用户名: 密码: 验证码:
基于执行器精细调节的汽车转向/制动控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展我国汽车保有量逐年增加,每年因交通事故造成了巨大的经济损失和人员伤亡,车辆的安全性能越来越受到关注。伴随着汽车电子技术的进步,汽车底盘控制系统得到了快速发展并被广泛应用,提高了车辆的行驶安全性。当车辆上同时安装多个控制系统时,会导致车辆结构十分复杂,传感器和执行器数目过多,部分系统功能存在重叠或控制目标存在冲突。如果不对这些系统进行协调控制,可能会导致车辆的整体性能下降。近年来车辆自动化程度越来越高,X-by-wire系统逐渐在车辆得到应用。该项技术降低了机械系统的复杂程度,使车辆布置更灵活,最重要的是更容易实现转向系统、制动系统以及悬架系统等底盘系统的集成控制。因此,针对线控系统的协调控制成为车辆底盘控制领域研究的热点。线控系统集成控制效果的影响因素有两个方面:一方面是软件上协调控制各子系统的算法,另外一个方面是硬件上对线控执行机构控制的精确程度。
     针对上述问题,本文结合教育部霍英东基金资助项目“汽车智能集成电控制动系统研究”、国家自然科学基金资助项目“基于线控制动的汽车动力学控制研究”以及“汽车电控分时制动调压装置的关键科学问题与关键技术”。在总结国内外研究成果的基础上,以某轻型汽车为研究对象,开展基于线控执行机构精细调节的转向/制动控制系统的研究。针对线控执行机构进行理论分析和仿真研究,提出了线控执行机构的精细调节方法。建立了主动转向和主动制动系统集中式控制结构框架,采用非线性模型预测控制方法设计了主动转向/制动控制算法,利用模糊控制理论设计了线控转向和线控制动控制器。建立了包含线控转向和线控制动系统的车辆动力学模型,自主设计并搭建了目标车辆的线控转向/制动协调控制离线仿真平台以及硬件在环试验台,分别进行了离线仿真分析和硬件在环试验,验证了所设计的转向/制动控制算法。
     本文主要内容包括:
     1、建立基于线控系统的车辆动力学模型
     根据本文集成控制系统控制策略研究需要,建立了十五自由度非线性车辆动力学模型。整车模型包括簧载质量的六个自由度(纵向、侧向、垂向、侧倾、俯仰和横摆转动)、非簧载质量的四个垂向振动、前轮转向和四个车轮的旋转运动,以及辅助计算模块、轮胎模型、驾驶员模型和线控系统模型等,为搭建转向/制动离线仿真平台和硬件在环试验台奠定了基础。
     2、线控执行机构精细调节方法研究
     线控执行机构的控制精度是影响底盘集成控制效果的关键因素之一。本文针对线控执行机构——永磁无刷直流电机建立数学模型,并在MATLAB/SIMLINK下建立无刷直流电机模型。通过仿真分析得出对无刷直流电机PWM控制时,由于相电流在换相和非换相时刻均存在波动,进而导致转矩的波动。接着分析了对无刷直流电机采用不同PWM调制方式控制时,换向期间非换相相上电流波动和非换向期间导通相上电流波动;最后分析了本文采用的pwm-on-pwm调制方式时无刷直流电机的动态性能;提出30°电角度控制的数字实现方法;最后通过对比仿真验证控制效果。所提出30°电角度的数字估算方法,在不增加成本的条件下得到30°电角度时刻。所采用的pwm-on-pwm调制方式不增加开关损耗的同时有效的抑制了转矩的波动,实现对线控执行机构——无刷直流电机转矩的精细调节,为线控系统转向/制动高层控制器的开发奠定基础。
     3、线控转向和制动协调控制研究
     设计了针对线控转向和制动稳定性控制算法整体结构。提出适用于初始工作点位于平衡点或非平衡点的非线性模型控制算法。采用用非线性四轮三自由度的车辆模型为参考模型设计了非线性模型预测控制算法,以纵向速度、横摆角度、横摆角速度和侧向位移为控制目标,求解了优化的控制输入主动前轮转角和主动四轮制动力;利用模糊控制规律实现执行层制主动前轮转角和主动制动力的调节,完成主动转向和主动制动的综合协调控制算法。
     4、离线仿真平台搭建及离线仿真分析
     根据车辆动力学模型和主动转向主动制动稳定性控制算法,利用Matlab软件搭建离线仿真平台。仿真平台包括车辆动力学仿真软件和控制算法Simulink模块、仿真平台图形界面。该平台将离线仿真控制、参数调节和数据后处理有机结合,使控制算法参数调节更便捷。利用所搭建的离线仿真平台,进行了阶跃转向、正弦转向工况和方波渐增转向下的离线仿真。
     试验结果表明:本文设计的转向/制动协调控制系统能够有效的消除主动转向和主动制动系统的干涉,显著提高车辆的操纵稳定性能。
     5、硬件在环试验台搭建及试验研究
     为了进一步验证本文设计的线控转向/制动控制系统的有效性,设计了基于线控系统的硬件在环试验台方案,搭建了基于dSPACE实时仿真平台线控转向/制动控制硬件在环试验台。在试验条件下模拟车辆运行的实际运行环境,减小线控转向/制动控制系统开发中对道路试验的依赖,降低成本和缩短开发周期。试验台包括实时平台、硬件系统和软件部分,对硬件系统各部分进行了选型和设计。在搭建的硬件在环试验台上进行了典型工况的硬件在环试验。
     试验结果表明:线控系统硬件在环试验台软、硬件匹配合理;本文设计的基于线控的转向/制动系统实现了线控执行机构的精细调节,具有良好的控制效果,能够有效的提高车辆的操纵稳定性。
China's vehicle population has increased every year with the economic development,huge economic losses and casualties have been made because of traffic accidents each year,people take more and more attention to safety performance of vehicle. Accompanied byadvances in vehicle electronic technology, vehicle chassis control system have beendeveloping rapidly and is widely used, which improve the driving safety of vehicle. Whenmultiple control systems installed on the vehicle, which will lead to the vehicle structure isvery complex, the number of sensors and actuators is excessive, part of the system functionsis overlapped or exists control target conflict. Without coordinated control to these systems,the overall performance of the vehicle decreased. The degree of automation is graduallyincreased in recent years, X-by-wire system gradually been applied in the vehicle. Thistechnology reduces the complexity of the mechanical system, which makes arrangement ofthe vehicle more flexible, the most important thing is easier to achieve integrated chassiscontrol for the steering systems, suspension systems, braking systems. Accordingly,coordinated control of by-wire system has become a focus in vehicle chassis control research.The integrated control effect factors of by-wire systems have two aspects: one is thealgorithm of coordinated control subsystems in software, the other is the precision of by-wiresystem actuators control in hardware.
