用户名: 密码: 验证码:
Sn-Beta分子筛的合成、表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sn-Beta分子筛对以低浓度H202为氧化剂、温和条件下进行的有机物分子选择氧化反应具有优异的催化性能,受到国内外研究者的广泛关注。目前Sn-Beta分子筛的合成主要是Corma等报道的以正硅酸乙酯(TEOS)为硅源、脱铝纳米Beta沸石作为晶种诱导、HF为矿化剂的水热晶化法;该方法存在合成时间长(10天以上)、环境污染严重、设备要求高、生产过程可操作性及重现性差等问题;难以规模化生产和工业化应用。
     本论文致力于研究成本低廉、合成步骤相对简单、快速、环境友好和易于工业化的Sn-Beta分子筛合成新方法。分别运用白炭黑为硅源的水热合成法、脱铝补锡两步后合成法、水蒸汽辅助法和两步水热法研究了Sn-Beta分子筛的形成。采用XRD、SEM、FT-IR、 UV-Vis、UV Raman、SEM、ICP-AES和N:吸附等分析手段表征了样品的结构和性能。论文的主要内容如下:
     1.以白炭黑为硅源,SnCl4·H2O为锡源,NH4F为矿化剂,水热晶化法合成Sn-Beta分子筛,考察了n(H2O)/n(SiO2)摩尔比,晶化温度,无水乙醇加入量等对Sn-Beta形成的影响。与TEOS为硅源相比,白炭黑为硅源,避免了TEOS水解蒸醇过程,简化了合成步骤,并且能够精确控制最终凝胶中n(H2O)/n(SiO2)的比例;加入无水乙醇可以改善机械搅拌性能,有利于工业化生产。所制备的Sn-Beta样品对环己酮Baeyer-Villiger(B-V)氧化反应的催化活性与常规水热晶化合成法所制备的样品相当。
     2.采用酸处理Al-Beta脱铝以产生T“空位”、再高温焙烧插入Sn,即脱铝补位两步后合成法制备了Sn-Beta分子筛。对脱铝次数及焙烧温度等关键参数进行了优化考察。随着脱铝次数的增加,母体中T“空位”数量增多,进入分子筛骨架的Sn量增加;高温焙烧有利于Sn进入分子筛骨架,但过高的焙烧温度能够造成分子筛骨架坍塌,对Sn进入分子筛骨架不利。最佳合成条件为:Si/Al比为21的Al-Beta沸石,无机酸(6M HNO3)脱铝处理2次,焙烧温度为773K。Sn-Beta样品中最高Sn含量可达3.92wt%(SnO2)。所合成的Sn-Beta样品在催化环己酮转化率23.4%,选择性为70%。
     3.采用干胶水蒸汽辅助法(SAC)能够快速合成Sn-Beta分子筛。对晶化时间,温度,凝胶烘干温度,釜底水量等关键因素进行了考察。结果表明:含有结构导向剂(SDA)的无定形硅锡干胶,在水蒸汽的作用下,453K时,反应3-12h就可完全转化为高结晶度的Sn-Beta分子筛晶体。从前采用SAC法合成分子筛的文献均认为:“釜底水量的多少严重影响分子筛的形成”。而本研究发现,SAC法合成釜内部结构,是导致水量多少严重影响分子筛形成的主要原因。水蒸汽在釜内顶部冷凝后,回滴到干胶合成体系中,进而改变了各物质的组成比例,导致干胶无法晶化。利用改进的合成釜,研究了釜底过量水对Sn-Beta合成的影响表明,水量对Sn-Beta的形成不敏感,可在高水量范围制备。高温有利于晶体生成;Sn含量高,所需晶化时间长,当n(Si02)/n(Sn02)≤75时,即使延长晶化时间至200h,仍然无法得到Sn-Beta;硅锡凝胶烘干温度在333~373K之间时,样品结晶度高。最佳合成条件为:硅锡凝胶烘干温度为333~373K,晶化温度为433~473K。
     4.以脱铝Beta沸石为硅源,十六烷基三甲基溴化铵(CTAB)为介孔模板剂,两步水热法合成多级孔Sn-Beta分子筛。首先,溶于有机碱四乙基氢氧化铵(TEAOH)溶液中的硅源与锡源(SnCl4·5H2O),在水热条件下进行预晶化,生成Sn-Beta晶体初级结构单元。在第2步水热晶化过程中,Sn-Beta初晶在介孔模板剂CTAB的辅助下,自组装成具有多级孔结构的Sn-Beta分子筛。与常规Sn-Beta相比,多级孔Sn-Beta兼有微孔和介孑L的孔道结构,应用于环己酮B-V氧化反应,表现出较强抗失活能力和水热稳定性。
Sn-Beta has attracted much attention for its excellent catalytic performances in selective oxidation of various organic compounds with dilute H2O2as the oxidant under mild conditions. Up to date, the synthesis of Sn-Beta still relies on the traditional fluoride method which reported by corma et al. using TEOS as the silica sources. Seeds are often required and are prepared by dealumination of nano-sized Al-Beta zeolites with concentrated nitric acid. The zeolite crystallization is time-consuming (at least ten days), and the use of hydrofluoric acid as mineralizer brings unwanted pollution and health hazard, that lead to poor synthesis reproducibility and high production costs. Thus, the process is energy intensive and difficult to scale-up.
