斌科,郑粉莉.黄土高原人类加速侵蚀与生态环境演变(J).人民黄河,1994,7(2):13-16.
    [86] 唐克丽,张科利,雷阿林.黄土丘陵区退耕上限坡度的研究论证(J).科学通报,1998,40(2):200-203.
    [87] 唐克丽.神府-东胜矿区一、二期工程环境效应考察专辑(J).水土保持研究,1994,1(4):18-22.
    [88] 唐克丽.土壤侵蚀与生态环境演变研究论文集(J).中国科学院水利部西北水土保持研究所集刊,1993.第17集:1-10
    [89] 田均良,用佩华.土壤侵蚀REE示踪法研究初报(J).水土保持学报,1992,6(4):23-27.
    [90] 王东胜、谭红武.农业面源污染研究的讨论.中国水利水电科学研究院水环境研究所.
    [91] 王孟楼,张仁.陕北岔巴沟流域次暴雨产沙模型的研究(J).水土保持学报,1990,4(11):11-18.
    [92] 王涛.中国沙漠科学的发展(J).中国沙漠,1999,(4):299-311.
    [93] 王万中,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(1)(J).水土保持学报,1995,9(4):5-18.
    [94] 王万中,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙(M).北京:科学出版社,1996.
    [95] 王万忠,焦菊英.中国降雨侵蚀R值的计算与分布(Ⅱ)(J).土壤侵蚀与水土保持学报,1996,2(1):29-39.
    [96] 王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究(J).水土保持通报,1996,16(5):1-20.
    [97] 王晓燕,郭芳,蔡新广,等.密云水库潮白河流域非点源污染负荷(J).城市环境与城市生态,2003,16(1):31-33.
    [98] 王星宇.黄土地区流域产沙的数学模型(J).泥沙研究.1987,3:55-60.
    [99] 王佑民,郭培才.黄土高原土壤抗冲性的研究(J).水土保持学报,1994,8(4):11-16.
    [100] 吴成基.陕南河流泥沙输移比问题(J).地理科学,1998,(1):39-44.
    [101] 吴嘉俊,庐光辉,林俐玲.土壤流失量估算手册.台湾屏东技术学院出版,1997,137-167.
    [102] 吴礼福.黄土高原土壤侵蚀模型及其应用(J).水土保持通报,1996,16(5):29-35.
    [103] 吴普特.动力水蚀实验研究(M).西安:1997,科学技术出版社.
    [104] 吴素业.安徽大别山区降雨侵蚀力指标的研究(J)中国水土保持,1992,(2):32-33.
    [105] 夏卫生.具有中国特色的水土保持科学体系(J).水土保持通报,1989,9(4):30-35.
    [106] 向治安.长江泥沙输移特性分析(J).水文,1993,(6):8-13.
    [107] 谢树楠,王孟楼,张仁.黄河中游黄土沟壑区暴雨产沙模型的研究(M).北京:清华大学出版社,1990.
    [108] 辛树帜,蒋德麒.中国水土保持概论(M).北京:农业出版社,1982.
    [109] 杨武德,王兆骞.红壤坡地不同利用方式下土壤侵蚀模型研究(J).土壤侵蚀与水土保持学报,1999,5(1):52-58
    [110] 杨艳生.区域行土壤流失预测方程的初步研究(J).土壤学报,1990,27(1):73-79.
    [111] 杨子生.滇东北山区坡耕地土壤流失方程研究(J).水土保持通报,1999,9(1):1-9.
    [112] 尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式(J).地理学报,1989,44(1):31-45.
    [113] 游松财,李文卿.GIS支持下的土壤侵蚀量估算--以江西省泰和县灌溪乡为例(J).自然资源学报,1999,14(1):62-68.
    [114] 林培主编.黄土高原遥感专题研究论文集(C).北京:北京大学出版社.1990.287-293.
    [115] 曾琪明,马霭乃,贺伟,等.密云水库上游水土流失遥感调查与分析(J).土壤侵蚀与水土保持学报,1996,2(1):46-51.
    [116] 张超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算(1).水土保持通报,2001,21(4):6-9.
    [117] 张光辉.土壤水蚀预报模型研究进展(J).地理研究,2001,20(3):274-281.
    [118] 张光科,方铎.坡面径流侵蚀量随坡度变化规律初探,水文,1996,6:45-48.
    [119] 张汉雄.黄土高原的暴雨特性及其分布规律(J).地理学报,1983,39(4):416-425.
    [120] 张洪江.通用土壤流失方程式综述(J).北京林学院学报.1985,73-87
    [121] 张科利,唐克丽.黄士高原坡面浅沟侵蚀特征值研究(J).水土保持学报,1992,6(2):59-62.
    [122] 张宪奎,许靖华,邓育江,等.黑龙江省土壤侵蚀方程的研究(J).水土保持通报,1992,12(4):1-9.
    [123] 张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究(J).水土保持通报,1996,12(4):1-18.
    [124] 张信宝.长江上游水土流失治理的思考(J).水土保持科技情报,1996,(4):7-9.
    [125] 张信宝.黄土高原小流域泥沙来源的137Cs法的研究(J).科学通报,1989,(3):210-213.
    [126] 张岩,刘宝元,史培军,等.黄土高原土壤侵蚀作物筱盖因子计算(J).生态学报,2001,21(7):1050-1055.
    [127] 章明奎.浙江省丘陵沙化土壤的特性和复退性的研究(J).土壤侵蚀与水土保持学报,1999,5(2):75-79.
    [128] 章文波,付金生.不同类型雨量资料估算降雨侵蚀力(J).资源科学,2003,25(1):35-41.
    [129] 郑粉莉.黄土高原人类活动与生态环境演变的研究(J).水土保持研究,1994,1(5):36-42.
    [130] 郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟(M).西安:陕西人民出版社,2000.
    [131] 郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理(J).地理学报,1998,53(5):422-428.
    [132] 郑粉莉,刘峰,杨勤科,等.土壤侵蚀预报模型研究进展(J).水土保持通报,2001,21(6):16-18.
    [133] 郑粉莉,唐克丽.自然侵蚀和人为加速侵蚀与生态环境的演变(J).生态学报,1995,15(3):251-259.
    [134] 郑粉莉.发生细沟侵蚀的临界坡长与坡度(J).中国水土保持,1989,(8):23-24.
    [135] 中国农业百科全书编委会.中国农业百科全书(土壤卷).北京:农业出版社,1996:345.
    [136] 中华人民共和国水利部.土壤侵蚀分类分级标准.北京:中国水利水电出版社,1997.
    [137] 中科院西北水保所.土壤容许流失量的学术与社会意义.土壤保持的问题与展望,1984:229-236.
    [138] 周伏建,陈明华,林福兴,等.福建省土壤流失预报方程研究,水土保持学报,1995,9(1):25-30.
    [139] 丁一汇.中国西部环境演变评估(M).北京:科学出版社,2002.114-139.
    [140] 周佩华,窦葆璋,孙消芳,等.降雨能量试验研究初报(J).水土保持通报,1981,1(1):51-60.
    [141] 周佩华,李银锄,黄义端,等.2000年中国水土流失趋势预测及其防治对策(J).中国科学院西北水土保持研究所集刊,1988,第7集:57-71.
    [142] 周佩华,王占礼.黄土高原土壤侵蚀标准(J).水土保持通报,1987,7(1):38-44.
    [143] 周佩华,武春龙.黄土高原土壤抗蚀性的试验方法探讨,水土保持学报,1993,7(3):29-33.
    [144] 朱显谟.黄土高原水蚀的主要类型及其有关因素(J).水土保持通报,1981,(3):1-9,(4):13-18,1982,(1):25-30(3):40-44.
    [145] 朱显谟.黄土高原土地的整治问题(J).水土保持通报,1984,4(4):1-6.