     In response to these problems, this paper is combined with Ministry of educationHenry Fok funded project “Vehicle intelligent integrated electric control system research”,NFSC project“Research on vehicle dynamics control based on brake-by-wire”,“The keyscientific issues and key technologies of vehicle electronic control timeshare brake pressure regulating device”. Based on the summery of domestic and foreign research results, thispaper takes a light vehicle as the research object and conducts steering/braking controlsystem research base on accurate regulation of by-wire actuators. Based on theoreticalanalysis and simulation experiment on by-wire actuators, accurate regulation method ofby-wire actuators is proposed. Centralized control structure framework of active steering andactive braking system is established, it uses nonlinear model predictive control methoddesigned active steering/braking control algorithm, it uses fuzzy control theory designedsteer-by-wire and brake-by-wire controller. Vehicle dynamics model includes steer-by-wireand brake-by-wire systems is established, steer-by-wire and brake-by-wire coordinatedcontrol offline simulation platform and hardware in the loop test platform of target vehicle isindependently designed and built, off-line simulation and hardware in the loop test werecarried out to verify the steering/braking control algorithm which has been designed.
     The main contents include:
     1. Establishing the vehicle dynamics model based on by-wire system
     According to the requirements of integrated control system strategy, a fifteen degree offreedom nonlinear vehicle dynamics model has been established. Vehicle model includes sixdegrees of freedom for sprung mass (longitudinal, lateral, vertical, roll, pitch and yawmotion), the four vertical vibration degrees of freedom for the unsprung mass, the frontwheel steering and the rotation of four wheels, and an auxiliary calculation module, tiremodel, the driver model and by-wire system models, which provided the foundations forbuilding of the steering/braking offline simulation platform and hardware in the loop testplatform.
     2. By-wire actuators accurate regulation method
     The precision of by-wire actuators is a key factor to influence the control effect ofintegrated chassis control.Mathematical model of by-wire actuators--brushless DC motorwas built in this paper, and established a brushless DC motor model in MATLAB/SIMLINK. The simulation analysis results indicate when pulse width modulation (PWM)method is used to control the brushless DC motor, phase current fluctuations exists at commutation and non-commutation time, leading to fluctuations in torque. Then analyzedusing different PWM modulation control brushless DC motor, Non-commutation existsphase current fluctuations during commutation period and the conduction phase currentexists phase current fluctuations during non-commutation period. Finally, the dynamicperformance of brushless DC motor when used pwm-on-pwm modulation has been analyzed.30°electrical angle digital implementation method was raised. Finally, comparing thesimulation result verified control effect. Using the proposed30°electrical angle digitalimplementation method obtained30°electrical angle moment at no additional cost.Pwm-on-pwm modulation without increasing switching losses effectively inhibited torquefluctuations, achieved accurate regulation of by-wire actuators--brushless DC motor torque,which provided the foundations for building of the steering/braking by-wire systemsuperior controller development.
     3. Steering/braking by-wire system coordinated control
     The overall structure of steering/braking by-wire stability control algorithm wasdesigned in this paper. Nonlinear model control algorithm was raised which applied to theinitial balanced point and non-balanced point. Nonlinear model predictive control algorithmwas designed by using nonlinear four wheel three degrees of freedom vehicle model as areference model. The algorithm used longitudinal speed, yaw angle, yaw rate and lateraldisplacement as the control target to solve optimized control input for active front corner andactive four braking force. This paper achieved regulation of active front steering and activebraking force in execution layer by using fuzzy control, and completed a comprehensivecoordinated control algorithm of active steering and active braking.