     The dissertation was focused on developing facile, rapid and efficient synthesis Sn-Beta method, which is expected to provide an economical and scalable for the industrial application. A series of new strategies and methods has been used, such as hydrothermal crystallization, two-step post synthesis, steam assisted conversion (SAC) and two-step hydrothermal crystallization method. The properties of the as-prepared samples were characterized by XRD, SEM, FT-IR. UV-Vis. UV Raman. ICP and N2adsorptions. The main contents of the dissertation are as follows:
     1. Sn-Beta zeolite was successfully synthesized by hydrothermal crystallization method, using fumed silica as the silica source, SnCl4·H2O as the tin source and NH4F as the assisting agent. The effects of the molar ratio of n (H2O)/n (SiO2), the crystallization temperature and the amount of ethanol on the formation of the Sn-Beta zeolite frameworks, were investigated in detail. It is shown that using fumed silica as the silica source, can avoid the hydrolysis of the TEOS process and keep the molar ratio of n (H2O)/n (SiO2) in the final gel precisely, which simplify the synthesis process effectively. With the increase of n (H2O)/n (SiO2) molar ratio in the gel. the crystalline is decreased. The addition of ethanol into the prepared gel was helpful for improving the viscosity and fluidity of the initial gel. The as-synthesized sample exhibits no better, but comparable activity compares with Sn-Beta prepared by conventional hydrothermal method using TEOS as the silica source in cyclohexanone B-V oxidation reaction.
     2. Sn-Beta zeolite was prepared by a two-step post synthesis method. The procedure consists of first dealumination of Al-Beta zeolite with nitric acid and then incorporation tin into the framworks by calcination at varying temperatures. The effect factors such as the number times of dealumination and calcination temperature in the preparation Sn-Beta was optimization. The results show that, tin content is increased with the amount of vacant T-sites in the precursor. The higher calcination temperature is benefited for incorporation of tin into the zeolite framework. However, when the calcination temperature is too high, the framework will collapse; Optimal synthesis conditions:Dealumination Al-Beta (Si/Al=21) with nitric acid (6M HNO3) two times, calcination temperature of773K. the highest Sn content in the as-prepared samples is3.92wt%(SnO2). The Cyclohexanone conversion is23.4%, the Lactone Selectivity is70%。
     3. Sn-Beta zeolite was prepared by a rapid and clean SAC method from the dry stannosilicate gel. The effects of the crystallization temperature and time, the gel drying temperature and the amount of water in the bottom of autoclave on the formation of the Sn-Beta zeolite frameworks, were investigated in detail. The results show that, the amorphous gel was converted to highly crystalline Sn-Beta within3-12h at mild reaction temperature of453K. Compared with the researchers, we have get a different results on the synthesize parameter of water content. In the previous literatures, all the researchers agreed that" the amount of water in the bottom of the autoclave seriously affects the formation of zeolite"; we found that the inferior design of the internal structure of the conventional SAC synthesis autoclave is the real reason. When the amount of water in the bottom of the autoclave is enough, the vapor-liquid balance could be kept in the autoclave all the time during the crystallization. The condensation of steam into water inside the autoclave would take place and the condensed water can drop back into the gel. This leads to the change of the synthesis composition. In order to avoid this phenomenon, an improved SAC autoclave was designed and used in this study; it is shown that, the amount of water in the bottom of the autoclave cannot significantly affect the formation of Sn-Beta zeolites. The higher crystallization temperature is benefited for crystal formation; Higher Sn content required longer crystallization time; the dry gel with SiO2/SnO2ratio less than75,could not be transformed into zeolite phase even after200h of crystallization. Optimized synthesis conditions of high quality of Sn-Beta zeolites are the gel drying temperature of333-373K and the crystallization temperature of433-473K. The prepared Sn-Beta zeolites are active and selective for cyclohexanone B-V oxidation reaction.