    [146] 朱显谟.黄土区土壤侵蚀的分类(J).土壤学报,1956,4(2):99-116.
    [147] 朱显谟.论高原地区水土保持战略问题(J).水土保持通报,1984,4(1):15-18.
    [148] 朱震达.中国沙漠化研究进展(J).中国沙漠,1989,(1):72-78.
    [149] Abrahams, A. D. and Parsons, A J, Hydraulics of interrill overland flow on stone covered desert surfaces, Catena, 1994. 23: 111-140.
    [150] Arnold J G, Williams J R, Nicks A D et al. SWRRB: A basin scale simulation model for soil and water resources management(R). Texas: A&M university press. 1990.
    [151] Arnold J G, Wiiliams J R, Maidment D R. Continues-time water and sediment-routing model for large basins(J). Journal of Hydraulic Engineering, 1995, 121(2): 171-183.
    [152] Bagnold, R A. The Physics of Blown Sand and Desert Dunes(M). London: Chapmane and Hall, 1941.265.
    [153] Beasley D B, Huggins L F, Monke E J. ANSWERS: A model for watershed planning(J). Transactions of the ASAE. 1980, 23: 938-944.
    [154] Bennett, H. H. Soil conservation(M). New York: McGraw-Hill Book Co., 1939.
    [155] Borst, H. L., A. G. McCall, and F. G. Bell, Investigations in erosion control and the reclamation of eroded land at the Northwest Appalachian Conservation Experiment Station, Zanesville, OH. 1934-42. USDA Tech. Bull. 1945. No. 888.95pp.
    [156] Bouraoui F, Dillaha T A. ANSWERS-2000: Runoff and sediment transport model (J). Journal of Environmental Engineering, 1996, 122(6): 493-502.
    [157] Box J E. The effects of surface slaty fragments on soil erosion by water (J). Soil Sci. Soc. Am. J., 1981, 45: 111-116.
    [158] Browing, G. M., R. A. Norton, A. G.. McCall and F. G. Bell. Investigations in erosion control and the reclamation of eroded land at Missouri Valley Loess Conservation Experiment Station, Clarinda, IA, 1931-42. USDA Tech. Bull. 1948. No.888, 95pp.
    [159] Browning G M, Parish C L, Glass J A. A method for determining the use and limitation of rotation and conservation practices in control of soil erosion in Iowa(J). Journal of the American Society of Agronomy, 1947, 39: 65-73.
    [160] Cook H L. The nature and controlling variables of the water erosion process(J). Soil Sci Soc Am Proceedings 1(C), 1936, 1: 60-64.
    [161] Cropland. ASA Special Publication No.45,Am.SOC. Agr., Madison, Wisconsin. 131-138.
    [162] De Roo A P J, Jetten V G. Calibrating and validating the LISEM Model for two data sets from the Netherlands and South Africa(J). Catena, 1999, 37(3-4): 477-493.
    [163] De Roo A P J,Wesseling C G, Ritsema C J, LISEM: A Single-event physically based hydrological and soil erosion model for drainage basins(J). I: Theory, Input and Output. Hydrological Processes, 1996, 10(8): 1107-1118.
    [164] De Roo A P J. The LISEM project: an introduction. Hydrological Processes. 1996, Vol.10: 1021-1025.
    [165] Disker, E. G. and R. E. Yoder. Sheet erosion studies on Cecil clay. Agr. Exp. Sta. Ala. Polytech. Inst. Bull. No. 245. 1936. 52pp.
    [166] Dissmeyer, G E, Foster G R. A guide for predicting sheet and rill erosion on frost land. U. S. Dep. Agric., Forest Sev. Tech. Publ. 1980. SA-TP-11.
    [167] Donn, G. Decoursey. Proceedings of The Natural Resources Modeling Symposium. 1985.
    [168] Duley, F. L., O. e. hays. The effect of the degree of slope on runoffand soil erosion. Jour. Agr. Res. 1932, 45(6): 349-360.
    [169] EI-Swaify S A, Dangler E W. Erodibility of selected tropical soils in relation to structural and hydrologic parameters( A ). Soil Erosion: Prediction and Control(C). Ankeny, Iowa: Soil Cons Soc Am. 1976. 105-114.
    [170] Ellison W D. Soil Erosion Study-Part Ⅱ: Soil detachment hazard by raindrop splash(J). Aric. Eng., 1947, 28: 197-201.
    [171] Ellison W D. Soil Erosion Study-Part V:Soil transport in the splash process(J). Aric. Eng. 1947. 28: 349-351, 353.
    [172] Ellison W D. Studies of raindrop erosion(J).Aric.Eng., 1944,25:131 -136.
    