     4. Constructing offline simulation platform
     According to the vehicle dynamics model and active steering and active brakingstability control algorithm, this paper built up offline simulation platform by using Matlabsoftware. Simulation platform including vehicle dynamics simulation software, controlalgorithms Simulink module and simulation platform graphical interface. The platformcombined the off-line simulation control and parameter adjustment and data post-processing well, which made the control algorithm parameter adjustment more convenient. Offlinesimulation of step steering, sine steering and square wave incremental steering were carriedout on offline simulation platform.
     The results showed that: the designed steering/braking coordinated control system caneffectively eliminate active steering and active braking system interference, which cansignificantly improve the vehicle steering stability.
     5. Building hardware in the loop test platform and experiment research
     In order to verify the effectiveness of the designed steering/braking by-wire controlsystem, the by-wire control system hardware in the loop test platform program wasdesigned, a steering/braking control hardware in the loop test platform was built based ondSPACE real-time simulation platform. This paper simulated the vehicle actual operatingenvironment under the test conditionsand, which reduced the dependent on road tests insteering/braking by-wire control system development, which reduced costs and shorten thedevelopment cycle. Test platform including real-time platform, hardware and softwarecomponents, this paper selected and designed various parts of a hardware system. Typicalconditions were performed on the hardware in the loop test platform.
     The results showed that: the software and hardware of by-wire system hardware in theloop test platform matched reasonable. The designed steering/braking by-wire systemachieved accurate regulation of by-wire actuators, which has good control effect, it caneffectively improve the vehicle handling stability.
引文
[1]公安部交通管理局,2013年道路交通安全形势总体平稳[EB/OL]. http://www.mps.gov.cn/n16/n1252/n1837/n2557/3986343.html.
    [2]国家统计局,2013年国民经济和社会发展统计公报[EB/OL]. http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html
    [3]交通运输部,《中国公路水路交通运输发展报告》的有关情况[EB/OL].http://www.moc.gov.cn/zhuzhan/wangshangzhibo/2013fifth/zhibozhaiyao/201309/t20130926_1489104.html
    [4]许宗桢,史和平,史原.我国道路交通事故成因分析与解决对策[C].交通与物流·第六届(2006)交通运输领域国际学术会议论文集,2006:702-707.
    [5]余志生.汽车理论(第4版)[M].北京:机械工业出版社,2007.
    [6]白原新,魏学颜.汽车主动安全性概述[J].世界汽车,1996(3):2-4.
    [7] NHTSA.FMVSS No.126. Electronic Stability Control Systems, NHTSA FinalRegulatory Impact Analysis[R].2007.
    [8] NHTSA.Federal Motor Vehicle Safety Standards Electronic Stability Control SystemsControl and Display[R].2007.
    [9] Chu T W, Jones R P, Whittaker L M T. A system theoretic analysis of automotive vehicledynamics and control [J]. Vehicle System Dynamics,2002,37:83-95.
    [10] Edward H M Lim, J Karl Hedrick. Lateral and Longitudinal. Vehicle control couplingfor automated vehicle operation [C]. Proceedings of the American Control Conference.San Diego, California, June1999:3676-3680.
    [11] Yoshimi and Abe, Masato. Advanced chassis control systems for vehicle handling andactive safety [J]. Vehicle System Dynamics,1997,28(2):59-86.
    [12]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [13] Shib Atata Y. Progress and future direction of Chassis control technology [J]. AnnualReviews in Control,2005,29(1):151-158.
    [14]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社[M],1991.
    [15] Tousi S,Bajaj A K,Soedel W.Finite disturbance directional stability of vehicles withhuman Pilot considering nonlinear comering behavior[J].Vehiele System Dynamies,1991,20(1):21-55.
    [16]陆启韶.常微分方程的定性方法和分叉[M].北京:北京航空航天大学出版社,1989
    [17] Vincent N.Vehicle handling,stability and bifurcation analysis for nonlinear vehiclemodels[D]. Master thesis,University of Maryland,2005.
    [18] Shen S W,WangJ, Shi P et al.Nonlinear dynamics and stability analysis of vehiele planemotions[J].Vehiele System Dynamics,2007,45(l):15-35.
    [19] Esmailzadeh E,Goodarzi A and Vossoughi G R.Optimal yaw moment control law forimproved vehicle handling[J].Mechatronics,2003,13(7):659-675.
    [20] Jong Hyeon P,Woo Sung A. H_∞yaw-moment control with brakes for improvingdriving performance and stability [C].IEEE ASME International Conference on Advan-ced Intelligent Mechatronics, Atlanta,1999:747~752.
    [21] Park J H,Ahn W S.H_∞Yaw-moment Control with Brakes for Improving DrivingPerformance and Stability[C].Proceedings of the19th IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics.New York: IEEE,2004:965-972.
    [22]邹广才,罗禹贡,李克强.基于全轮纵向力优化分配的4WD车辆直接横摆力矩控制[J].农业机械学报,2009,40(5):1-6.
    [23] Nagai M,Shino M,and Gao F.Study on integrated control of active front steer angle anddirect yaw moment[J].JSAE Review,2002,23(3):309-315.
    [24]刘翔宇,陈无畏.基于DYC和ABS分层协调控制策略的ESP仿真[J].农业机械学报,2009,40(4):1-6.