     4. A novel strategy, CTAB-assisted two-step hydrothermal crystallization method, has been designed for the synthesis of hierarchical Sn-Beta. In the first step, dealuminated Al-Beta and the Sn (IV) precursor were dissolved in TEAOH (40%aqueous solution) and formed a mixture. Then, the mixture formed Sn-Beta zeolite primary structural unit by hydrothermal synthesis. In second step, primary crystal of Sn-Beta will be converted to be a hierarchical Sn-Beta by CTAB-assisted through self-assembled. The material shows greatly increased catalytic activity and a strongly prolonged lifetime in the Baeyer-Villiger oxidation cyclohexanone, as compared to conventional zeolite Sn-Beta. This excellent catalytic performance of mesoporous Sn-Beta is closely related to its hierarchical micro/meso-structure, and high hydrothermal stability against mesostructural collapse and Sn leaching during reactions.
引文
[1]Davis M E. Ordered porous materials for emerging applications[J]. Nature,2002, 417(6891):813-821.
    [2]Notari B, Microporous crystalline titanium silicates. In Advances in Catalysis [C], San Diego:Elsevier Academic Press, Inc:,1996, (41):253-334.
    [3]Corma A. Nemeth L T. Renz M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations [J]. Nature,2001,412(6845):423-425.
    [4]Chu C T W, Chang C D. Isomorphous substitution in zeolite frameworks.1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [A1]-ZSM-5[J]. J Phys Chem.,1985,89(9): 1569-1571.
    [5]El-Malki E M, van Santen R A, Sachtler W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation:Identification of acid sites[J]. J Phys Chem B,1999, 103(22):4611-4622.
    [6]Li Y. Catalytic decomposition of nitric oxide over Cu-zeolites[J]. J Catal,1991,129(1): 202-215.
    [7]Hernandez-Maldonado A J, Yang F H, Qi G, et al. Desulfurization of transportation fuels by pi-complexation sorbents:Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites[J]. Appl Catal B-environ,2005,56(1-2):111-126.
    [8]徐如人,庞文琴,于吉红,分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [9]Sulikowski B. Isomorphous replacement in the zeolitic frameworks:Recent advances and implications[J]. Heterogeneous Chemistry Rev.,1996,3(3):203-268.
    [10]Taramasso M, Perego G, Notari B Crystalline, porous material with silicalite structure-prepd. from silica and titanium oxide US,US4410501,1983,10,18.
    [11]Hulea V, Bousquet J. Mild oxidation with H2O2 over Ti-containing molecular sieves-A very efficient method for removing aromatic sulfur compounds from fuels[J].J Catal, 2001,198(2):179-186.
    [12]Kong L, Li G,Wang X. et al. Oxidative desulfurization of organic sulfur in gasoline over Ag/TS-1[J]. Energy & fuels,2006,20(3):896-902.
    [13]kong L, Li G, Wang X, et al. Thiophene oxidation over titanium silicalite using hydrogen peroxide[J]. Chin J Chem,2004,25(2):89-90.
    [14]Clerici M G. Bellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite[J]. J Catal.1991,129(1):159-167.
    [15]Wang L, Wang X, Guo X. et al. Quick Synthesis of Titanium Silicalite-1[J]. Chin J Chem,2001,22(6):513-514.
    [16]Sooknoi T. Chitranuwatkul V.Ammoximation of cyclohexanone in acetic acid using titanium silicalite-1 catalyst:Activity and reaction pathway [J]. J. Mol. Catal. A:Chem., 2005.236(1):220-226.
    [17]Saxena S. Basak J. Hardia N, et al. Ammoximation of cyclohexanone over nanoporous TS-1 using UHP as an oxidant[J]. Chem. Eng. J.,2007,132(1-3):61-66.
    [18]Thangaraj A, Kumar R. Ratnasamy P. Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicate zeolites[J]. Appl. Catal.,1990,57(1):11-13.
    [19]王丽琴,王祥生,郭新闻等.合成TS-1分子筛的结晶动力学及催化性能研究[J].催化学报,2003,24(2):132-136.
    [20]Hoelderich W F, Zeolites:Catalysts for The Synthesis of Organic Compounds[J]. Stud Surf Sci Catal,1989,(49):69-93.
    [21]Padovan M, Leofanti G, Roffia P Method for the Preparation of Titanium Silieates [J]. J. Non-Cryst. Solids,2001,293-295(0):32-38.
    [22]Thangaraj A, Sivasanker S. An improved method for TS-1 synthesis:29 Si NMR studies[J]. J. Chem. Soc., Chem. Commun.,1992, (2):123-124.
    [23]Muller U, Steck W. Ammonium-Based Alkaline-Free Synthesis of MFI-Type Boron-and Titanium Zeolites[J]. Stud Surf Sci Catal,1994, (84):203-210.
    [24]张雄福.ZSM_5型沸石膜的合成_表征及反应性能研究[D].大连:大连理工大学.2000.
    [25]Tuel A. Taarit Y B. Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide[J]. Appl. Catal.,1993,102(1):69-77.
    [26]李钢,郭新闻.王祥生,et al. TPABr-TEAOH体系中TS-1的合成、表征及催化性能[J].催化学报,1998,(04):86-89.