    [173] Ellison W,D Ellison O T. Soil Erosion Study-Part VI:Soil detachment by surface flow(J). Aric. Eng, 1947,28:402-405,408.
    [174] Elwell H A. Modelling Soil Loss in Southern Africa(J). J Agric Engineering Res, 1980,23: 117-127.
    [175] Engel B A, Brown S J. A comparison of GIS simulated hydrologic response with actual storm event data(A). In: Sam S.Y.Wang ed. Advances in Hydro-Science and Engineering (C). A Wiley-Interscience Publication. 1993.511-517.
    [176] Engel B A. The impact of GIS-derived topographic attributes on the simulation of erosion using AGNPS(J). American of Society of Agricultural Engineers, 1994,10(4): 561-566.
    
    [177] Evett, S R and Dutt G R, Effect of slope and rainfall intensity on erosion from sodium dispersed, compacted earth microcatchments. Soil Sci. Soc. Amer. Jour. 1985. 49(1):202-206.
    [178] Fan, J.C. Measurements of erosion on highway slopes and use of Universal Soil Loss Erosion Equation. Ph.d. diss., Purde Univ., West Lafayette, Ind. 1987.
    [179] Ferro V, Porto P, Yu B. A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia(J). Hydrological Sciences journal, 1999,44(1): 3-24.
    [180] Flangan D C and Nearing M A. USDA Water erosion prediction project: hillslope profile and watershed model documentation. USDA-ARS, NSERL, Report no. 10. USDA-ARS, West Lafayette, Indiana, USA. 1995.
    [181] Flangan R P C, Quinton J N, Smith R E, et al. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 1998,23, 527-544.
    [182] Foster G R,Meyer L D.Onstad C A. An erosion equation derived from basic erosion principles(J).Trans.ofASAE,1977,20(4):678-68.
    [183] Foster G R.Meyer L D. A closed-form soil erosion equation for upland areas(A). In: H.W.Shen(ed.) Syposium of Sedimentation(C).Colorado, 1972.12.1-12.7.
    [184] Foster G R. Soil erosion modeling: special considerations for nutrient pollution evaluation of field sized area(A). In: Overcash M R, Davidson J M, ed. Environment Impact of Nonpoint Source Pollutionp(C). Ann Arbor: Ann Arbor Science, 1980.213-243.
    