    [25]郑水波,韩正之,唐厚君.汽车稳定性控制[J].自动化博览,2005(4):22-24.
    [26] Yu Fan, Li Dao-Fei, D.A. Crolla, Integrated vehicle dynamics control state-of-the artreview[C].Proc. of IEEE Vehicle Power and Propulsion Conference (VPPC), September3-5,2008, Harbin, China.
    [27] Ansgar T.Integrated vehicle dynamicscontrol using active brake,steering and suspensionsystems[J]..Intemational Journal of Vehicle Design,2004,36(l):l-11.
    [28] March C and Shim T.Integrated control of suspension and front steering to enhancevehicle handling[J].Proceedings of the Institution of Mechanical Engineers, PartD:Journal of Automobile Engineering,2007,221(4):377-391.
    [29]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006,28(2):105-113.
    [30] He J J and Crolla D A.Coordination of activesteering,driveline, and braking forintegrated vehicle dynamics control[J]. Proceedings of the Institution of MechanicalEngineers,Part D: Journal of Automobile Engineering,2006,220(10):1401-1421.
    [31]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008,39(6):1-7.
    [32] Yoshimi Furukawa,Masato Abe.Advanced Chassis Control Systems for VehicleHandling and Active Safety[J].Vehicle System Dynamics,1997,28(213):59-86.
    [33]李洪强.轻型汽车制动系统结构改进及ABS控制逻辑研究[D].长春:吉林大学,2006.
    [34][日]ABS株式会社.汽车制动防抱装置(ABS)构造与原理[M].北京:机械工业出版社,1995.
    [35]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [36]司利增.汽车防滑控制技术-ABS与ASR[M].北京:人民交通出版社,1996.
    [37]赵建.轻型越野汽车牵引力/制动力控制系统研究[D].长春:吉林大学,2007.
    [38]李静,李幼德,赵健.四轮驱动汽车牵引力控制算法[J].机械工程学报,2006,42(2):141-144.
    [39] Alfred Sigl,Herbert Demel.ASR-Traetion Conirol,State of the Art and SomeProspects[C]//SAE Paper900204.
    [40] Kiyotaka Ise, K, Fujita, Y. Inoue, et al. The “Lexus” Traction Control (TRAC) System[C]//SAE Paper900212.
    [41] Petre I. Tzenov, Richard M. H. Cheng. Traction Control Improvement in All-WheelDrive[C]//SAE Paper960956.
    [42] Alfred Sigl, Herbert Demel. ASR-Traction Control, State of the Art and SomeProspects[C]//SAE Paper900204.
    [43] Heinz Leffler. Consideration of lateral and longitudinal vehicle stability by functionenhanced brake and stability control system[C]//SAE940832.
    [44] Alfred Straub. DSC (Dynamic Stability Control) in BMW7Series Cars[C].International Symposium on Advanced Vehicle Control,1996.
    [45] A Brief History of Electronic Stability Controls and their Applications[C]. http://www.safetyresearch.net/Library/SRS028.htm
    [46] NAKAYAMAT, SUDAE. The Present and Future of Electric Power Steering[J].VehicleDesign,1994.
    [47] A OSUKA, Y.MATSUOKA, T.YSUTSU, etc. Development of Pinion-Assist TypeElectric Power Steering System[J]. KOYO Engineering Journal English Edition,2002.
    [48]郁强,张金华.电动转向系统开发与研究[J].轻型汽车技术,2002(8).
    [49] Philip Koehn.Die Aktivelenkung:DAS Fahrdynamische Lenksystem Des Neuen5er[J].Sonderausgabe von ATZ und MTZ:BMW5er2003.
    [50] Kawakami,H,Sato,H,Tabata,M,etal. Development of Integrated System betweenAetive Control Suspension,Aative4WS,TRC and ABS[C]//SAE Paper920271.
    [51] Jerry Kinsey. The advantages of an electronically controlled limited slip differential[C]//SAE2004-01-0861.
    [52] Nicholas Cooper, David Crolla, Martin Levesley and Warren Manning. Integration ofActive Suspension and Active Driveline to Improve Vehicle Dynamics[C]//SAE2004-01-3544.
    [53] Pinkos, A., Shtarkman, E., Fitzgerald, T. An Actively Damped Passenger CarSuspension System with Low Voltage Electro-Rheological Magnetic Fluid[C]//SAEpaper930268.
    [54] Shtarkman, E. M. Fluid responsive to a magnetic field[P].4992190,1991.
    [55] Lisenker, I., Hopkins, P. N., Baudendistel, T. A., Oliver, M. L. Magnetorheological fluiddamper[P].6279700,1999.
    [56] Oliver, M. L., Kruckemeyer, W. C. Electrical coupling assembly for amagnetorheological damper[P].6345706,1999.
    [57] Jones, W. Easy ride: Bose Corp. uses speaker technology to give cars adaptivesuspension[J]. IEEE Spectrum.2005,42(5):12-14.
    [58] Shuldiner, H. Bose knows--shocks?[J]. Ward's Auto World.2004,40(9):26,27,54.