    [27]刘云凌.杜红宾,周凤歧,et al.钛硅ZSM-5分子筛的合成与表征[.J].石油学报(石油加工),1996,(04):26-29.
    [28]周继承,王祥生.无机钛硅原料体系合成TS-1催化丙烯环氧化反应[J].分子催化,2000,(05):363-368.
    [29]周继承,王祥生.Novel method for synthesis of titanium silicalite-1 (TS-1)[J]. Chin J Chem.2000, (01):42-48.
    [30]Sudhakar Reddy J, Kumar R. Synthesis, characterization, and catalytic properties of a titanium silicate, TS-2, with MEL structure[J]. J Catal,1991.130(2):440-446.
    [31]Camblor M A, Corma A, Perez-Pariente J. Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts[J]. Zeolites.1993.13(2): 82-87.
    [32]Wu P, Tatsumi T, Komatsu T, et al. A novel titanosilicate with MWW structure:Ⅱ. Catalytic properties in the selective oxidation of alkenes[J]. J Catal,2001,202(2): 245-255.
    [33]Morey M, Davidson A, Stucky G. A new step toward transition metal incorporation in cubic mesoporous materials:Preparation and characterization of Ti-MCM-48[J]. Microporous Mater.,1996,6(2):99-104.
    [34]Zepeda T, Fierro J, Pawelec B. et al. Synthesis and characterization of Ti-HMS and CoMo/Ti-HMS oxide materials with varying Ti content[J]. Chem Mater,2005,17(16): 4062-4073.
    [35]Bagshaw S A, Di Renzo F, Fajula F. Preparation of metal-incorporated MSU mesoporous silica molecular sieves. Ti incorporation via a totally non-ionic route[J]. Chem Commun,1996. (18):2209-2210.
    [36]朱金华,沈伟,徐华龙.et al.水热一步法合成Ti-SBA-15分子筛及其催化性能研究[J]. Acta Chim Sin,2003,505(61):23.
    [37]Xiao F S, Han Y, Yu Y, et al. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites[J]. J Am Chem Soc,2002,124(6):888-889.
    [38]Yang X, Han Y, Lin K, et al. Ordered mesoporous titanosilicates with catalytically stable and active four-coordinated titanium sites[J]. Chem Commun,2004, (22):2612-2613.
    [39]Cheneviere Y, Chieux F, Caps V, et al. Synthesis and catalytic properties of TS-1 with mesoporous/microporous hierarchical structures obtained in the presence of amphiphilic organosilanes[J]. J Catal,2010,269(1):161-168.
    [40]Lazar K, Szeleczky A M, Mal N K, et al. In situ 119Sn-M6ssbauer spectroscopic study on MR. MEL, and MTW tin silicalites[J]. Zeolites,1997,19(2-3):123-127.
    [41]Kishor Mal N, Ramaswamy V. Ganapathy S. et al. Synthesis of tin-silicalite molecular sieves with MEL structure and their catalytic activity in oxidation reactions[J]. Appl. Catal.,995,125(2):233-245.
    [42]Mal N K, Ramaswamy A V. Oxidation of ethylbenzene over Ti-,V- and Sn-containing silicalites with MFI structure[J]. Appl. Catal.,1996,143(1):75-85.
    [43]Corma A, Nemeth L T, Renz M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature,2001,412(6845):423-425.
    [44]Corma A, Navarro M T, Nemeth L. et al. Sn-MCM-41-a heterogeneous selective catalyst for the Baeyer-Villiger oxidation with hydrogen peroxide[J]. Chem Commun,2001, (21): 2190-2191.
    [45]Shah P, Ramaswamy A V. Lazar K. et al. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions[J]. Microporous Mesoporous Mater.. 2007,100(1-3):210-226.
    [46]Joyner R, Stockenhuber M. Preparation, characterization, and performance of Fe-ZSM-5 catalysts[J]. J. Phys. Chem. B,1999,103(29):5963-5976.
    [47]Borade R B, Clearfield A. Iron-substituted Beta molecular sieve:Synthesis and characterization [J]. Microporous Mater.,1994,2(3):167-177.
    [48]Yuan Z Y, Liu S Q, Chen T H, et al. Synthesis of iron-containing MCM-41[J]. J. Chem. Soc., Chem. Commun.,1995,(9):973-974.
    [49]Sato S,Yu-u Y, Yahiro H. et al. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines[J]. Appl. Catal.,1991,70(1): L1-L5.
    [50]Norena-Franco L,Hernandez-Perez I, Aguilar-Pliego J. et al. Selective hydroxylation of phenol employing Cu-MCM-41 catalysts[J]. Catal Today,2002.75(1):189-195.