    [185] Foster G R. Modeling the erosion process. In Hydrologic Modeling of Small Watersheds. Eds. C T Haan et al. MI: ASAE. 1982a.
    
    [186] Foster G R. Relation of USLE factors to erosion on rangeland. In Proceedings of workshop on estimating soil erosion and sediment yield from rangelands. ARM-W-26. USDA-ARS. 1982b. 17-35.
    
    [187] Foster, G R, Wischmeier, W H.. Evaluating irregular slopes for soil loss prediction. Transaction of ASAE. 1974.17:305-309.
    
    [188] Foster, G. R. and G.L.Martin. Effect of unit weight and slope on erosion. J. of the Irrig. And Drainge Div. Proc. Of the ASCE Vol. 95, No. IR4, 1969. 551-561.
    
    [189] Foster, G.R., J.R.Simanton, K.G.Renard, L.J.Lane and H.B.Osborn. Discussion of "Application of the Universal Soil Loss Equation to rangeland on per-storm basis." J. Range Management 1981.34(2):161-165.
    [190] Foster, G R,F P Eppert,L D Meyer. A programmable rainfall simulator for field plots(S). Agric. Rev. and Manuals ARM-W-10.USDA-ARS.Oakland:Western Region, CA, 1979. 45-49.
    [191] Foster.G.R., L.D.Meyer, and CA.onstad. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Trans. 1977. ASAE 20: 683-687.
    [192] Froster D L,R P Richards,D B Baker,et al. Blue EPIC modeling of the effects of farming ractice changes on water quality in two lake Erie watersheds(J).Journal of Soil and Water Conservation,2000,55( 1 ):85-90.
    
    [193] Gard.L.E. and C.A. Van Doren. Soil losses as affected by cover, rainfall, and slope. Soil Sci. Soc. Proc. 1949. 14:374-378.
    [194] Grant, W J, and Struchtemeyer R A. Influnce of the coarse fraction in two Maine potato soils on infiltration, runoff and erosion. Soil Sci. Soc. Of America Proceedings, 1959.23, 391-396.
    
    [195] Hairsine P B, Rose C W. Modeling water erosion due to overland flow using physical principles. 1. Sheet flow(J). Water Resources Research, 1992a, 28:237-243.
    [196] Hairsine P B, Rose C W. Modeling water erosion due to overland flow using physical principles. 2. Rill flow(J). Water Resources Research, 1992b, 28:245-250.
    