    [59] Y. Mizuta, M. Suzumura and S. Matsumoto.Ride comfort enhancement and energyefficiency using electric active stabiliser system[J].Vehicle System Dynamics,2010,48(11):1305–1323.
    [60]云清.德尔福推出新型防侧翻控制系统[J].商用汽车,2008,9.
    [61] M. Strassberger and J.Guldner."BMW 's dynamic drive: An active stabilizer barsystem"[J].IEEE Control Systenm, IEEE.2004,24(4):28-29
    [62] Satoshi Suzuki, Shuuichi Buma, Shingo Urababa,et al.Development of elecric activestabilizer suspension system[C]//SAE Paper2006-01-1537.
    [63] Jing Shen Tang.Active roll and stability control[C]//SAE Paper2008-01-1457.
    [64] Edmund F. Gaffney III,James C. Keane,Jonathan T. Nicols.High efficiency2channelactive roll control system[C]//SAE Paper2009-01-0222.
    [65] Yuuki Ohta, Hiroaki Kato, Daisuke Yamada,et al.Development of an electric activestabilizer system based on robust design[C]//SAE Paper2006-01-0758.
    [66] Aldo Sorniotti.Electro-mechanical active roll control: A new solution for activesuspensions[C]//SAE Paper2006-01-1966.
    [67] Tokuda T. Cars In The '90s As A Humanware[C]//SAE Paper885049.
    [68] Kizu, R, Harada, H, Minabe, H. Electronic Control of Car Chassis Present Status andFuture Perspective [C]. Proceedings of International Congress on TransportationElectronics, pp.173-188,1988.
    [69] Shinsuke Sato, Hideo Inoue, Masaaki Tabata, et al. Integrated chassis control system forimproved vehicle dynamics[C]//AVEC'92,Yo kohama, Japan,1992, pp.413-418.
    [70] Roger D,Fruechte A,Matthew Karmel,James H Rlllings,et al. Integrated vehiclecontrol [C]. IEEE Vehicular Technol. Conf.2(1989):868-877.
    [71] Wallentowitz, H. Integration of Chassis and Traction Control Systems. What is Possible–What Makes Sense–What is Under Development[C]. Proc. of AVEC’92, pp.1-7,1992.
    [72] Sascha J Semmler, Peter E Rieth, Steffen J Linkenbach. Global chassis control–Thenetworked chassis [C]//SAE Paper2006-01-1954.
    [73] Peter E. Rieth and Ralf Schwarz.ESC II–ESC With Active Steering Intervention [C]//SAE Paper2004-01-0260.
    [74] Philip Koehn, Michael Eckrich, Hendrikus Smakman, et al. Integrated chassismanagement introduction into BMW’s approach to ICM [C]//SAE Paper2006-01-1219.
    [75] Willy Klier, Martin Kieren, Wolfgang Schr der. Integrated safety concept and design ofa vehicle dynamics management system [C]//SAE Paper2007-01-0842.
    [76] Chiaki Hamada, Katsumi Fukatani, Katsuyuki Yamaguchi. Development of vehicledynamics integrated management [C]//SAE Paper2006-01-0922.
    [77] http://www.autosar.org/
    [78] Dr.-Ing.Thomas Leiber; Dipl.-Ing.(FH) Christian K glsperger;Dipl.-Ing.ValentinUnterfrauner[J].ATZ worldwide eMagazines.2011:20-25
    [79] http://ir.trw.com/releasedetail.cfm?ReleaseID=707278
    [80] Shen Xiaoming, Yu Fan. Investigation on integrated vehicle chassis control based onvertical and lateral tire behavior correlativity [J]. Vehicle System Dynamics,2006,44(1):506-519.
    [81] Shen Xiaoming, Yu Fan. A novel integrated chassis controller design combining activesuspension and4WS[C]//SAE Paper,2005-01-3566.
    [82] D. Li, X. Shen and F. Yu. Integrated vehicle chassis control with a main/servo-loopstructure[J].International Journal of Automotive Technology,2006,7(7):803-812.
    [83] Xiaoming Shen, Fan Yu. Study on vehicle chassis control integration based on amain-loop-inner-loop design approach [J]. Proc.ImechE,2006,220(7):1491-1502.
    [84] Daofei Li, Fan Yu. A novel integrated vehicle chassis controller coordinating direct yawmoment control and active steering [C]//SAE Paper,2007-01-3642.
    [85] Daofei Li, Shangqian Du, Fan Yu. Integrated vehicle chassis control based on directyaw moment, active steering and active stabilizer [J].Vehicle SystemDynamics,2008,46:341–351.
    [86]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学,2006.
    [87]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008.
    [88]李道飞,喻凡.基于最优轮胎力分配的车辆动力学集成控制[J].上海交通大学学报,2008,42(6):887-891.
    [89]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006,28(9):844-848.
    [90]孟涛,陈慧,余卓平等.电动助力转向系统的回正与主动阻尼控制策略研究[J].2006,28(12):1125-1128.
    [91]高晓杰,余卓平,张立军.集成底盘控制系统的控制构架研究[J].汽车工程,2007,29(1):21-26.
    [92]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007,29(4):283-291.
    [93]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].2007,29(5):420-425.