    [51]Chu C T W, Chang C D. Isomorphous substitution in zeolite frameworks.1. Acidity of surface hydroxyls in [B]-,[Fe]-,[Ga]-,and [A1]-ZSM-5[J]. J Phys Chem.1985,89(9): 1569-1571.
    [52]Dwyer J, Karim K. The incorporation of heteroatoms into faujastic framework by secondary synthesis using aqueous fluoride complexes[J]. J. Chem. Soc., Chem. Commun.,1991, (14):905-906.
    [53]Kaucky D. Vondrova A. Dedecek J,et al. Activity of Co ion sites in ZSM-5,ferrierite. and mordenite in selective catalytic reduction of NO with methane[J]. J. Catal.,2000. 194(2):318-329.
    [54]高滋,徐金锁.杂原子对Y沸石液固相类质同晶取代规律探讨[J].化学学报.1995.(02):135-140.
    [55]Dwyer J, Karim K. The incorporation of heteroatoms into faujastic framework by secondary synthesis using aqueous fluoride complexes[J]. J. Chem. Soc., Chem. Commun,1991, (14):905-906.
    [56]Dzwigaj S, Che M. Incorporation of Co(II) in dealuminated BEA zeolite at lattice tetrahedral sites evidenced by XRD, FTIR, diffuse reflectance UV-Vis, EPR, and TPR[J]. J Phys Chem B,2006,110(25):12490-12493.
    [57]Stanislaw Dzwigaj J J, Jan Mizera, Jacek Gurgul, Robert P. Socha3, Michel Che. Role of mononuclear Cu(Ⅱ) species of CuSiBEA zeolite in the SCR of NO by ethanol:XRD, FTIR, UV-vis, XPS. TPR, XAS and catalytic studies[J]. Catalysis for Environment: Depollution, Renewable Energy and Clean Fuels,2008,93-96.
    [58]K. Gra-Marek J D, S. Dzwigaj, and M. Che. Influence of V Content on the Nature and Strength of Acidic Sites in VSiβ Zeolite Evidenced by IR Spectroscopy[J]. J. Phys. Chem. B,2006,110(13):6763-6767.
    [59]Dzwigaj S. Janas J. Machej T, et al. Selective catalytic reduction of NO by alcohols on Co-and Fe-Siβ catalysts[J]. Catal Today,2007,119(1-4):133-136.
    [60]Kraushaar B. Hooff J H C. A new method for the preparation of titanium-silicalite (TS-1)[J]. Catal. Lett.,1988,1(4):81-84.
    [61]庞文琴,左丽华,裘式纶.气-固相置换法合成杂原子硅铝酸盐分子筛及其性能研究[J].高等学校化学学报,1988,(01):4-8.
    [62]郭新闻,王桂茹,王祥生.Ti-Si Pentasif型杂原子分子筛的气固相同晶取代法制备及其羟基化性能Ⅰ.母体中Na+含量的影响[J].催化学报,1994,4(06):410-416.
    [63]郭新闻,王桂茹.Ti-Si-Pentasil型杂原子分子筛的气固相同晶取代法制备及其羟基化基化性能[J].催化学报,1995,16(05):420-424.
    [64]张法智,郭新闻,王祥生.气固相同晶取代法Ti-ZSM-5沸石的表征及催化性能[J].大连理工大学学报,1998,(03):124-127.
    [65]Liu M, Guo X, Wang X, et al. Effect of (n)SiO2/(n)B2O3 in the precursor on chemical-physics properties of Ti-ZSM-5 synthesized by gas-solid method[J]. Catal Today,2004. (93-95):659-664.
    [66]刘民.Ti-ZSM-5沸石的气固相法合成-表征和催化性能研究[D].大连:大连理工大学,2005.
    [67]高健.以B-ZSM-5为母体气固相法合成Ti-ZSM-5的研究[D].大连:大连理工大学,2010.
    [68]庞文琴,赵大庆,裘式伦.气-固相置换法合成Sn-ZSM-5型分子筛[J].石油学报(石油加工),1989,(02):93-98.
    [69]庞文琴,赵大庆,裘式纶,et al.气-固相置换法合成B-ZSM-5型分子筛[J].吉林:吉林大学自然科学学报,1989,(04):115-118.
    [70]张法智.钛硅分子筛的气固相法制备、表征及其丙烯环氧化性能的研究[D].大连:大连理工大学,2000.
    [71]Xu W, Dong J. Li J. et al. A novel method for the preparation of zeolite ZSM-5[J].J. Chem. Soc.,Chem.Commun.,1990, (10):755-756.
    [72]Matsukata M, Nishiyama N, Ueyama K. Synthesis of zeolites under vapor atmosphere: Effect of synthetic conditions on zeolite structure[J]. Microporous Mater.,1993,1(3): 219-222.
    [73]Rao P R H P, Matsukata M. Dry-gel conversion technique for synthesis of zeolite BEA[J]. Chem. Commun.,1996, (12):1441-1442.