    [197] Hairsine P B, Rose C W. Rainfall detachment and deposition: sediment transport in the absence of flow-driven processes(J). Soil Science Society of America Journal, 1991, 55: 320-324.
    
    [198] Hays, O.E., A.G.McCall and F.G. Bell. Investigations in erosion control and the reclaimation of eroded land at the Upper Mississippe Valley Conservation Experimention Station near La Crosse. WI 1933-43. USDA Tech. Bull. 1949.
    
    [199] Hudson N W. Soil Conservation(M). Iowa:Iowa State University Press,1995.
    
    [200] Johnson.L.C. Soil loss tolerance: Fact or myth.Soil and Water Conserv. 1987.42(3): 155-160.
    
    [201] Kilinc, M. and E.V.Rischardson. Mechanics of soil erosion from overland flow generated by simulated rainfall. Hyd. Papers No. 63. Colorado State Univ., Ft. Collins. 1973.
    
    [202] Kinnell PIA. The effect of slope length on sediment concentrations associated with side-slope erosion. Soil Sci. Soc. 2000. Am. J. 64: 1004-1008.
    [203] Kirkby M J, Morgan R P C. soil erosion(M). A wiley-interscience publication. 1980.19.
    
    [204] Lattanzi,A.R., L.D.Meyer and M.F.Baunmgardner. Influence of much rate and slope steepness on interrill erosion. Soil Sci. Soc. Am. Proc. 1974. 38(6):946-950.
    
    [205] Liu B Y.Nearing M A.Risse L M. Slope Gradiment Effects on Soil Loss for Slopes(J). Transactions of the ASAE,1994,37(6):1835-1840.
    
    [206] Liu B Y.Nearing M. A, Shi P J,et al. Division S-6-Soil & Water Management & Conservation- Slope Length Effects on Soil Loss for Steep Slopes(J). Soil Sci. Soc. Am. J., 2000,64(5): 1759-1763.
    
    [207] McCool, D. K. Brown, L.C., Foster, G. R., et al. Revised slope steepness factor for the universal soil loss equation. TRANSACTIONS of the ASAE, 1987a, 30(5): 1387-1396.
    
    [208] McCool, D. K., J.F.Zuzel, J.D.Istok, et al. Erosion process and prediction for Pacific Northwest. In Proc. Of the 1986 Nat. STEEP Synp., 1987b. 187-204. Spokane, Wash., 20-21, May.
    
    [209] McCool, D.K., G.O.George, M.Freckleton, C.L.Douglas, and R.I.Papendick. Topographic effect on erosion from cropland in the northwestern wheat region. Transactions of ASAE, 1993. 36:1067-1071.
    
    [210] McCool, D.K., G.R. Foster, C.K. Mutchler, and L.D. Meyer, Revised Slope Length Factor for the Universal Soil Loss Equation(J). Transactions of ASAE, 1989,32(5):157l-1576.
    
    [211] McCormack,D.E.,Young,K.K.,and Kimberlin,L.W. Current criteria for determining soil 1982.97:183-186
    
    [212] McDonald.R.C, R.F.Isbell, J.G.Speight, J.Walker, and M.S.Hopkins. Australian soil and land survey. Field Handbook. Inkata Press, Melbourne, Australia. 1984.
    
    [213] McIsaac, G.F., J.K.Mitchell and M.C.Hirschi. Slope steeepness effects on soil loss from disturbed lands. Transactions of ASAE, 1987.30(4): 1005-1013.
    
    [214] Meyer L D, and Harmon W C. How row-side slope length and steepness affect sideslope erosion. Transaction of the ASAE. 1989. 32(2):639-644.
    [215] Meyer L D, Wischmeier W H. Mathematical simulation of the process of soil erosion by water(J). Trans ASAE. 1969,12(6):754-762.
    [216] Meyer L D.Foster G R. Mechanics of soil erosion by rainfall and overland flow(J).Trans.of ASAE,1965,8(4):689-693.
    [217] Meyer L D. Evaluation of the Universal Soil Loss Equation(J). Journal of Soil and Water Conservation, 1984,39:99-104.
    [218] Michae J Singer, John Blackard. Slope angle-interrill soil loss relationships for slopes up to 50%. Soil Sci. Soc. Am. J. ,1982,46, 1270-1273.
    