    [94] Chu Changbao, Wuwei Chen. Integrated design of vehicle suspension and brakingsystems based on layered coordinated control (LCC) strategy [C]//SAE Paper2008-01-1152.
    [95]初长宝,陈无畏.汽车底盘系统分层式协调控制[J].机械工程学报,2008,44(2):157-162.
    [96]初长宝.汽车底盘系统分层式协调控制研究[D].安徽:合肥工业大学,2008.
    [97]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190-196.
    [98]刘翔宇,陈无畏.基于DYC和ABS分层协调控制策略的ESP仿真[J].农业机械学报,2009,40(4):1-6.
    [99]王其东,秦炜华,姜武华等.基于多体模型的汽车底盘分级式综合控制仿真研究[J].汽车工程,2010,32(8):693-698..
    [100]王其东,秦炜华,陈无畏.基于多自由度模型的汽车ASS与EPS集成控制研究[J].系统仿真学报,2009,21(16):5130-5137.
    [101]陈无畏,初长宝.基于分层式协调控制的汽车电动助力转向与防抱制动系统仿真[J].机械工程学报,2009,45(7):188-193.
    [102]王其东,王霞,陈无畏,秦炜华.汽车主动前轮转向和防抱死制动协调控制[J].2008,39(3):1-4.
    [103]陈龙,聂佳梅,江浩斌等.预测步长自调整的ASS与EPS灰预测模糊集成控制[J].汽车工程,2009,31(2):104-107.
    [104]陈龙,袁传义,江浩斌等.汽车主动悬架与电动助力转向系统自适应模糊集成控制[J].汽车工程,2007,29(1):8-12.
    [105]卢少波,李以农,赵树恩,冀杰.基于动态表面理论的车辆制动与悬架协调控制[J].系统仿真学报,2008,20(23):6461-6465.
    [106]陈平.基于线控技术的主动转向与差动制动集成控制研究[D].长春:吉林大学硕士论文,2007.
    [107]郭建华,李幼德,李静.汽车防抱死系统与主动悬架联合控制研究[J].中国机械工程,2007,18(24):3014-3018.
    [108]郭建华,李静,李幼德.汽车主动前轮转向与防抱死制动系统集成控制研究[J].汽车技术,2007.
    [109]朱冰,李幼德,赵健,李静.基于多变量频域控制方法的车辆底盘集成控制[J].农业机械学报,2010.
    [110]王金湘,陈南.监督控制下的车辆集成底盘控制策略与仿真[J].农业机械学报,2009,40(9):1-6.
    [111] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated control of active rearwheel steering and direct yaw moment control [J]. Vehicle System Dynamics,1997,27(5):357-370.
    [112] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated robust control of activerear wheel steering and direct yaw moment control [J]. Vehicle System Dynamics,1998,29(1):416-421.
    [113] Masao Nagai,Sachiko Yamanaka,Yutaka Hirano.Integrated Control of Active RearWheel Steering and Yaw Moment Control Using Braking Force [J].JSME InternationalJournal,1999,42(2):301-308.
    [114] Masao Nagai, Motoki Shino, Feng Gao. Study on integrated control of active frontsteer angle and direct yaw moment [J].JSAE Review,2002,23:309-315.
    [115] M.Shino, P.Raksincharoensak, and M.Nagai.Vehicle handling and stability control byintegrated control of direct yaw moment and active steering[J].Proceeding ofInternational Symposium on Advanced Vehicle Control (AVEC’2002),2002:25–31.
    [116] Nuksit Noomwongs, Hidehisa Yoshida, Masao Nagai, et al.Study on handling andstability using tire hardware in the loop simulator[J].JSAE Review,2003,24:457-464.
    [117] G.BURGIO, P.ZEGELAAR.Integrated vehicle control using steering and brakes[J].International Journal of Control,2006,79(5):534–541
    [118] Junjie He, D A Crolla, M C Levesley et al.Coordination of active steering, driveline,and braking for integrated vehicle dynamics control.Proceedings of the Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering2006220:1401.
    [119] S. Horiuchi, K. Okada, and S. Nohtomi, Improvement of vehicle handling bynonlinear integrated control of four wheel steering and four wheel torque[J]. JSAE Rev.20(4)1999, pp.459–464.
    [120] Y.Hattori,K.Koibuchi,andT.Yokoyama.Force and moment control with nonlinearoptimum distribution for vehicle dynamics[J].Proceeding of International Symposiumon Advanced Vehicle Control (AVEC’2002),Hiroshima,2002:595–600.
    [121] O.Mokhiamar and M.Abe.Simultaneous optimal distribution of lateral and longitudinaltire forces for the model following Control[J].J. Dyn. Syst. Meas. Control Trans. ASME2004,126(4):53–763.
    [122] Mokhiamar O, Abe M. How the four wheels should share forces in an optimumcooperative chassis control[J].Control Engineering Practice,2006,14(3):295-304.
    [123] Roshanbin A, Naraghi M.Vehicle integrated control-an adaptive optimal approach todistribution of tire forces [C];proceedings of the IEEE Int C Netw Sens, F,2008.
    [124] E.Ono,Y.Hattori,Y.Muragishi,and K.Koibuchi.Vehicle dynamics integrated control forfour-wheel-distributedsteering and four-wheel-distributed traction/brakingsystems[J].Veh.Syst.Dyn.2006,44(2):139–151.