    [74]Cai R, Liu Y, Gu S, et al. Ambient Pressure Dry-Gel Conversion Method for Zeolite MFI Synthesis Using Ionic Liquid and Microwave Heating[J]. J Am Chem Soc,2010, 132(37):12776-12777.
    [75]Matsukata M, Nishiyama N, Ueyama K. Crystallization of FER and MFI zeolites by a vapor-phase transport method[J]. Microporous Mater.,1996,7(2-3):109-117.
    [76]Nishiyama N, Ueyama K, Matsukata M. Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method[J]. Microporous Mater.,1996, 7(6):299-308.
    [77]Bandyopadhyay R, Kubota Y, Sugimoto N, et al. Synthesis of borosilicate zeolites by the dry gel conversion method and their characterization [J]. Microporous Mesoporous Mater.,1999,32(1-2):81-91.
    [78]张小明;丁勇;彭志光;赵培庆;索继栓一种钛硅分子筛的制备方法.中国,CN132794.7[P].2001,12,26.
    [79]Tatsumi T, Xia Q, Jappar N. Synthesis of Ti-beta Zeolite with High Oxidation Activity by a Dry-gel Conversion Technique[J]. Chem. Lett.,1997,26(7):677-678.
    [80]Matsukata M. Ogura M, Osaki T. et al. Conversion of dry gel to microporous crystals in gas phase[J]. Top. Catal.,1999,9(1):77-92.
    [81]Arnold A, Steuernagel S, Hunger M, et al. Insight into the dry-gel synthesis of gallium-rich zeolite Ga Beta[J]. Microporous Mesoporous Mater.,2003,62(1-2):97-106.
    [82]Niphadkar P S, Kotwal M S, Deshpande S S, et al. Tin-silicalite-1:Synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction[J]. Mater. Chem. Phys.,2009,114(1):344-349.
    [83]Chen B H, Huang Y N. Formation of microporous material AlPO(4)-18 under dry-gel conversion conditions[J]. Microporous Mesoporous Mater.,2011,143(1):14-21.
    [84]董维阳,孙尧俊.B-Al-ZSM-5沸石的固相结晶过程和机理的研究[J].中国科学:B辑,1998,28(3):258-266.
    [85]Zhou J, Hua Z, Cui X. et al. Hierarchical mesoporous TS-1 zeolite:a highly active and extraordinarily stable catalyst for the selective oxidation of 2.3,6-trimethylphenol[J]. Chem. Commun.,2010,46(27):4994-4996.
    [86]Wang W. Li G, Li W, et al. Synthesis of hierarchical TS-1 by caramel templating[J]. Chem. Commun.,2011,47(12):3529-3531.
    [87]Shi Q, Chen Z F, Song Z W, et al. Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors[J]. Angew. Chem. Int. Ed.,2011,50(3):672-675.
    [88]Sheldon R. Downing R. Heterogeneous catalytic transformations for environmentally friendly production[J]. Appl. Catal.,1999,189(2):163-183.
    [89]Bellussi G. Perego C. Phenol Hydroxylation and Related Oxidations[S]. Handbook of Heterogeneous Catalysis.1997.
    [90]闵恩泽,李成岳,绿色石化技术的科学与工程基础[M].北京:中国石化出版社2002.
    [91]Wu P, Tatsumi T, Komatsu T, et al. A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium. and characterizations[J]. J Phys Chem B,2001,105(15):2897-2905.
    [92]Wu P, Tatsumi T. A novel titanosilicate with MWW structure Ⅲ. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2[J]. J Catal,2003,214(2):317-326.
    [93]Joyner R, Stockenhuber M. Preparation, characterization, and performance of Fe-ZSM-5 catalysts[J]. J Phys Chem B.1999,103(29):5963-5976.
    [94]Shelef M. Selective Catalytic Reduction of NOx with N-Free Reductants[J]. Chem Rev, 1995.95(1):209-225.
    [95]熊国兴,邵春岩.在ZSM-5分子筛上引入Zn, Ca物种对乙烷芳构化的影响[J].石油化工,1994,23(1):1-6.
    [96]Osmundsen C M. Holm M S, Dahl S. et al. Tin-containing silicates:structure-activity relations[J]. Proc. R. Soc. A-Math. Phys. Eng.Sci.,2012,468(2143):2000-2016.
    [97]R. L. Wadlinger. G. T. Kerr and E. J. Rosinski. US Patent 3,308,069 (1967).
    [98]Higgins J B. LaPierre R B, Schlenker J L. et al. The framework topology of zeolite beta[J]. Zeolites.1988,8(6):446-452.
    [99]Higgins J B, Lapierre R B. Schlenker J L. et al. The framework topology of zeolite beta-a correction[J]. Zeolites,1989,9(4):358.