    [219] Miller M F. Waste through soil erosion(J). Journal Am Soc Agron.1926, 18: 153-160.
    [220] Misra R K, Rose C W. Application and sensitivity analysis of process -based erosion model-GUEST(J). European Journal Soil Science. 1996,10:593-604.
    [221] Mitchell J K, Engel B A, Srinivasan R et al. Validation of AGNPS for small watersheds using an integrated AGNPS/GIS system(A). In:Geographic Information systems and water resources(C). 1993.
    [222] Moore L D, Butch G J. Modelling erosion and deposition: topographic effects(J). Transactions of the AS AE. 1986,101.
    [223] Morgan R P C, Morgan D D V, Finney H J. A predictive model for the assessment of soil erosion risk(J). J Agric Eng Research, 1984,30:245-253.
    [224] Morgan R P C, Quinton J N, Smith R E, et al. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments(J). Earth Surface Processes and Landforms, 1998,23: 527-544.
    
    [225] Murphree, C.E. and C.K. Mutchler. Verfication of the slope factor in the universal soil loss equation for low slope. Jour. Soil and Water Cons. 1981. 36(5): 300-302.
    [226] Musgrave GW. The quantitative evaluation of factors in water erosion-A first approximation. Journal Soil and Water Cons, 1947,2:133-138.
    [227] Mutchler CK and Greer J D. Effect of slope length on erosion from low slopes, Transaction of the ASAE. 1980. 23(4):866-869.
    [228] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models, part 1: a discussion of principles(J). J. Hydrol.,1970,10(3):282-290.
    
    [229] Neal,J.H. Effect of degree of slope and rainfall characteristics on runoff and soil erosion. Agricultural Engineering, 1938a. 19(5): 213-217.
    [230] Nearing M A, Liu B Y, Risse L M, et al. Curve numbers and Green-Ampt effective hydraulic conductivities(J). Water Resources Bulletin, 1996,32(1): 125-136.
    [231] Nearing M A.Foster G R,Lane L J. A process-based soil erosion model for USDA-water erosion prediction project technology(J). Trans.of ASAE, 1989, 32(5): 1587-1593.
    [232] Neitsch S L, Arnold J G, Kiniry J R, et al, Soil and water assessment tool theoretical documentation (R), 2002, Grassland, Soil and Water Research Laboratory and Agricultural Research Service..
    [233] Ouyang Da, Bartholic Jon. Web-Based GIS Application for Soil Erosion Prediction. 2001. http://www.iwr.msu.edu/rusle.
    [234] Poesen, J, and F Ingelmo-Sanchez, and H Mucher. The hydrological response of soil surface to rainfall as affected by cover and position of rock fragments in the top layer, Earth Surf. Processes landforms, 1990, 15, 653-671.
    [235] Poesen, J, and F Ingelmo-Sanchez. Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. Catena, 1992, 19,451-474.
    [236] Renerd. K G, Foster G R, Weeies G A. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)(M). Department of agriculture U. S., Agriculture Handbook. 1997.703.
    [237] Renard K G, Foster G R, Weesies G A, et al. RUSLE-A guide to conservation planning with the revised universal soil loss equation. USDA Agricultural Handbook No.703. 1997.
    [238] Renard K G, Freimund J R. Using monthly precipitation data to estimate the R-factor in the revised USLE(J). Journal of Hydrology, 1994, 157: 287-306.
    
    [239] Renard K G,Foster G R,Weesies G A et al. RUSLE Revised universal soil loss equation. J. of Soil and Water Conserv. 1991. 46(1): 30-33.
    [240] Renard K G,Foster G R,Weesies G A,et al. Coordinators. Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (S). USDA Agricultural Handbook, 1997.703.
    [241 ] Rewerts C C, Engel B A. ANSWERS on GRASS: Integrating a watershed simulation with a GIS(A). American Socity of Agricultural Engineers meeting presentation(C). 1991.1-7.
    
    [242] Rowlison, Dale J., Glen L. Martin. Rational model describing slope erosion. J. Irrig. Drain. Div. ASCE 97(IR-1), 1971,39-50.
    