    [125] F.Borrelli,P.Falcone,T.Keviczky, et al. MPC-based approach to active steering forautonomous vehicle systems[J].Int. J. Veh. Autonomous Syst.2005:265–291.
    [126] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, H. E. Tseng. A Linear Time Varying ModelPredictive Control Approach to the Integrated Vehicle Dynamics Control Problem inAutonomous Systems[J].Proceedings of the46th IEEE Conference on Decision andControl,2007:2980-2985.
    [127] Paolo Falcone, H. Eric Tseng, Francesco Borrelli, et al.MPC-based yaw and lateralstabilisation via active front steering and braking[J].Vehicle SystemDynamics,2008,46:611–628.
    [128] P.Falcone, F.Borrelli,J.Asgari,et al. Predictive active steering control for autonomousvehicle systems[J]. IEEE Trans.Control Syst. Technol,2007:566–580.
    [129] Paolo Falcone, Francesco Borrelli, Jahan Asgari, H. Eric Tseng, Davor Hrovat. Amodel predictive control approach for combined braking and steering in autonomousvehicles[J].IEEE2007.
    [130] Hansong Xiao,Wuwei Chen, HuiHui Zhou et al.Integrated control of active suspensionsystem and electronic stability programme using hierarchical control strategy: theoryand experiment[J].Vehicle System Dynamics,2011,49:381–397.
    [131] C March and T Shim.Integrated control of suspension and front steering to enhancevehicle handling[J].Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2007,221:377
    [132] http://www.unece.org/trans/main/wp29/wp29regs.html
    [133] http://ec.europa.eu/research/index.cfm
    [134] http://www.ttagroup.org/news/solutions-forum.htm
    [135] http://www.automotive-eetimes.com/en/steer-by-wire-a-solution-to-many-design-challenges.html?cmp_id=71&news_id=222900816
    [136] http://www.nissan-global.com/EN/
    [137] http://www.wired.com/autopia/2012/10/nissan-steer-by-wire/
    [138]左建令.汽车电子转向系统控制方法研究巨[D].长春:吉林大学,2003.
    [139]郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究[D].长春:吉林大学,2009.
    [140]张俊岩.轻型汽车线控转向系统电机匹配及控制策略研究[D].长春:吉林大学,2008.
    [141]刘冰.汽车线控转向系统硬件在环试验台研究与开发[D].长春:吉林大学,2008.
    [142]田承伟.线控转向汽车容错控制方法研究巨[D].长春:吉林大学,2010.
    [143]施国标,赵万忠,王成玲,等.线控转向变传动比控制对车辆操纵稳定性的影响[J].北京理工大学学报,2008,28(3):207-210.
    [144]田杰.汽车线控转向系统动力学分析与控制方法研究[D].南京:江苏大学,2011.
    [145]罗石.线控转向系统主动安全预测控制策略的研究[D].镇江:江苏大学,2010.
    [146]杨胜兵.线控转向系统控制策略研究[D].武汉:武汉理工大学,2008.
    [147]宗长富,李刚,郑宏宇,何磊等.线控汽车底盘控制技术研究进展及展望[J].中国公路学报,2013,26(2):160-176.
    [148] David B Drennen, Bellbrook, Ernest R Siler, et al. Electric Brake Caliper Having ABallscrew With Integral Gear Carrier[P]. US,2005/0034936A1.2005-2-17.
    [149] Tadashi Tamasho, Masahiro Kubota, Masahiro Tsukamoto. Electromechanical BrakeSystem [P]. US,6397981B1.2002-6-4.
    [150] Johannes Ante, Stephan Heinrich, Andreas Ott. Measuring Device For AnElectromechanical Brake[P]. US,2005/0140205A1.2005-6-30.
    [151] Henry Hartmann, Martin Schautt, Antonio Pascucci, et al.eBrake?–the mechatronicwedge brake[C]//SAE Paper2002-01-2582.
    [152] Richard Roberts, Martin Schautt, Henry Hartmann,et al. Modelling and Validation ofthe Mechatronic Wedge Brake[C]//SAE Paper2003-01-3331.
    [153] Richard Roberts, Bernd Gombert, Henry Hartmann,et al.Testing the MechatronicWedge Brake[C]//SAE Paper2004-01-2766.
    [154]王振乾.轻型吉普车电子机械制动控制系统研究[D].长春:吉林大学,2007.
    [155]唐亮.轻型汽车电子机械制动系统的控制策略与算法研究[D].长春:吉林大学,2008.
    [156]魏青.轻型电子机械制动汽车牵引力控制及虚拟仿真方法研究[D].长春:吉林大学,2008.
    [157]杨坤.轻型汽车电子机械制动及稳定性控制系统研究[D].长春:吉林大学,2009.
    [158]张猛.电子机械制动系统(EMB)试验台的开发[D].北京:清华大学,2004.
    [159]赵一博.电子机械制动系统执行机构的研究与开发[D].北京:清华大学,2010.
    [160]黄渊芳.电子机械制动系统(EMB)试验台的开发与应用研究[D].南京:南京航空航天大学,2007.
    [161]杨思宇.轿车电子机械制动系统的建模及评价[D].上海:上海交通大学,2008.