    [100]Newsam J M, Treacy M M J, Koetsier W T, et al. Structural Characterization of Zeolite Beta[J]. Proc. R. Soc. Lond. A,1988,420(1859):375-405.
    [101]Treacy M M J, Newsam J M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth[J]. Nature,1988, 332(6161):249-251.
    [102]孟宪平,王颖霞,韦承谦,et al. β沸石堆垛层错结构的研究[J].物理化学学报,1996.(08):727-734.
    [103]Martens J A, Tielen M, Jacobs P A, et al. Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane[J]. Zeolites,1984,4(2):98-107.
    [104]K. Mal N, V. Ramaswamy A.Synthesis and catalytic properties of large-pore Sn-beta and Al-free Sn-beta molecular sieves[J]. Chem. Commun.,1997,(5):425-426.
    [105]Li P, Liu G, Wu H, et al. Postsynthesis and Selective Oxidation Properties of Nanosized Sn-BetaZeolite[J]. J Phys Chem C,2011,115(9):3663-3670.
    [106]Hammond C,Conrad S, Hermans I. Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-β[J]. Angew. Chem. Int. Ed.,2012,51(47):11736-11739.
    [107]K. Mal N,V. Ramaswamy A. Synthesis and catalytic properties of large-pore Sn-beta and Al-free Sn-beta molecular sieves[J]. Chem. Commun.,1997,(5):425-426.
    [108]Corma A, Domine M E. Nemeth L, et al.Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein-Ponndorf-Verley Reaction)[.I]. J. Am. Chem. Soc.,2002,124(13):3194-3195.
    [109]Corma A, Garcia H. Lewis Acids:From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis[J]. Chem. Rev.,2003,103(11):4307-4366.
    [110]Holm M S, Saravanamurugan S, Taarning E. Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts[J]. Science,2010,328(5978): 602-605.
    [111]Nikolla E, Roman-Leshkov Y, Moliner M, et al. "One-Pot" Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite[J]. ACS Catal., 2011,1(4):408-410.
    [112]Baeyer A,Villiger V. Einwirkung des Caro'schen Reagens auf Ketone[J]. Berichte der deutschen chemischen Gesellschaft,1899,32(3):3625-3633.
    [113]Boronat M, Concepcion P, Corma A. et al. Peculiarities of Sn-Beta and potential industrial applications[J]. Catal Today.2007.121(1-2):39-44.
    [114]Corma A, Domine M E. Valencia S. Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite[J]. J. Catal.,2003,215(2):294-304.
    [115]Renz M, Meunier B.100 Years of Baeyer-Villiger Oxidations [J]. Eur. J. Org. Chem., 1999,1999(4):737-750.
    [116]何光波,黄世强,李盛彪,蒋涛.聚ε一己内酯的合成和共聚反应研究[J].化工新型材料,1995,(02):27-29.
    [117]杨安乐.孙康,吴人洁.聚ε-己内酯的合成、改性和应用进展[J].高分子通报,2000,(02):52-57.
    [118]张慰盛.严芬媛,马才友.et al.ε-己内酯的合成[J].华东化工学院学报,1984,(03):416.
    [119]Sasakura N. Nakano K. Ichikawa Y, et al. A new environmentally friendly method for the Baeyer-Villiger oxidation of cyclobutanones catalyzed by thioureas using H2O2 as an oxidant[J]. RSC Advances.2012.2(15):6135-6139.
    [120]杜宗罡,朱光明.於秋霞.ε-己内酯的合成及应用[J].化工新型材料,2003,(09):12-14.
    [121]Fischer J,H鰈derich W F. Baeyer-Villiger-oxidation of cyclopentanone with aqueous hydrogen peroxide by acid heterogeneous catalysis[J]. Appl. Catal.,1999,180(1-2): 435-443.
    [122]Berkessel A, Andreae M R M. Efficient catalytic methods for the Baeyer-Villiger oxidation and epoxidation with hydrogen peroxide[J]. Tetrahedron Lett.,2001,42(12):2293-2295.
    [123]张青花.锡配合物催化剂的合成及刘Baeyer-Villiger氧化反应催化性能研究[D].陕西:西北师范大学,2005.
    [124]Hao X, Yamazaki O. Yoshida A. et al. Tin(Ⅳ) bis(perfluoroalkanesulfonyl)amide complex as a highly selective Lewis acid catalyst for Baeyer-Villiger oxidation using hydrogen peroxide in a fluorous recyclable phase [J]. Tetrahedron Lett..2003.44(27): 4977-4980.
    [125]ten Brink G J, Arends I W C E, Sheldon R A. The Baeyer-Villiger Reaction:New Developments toward Greener Procedures [J]. Chem. Rev.,2004,104(9):4105-4124.