    [243] Schertz.D.L. The basis for soil loss tolerance. Soil and Water Conserv., 1983. 38(1):10-14.
    [244] Shiriza M A, Boersma L. A unifying quantitative analysis of soil texture(J). Sci Soc Am J, 1984,48:142-147.
    
    [245] Singer, M.J. and J. Blackard. Slope angle-interril soil loss relationships for slope up to 50%. Soil Sci. Soc. Am. J. 1982. 46(6): 1270-1273.
    
    [246] Smith D D. Interpretation of soil conservation data for field use(J). Agricultural Engineering, 1941,22:173-175.
    [247] Smith D. D., D. M. Whitt.. Estimating soil losses from field areas of claypan soil. Soil Sci. Soc Proc. 1947, 12:485-490.
    
    [248] Smith, D. D. and W. H. Wischmeier. Factors affecting sheet and rill erosion. Trans. Amer Geophys. Union. 1957. 38(6):889-896.
    [249] Srinivasan R, Engel B A. A spatial decision support system for assessing agricultural nonpoint source pollution(J). Water Resources Bulletin, 1994,30(3):441-451.
    [250] Srinivasan R, Engel B A. GIS: A tool for Sensitivity analysis of nonpoint source pollution models(A). American Society of Agricultural Engineers Meeting Presentation(C). 1992. 1-7.
    [251] WANG XIAOYAN et al. Nutrient Loss from Various Land-Use Areas in Shixia Small Watershed of Miyun County, Beijing .China. CHINESE JOURNAL OF GEOCHEMISTRY 2003.173-178
    [252] Wilcox B P, Wood M K. Factors influencing interrill erosion from semiarid slopes in New Mexico. J. Range Manage. 1989. 42:66-70.
    [253] Williams J R, Neitsch S L, Arnold J G. Soil and Water Assessment Tool-User's Manual(R). Texas: Blackland Research Center, Texas Agricultural Experiment Station. 1999.
    [254] Wischmeier W H, Mannering J V. Relation of soil properties to its erodibility (J). Soil Science Socienty of American Proceeding, 1969,33(1): 131-137.
    [255] Wischmeier W H, Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains(R). USDA Agricultural Handbook No.282. 1965.
    [256] Wischmeier W H.Smith D D. A universal soil loss equation to guide conservation farm planning(J).Trans. 7th Internationa] Cong.Soil Sci.l960,I:418-425.
    [257] Wischmeier W H. Punched cards record runoff and soil-loss data(J). Agricultural engineering, 1955,36:664-666.
    [258] Wischmeier W H. A rainfall erosion index for a universal soil loss equation. Soil sci. Soc. Am. Proc, 1959, 23(3): 246-249.
    [259] Wischmeier W,H. Use and misused of the universal soil loss equation(J).J Soil and Water Cons., 1976,3 1(1):5-9.
    [260] Wischmeier, W.H., D.D.Smith, and R.E.Uhland. Evaluation of factors in the soil-loss equation. Agric. Eng. 1958. 39:458-462.
    [261] Wischmeier,W H,D D Smith. Predicting rainfall erosion losses a guide to conservation planning(S).Agriculture Handbook 537,Washington,D.C:U.S. Department of Agriculture, 1978.58.
    [262] Wischmeier, W H,D D Smith. Predicting rainfall erosion losses from cropland east of the Rocky Mountains(S).Agriculture Handbook 282, Washington,D.C:U.S. Department of Agriculture, 1965.
    
    [263] Woodruff.N P.Siddoway.F H. A wind erosion equation(J).Proc Soil Sci Am, 1965, 29: 602.
    [264] Young R A, Mutchler C K. Erodibility of some Minnesota soils(J). Journal of Soil and Water Conservation, 1977,32:180-182.
    [265] Young R A, Onsad C A, Bosch D D et al. AGNPS: A nonpoint source pollution model for evaluating agricultural watersheds(J). Soil and Water Conservation Society, 1989,44(2): 168-173.
    [266] Young R A.AGNPS: A non-point source pollution model for evaluating agricultural watershed(J).Joumal of Soil and Water Conservation, 1989,44(2): 168-173.
    [267] Yu B, Rosewell C J. A robust estimator of the R-factor for the universal soil loss equation(J). Trans, of ASAE, 1996,39(2): 559-561.
    [268] Zingg A W. Degree and length of land slope as it affects soil loss in runoff(J). Agricultural Engineering, 1940,21: 59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700