    [162]赵春花.汽车电子机械制动系统执行机构的设计研究[D].南京:南京理工大学,2009.
    [163]董现伦.车辆电子机械制动系统防抱死制动控制器研究[D].镇江:江苏大学,2009.
    [164]张绿原.电子机械制动系统的夹紧力控制策略研究[D].武汉:华中科技大学,2012.
    [165]许社教,张郁.基于方向余弦参数的物坐标系与世界坐标系间的坐标转换[J].工程图学学报,2004(1).
    [166]黄真,李艳文,高峰.空间运动构件姿态的欧拉角表示[J].燕山大学学报,2002,26(3).
    [167] M.米奇克.汽车动力学(第二版): A卷[M].陈萌兰译.北京:人民交通出版社,1997.
    [168] M.米奇克.汽车动力学(第二版): B卷[M].陈萌兰译.北京:人民交通出版社,1997.
    [169] M.米奇克.汽车动力学(第二版): C卷[M].陈萌兰译.北京:人民交通出版社,1997.
    [170] Reza N. Jazar. Vehicle Dynamics: Theory and Application [M]. Springer,2007.
    [171] Chinar Ghike and Taehyun Shim.14Degree-of-Freedom Vehicle Model for RollDynamics Study[C]//SAE2006-01-1277.
    [172] Jooyoung Ma, Jeamyoung Youn, Minsuk Shin and Myoungho Sunwoo. A DesignApproach Using Seamless Development Environments, SILS/RCP, for Real-TimeControl Systems[C]//SAE2006-01-0310.
    [173]郭孔辉,潘峰,马凤军.预瞄优化神经网络驾驶员模型[J].机械工程学报,2003,39(1).
    [174]程颖.基于误差分析法的驾驶员模型及其在ADAMS中的应用[D].长春:吉林大学,2003.
    [175] Thomas D. Gillespie著,赵六奇,金达锋译.车辆动力学基础[M].北京:清华大学出版社,2006.
    [176] Pragasan Pillay,R Krishnan.Modeling of permanent magnet motor drives[J].IEEETrans.on Industry Electronics,1988,35(4):537-541.
    [177] Evans P D,Brown D.Simulation of brushless DC drives[J].IEE Proceedings B,Electric Power Applications,137(5):299-308.
    [178] Pillay P,Krishnan R.Modeling,simulation,and analysis of permanent-magnet motordrives,Part I:The permanen-magnet synehronous motor drive[Jl.IEEE Trans.on IndustryApplications,1989,25(2):265-273.
    [179]于金龙,李军伟,苏炳玲等.基于电动汽车的无刷直流电机控制系统建模与仿真[J].农业装备与车辆工程,2006(6):18-21.
    [180]包向华,章跃进等.基于SIMULINK的永磁无刷直流电动机及控制系统的建模与仿真[J].电气传动自动化,2005,27(4).30-32,35.
    [181]卿浩,辜承林,唐小琦等.无刷直流电机模糊控制系统的建模及仿真分析[J].微电机,2006,39(3):19-21,62.
    [182]蒋海波,崔新艺,曾凌波等.无刷直流电机模糊控制系统的建模与仿真[J].西安交通大学学报,2005,39(10):1116-1120
    [183]刘锦波,张承慧等.电机与拖动[M].北京:清华大学出版社,2006..
    [184]张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响[J],电机与控制学报,2003(2):87-91.
    [185]刘刚,王志强等.永磁无刷直流电机控制技术与应用[J].机械工业出版社.2008,236-245.
    [186]张相军.无刷直流电机无位置传感器控制技术的研究[D.上海:上海大学,2001.
    [187]索新巧,黄声华.无刷直流电机转矩脉动的分析和消除,船电技术,2002(1):5-8.
    [188] Yoshihiro murai,Yoshihiro kawase,ete,Toruqe ripple improvement for brushless DCmotor miniature motors[J].IEEE transactions on industry applications,1989,25(3):441-450.
    [189] Gwnag-Heno Kim,Seog-Joo Kang,ete,Analysis of the Commutation Toruqe Pipple forBLDC fed by HCRPWM-VSI[C].Applied power Electronics Conference and Exposition,1992.APEC’92.Conference Proceedings1992,Seventh Annual,23-27Feb,Boston,MA USA.1992:277-284.
    [190] Chang-hee Won,Joong-Ho Song,Lck Choy,Commutation Toruqe Ripple Reduction inBrushless DC Motor Drives Using a Single DC Current Sensor[J]. Power Electronics,IEEE Transactions on,2004,19(2):312-319.
    [191] Ehsan Harati.Nonlinear Model Predictive Controller Toolbox[D].G¨oteborg, Sweden:CHALMERS UNIVERSITY OF TECHNOLOGY,2011.
    [192] E. Bakker, L. Nyborg, and H.B. Pacejka, Tyre modeling for use in vehicle dynamicsstudies[C]//SAE paper No870421,1987.
    [193] R. Rajamani, Vehicle Dynamics and Control[J]. Springer Verlag,2005.
    [194] W. Leonhard. Control of Electrical Drives[M].3rd ed. Berlin, Germany:Springer,2001.
    [195]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700