    [126]Bernini R, Coratti A, Fabrizi G, et al. CH3ReO3/H2O2 in room temperature ionic liquids: an homogeneous recyclable catalytic system for the Baeyer-Villiger reaction[J]. Tetrahedron Lett,2003,44(50):8991-8994.
    [127]Renz M, Blasco T, Corma A, et al. Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H2O2[J]. Chem. Eur. J.,2002,8(20):4708-4717.
    [128]Lei Z, Zhang Q, Wang R, et al. Clean and selective Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite[J]. J. Organomet. Chem., 2006,691 (26):5767-5773.
    [129]Pillai U R, Sahle-Demessie E. Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer-Villiger oxidation of ketones using hydrogen peroxide[J]. J. Mol. Catal. A:Chem.,2003,191(1):93-100.
    [130]Kaneda K, Ueno S, Imanaka T, et al. Baeyer-Villiger oxidation of ketones using molecular oxygen and benzaldehyde in the absence of metal catalysts[J]. J. Org. Chem., 1994.59(11):2915-2917.
    [131]Zhang P, Yang M, Xiaoping L. Epoxidation of Cyclohexene with Oxygen in Ultrasound Airlift Loop Reactor [J]. Chin. J. Chem. Eng.,2007,15(2):196-199.
    [132]Lew C M, Rajabbeigi N, Tsapatsis M. Tin-containing zeolite for the isomerization of cellulosic sugars[J]. Microporous Mesoporous Mater.,2012. (153):55-58.
    [133]de Clippel F. Dusselier M, Van Rompaey R. et al. Fast and Selective Sugar Conversion to Alkyl Lactate and Lactic Acid with Bifunctional Carbon-Silica Catalysts[J]. J. Am. Chem. Soc.,2012,134(24):10089-10101.
    [134]Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proc. Natl. Acad. Sci. USA.,2010, 107(14):6164-6168.
    [135]Boronat M, Concepcion P, Corma A, et al. Peculiarities of Sn-Beta and potential industrial applications [J]. Catal Today,2007.121(1-2):39-44.
    [136]Corma A. Renz M. Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon-carbon bond formation in the intramolecular carbonyl-ene reaction[J]. Chem. Commun.,2004, (5):550-551.
    [137]Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions[J]. Chem Rev,1995,95(3):559-614.
    [138]Valencia S V, Canos A C. Valencia Valencia S,et al. Preparation of crystalline stannosilicate molecular sieve useful as catalysts for oxidation of organic compounds. US5968473.A,1999,10,19
    [139]Newsam J M. Treacy M M J, Koetsier W T, et al. Structural Characterization of Zeolite Beta[J]. Proc. R. Soc. Lond. A,1988,420(1859):375-405.
    [140]Sun J. Zhu G, Chen Y. et al. Synthesis, surface and crystal structure investigation of the large zeolite beta crystal[J]. Microporous Mesoporous Mater.,2007,102(1-3):242-248.
    [141]Shetty S, Kulkarni B S. Kanhere D G. et al. A Comparative Study of Structural. Acidic and Hydrophilic Properties of Sn-BEA with Ti-BEA Using Periodic Density Functional Theory[J]. J. Phys. Chem. B,2008,112(9):2573-2579.
    [142]Jakob A, Valtchev V, Soulard M, et al. Syntheses of Zeolite Beta Films in Fluoride Media and Investigation of Their Sorption Properties[J]. Langmuir,2009,25(6): 3549-3555.
    [143]Kim D S, Chang J-S, Hwang J-S,et al. Synthesis of zeolite beta in fluoride media under microwave irradiation[J]. Microporous Mesoporous Mater.,2004,68(1-3):77-82.
    [144]Camblor M A, Villaescusa L A, Diaz-Cabanas M J. Synthesis of all-silica and high-silica molecular sieves in fluoride media[J]. Top. Catal.,1999,9(1):59-76.
    [145]Boronat M. Corma A, Renz M, et al. A multisite molecular mechanism for Baeyer-Villiger oxidations on solid catalysts using environmentally friendly H2O2 as oxidant[J]. Chemistry.2005,11(23):6905-6915.
    [146]Boronat M, Concepcion P, Corma A. et al. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites,and their optimisation by the combination of theoretical and experimental studies[J]. J. Catal.,2005,234(1):111-118.
    [147]Davies L J, McMorn P, Bethell D, et al. Oxidation of crotyl alcohol using Ti-P and Ti-MCM-41 catalysts[J]. J. Mol. Catal.A:Chem.,2001,165(1-2):243-247.
    [148]Mal N K. Bhaumik A, Kumar R. et al. Sn-ZSM-12, a new, large pore MTW type tin-silicate molecular sieve:synthesis,characterization and catalytic properties in oxidation reactions[J]. Chem. Lett.,1995,33(3):387-394.
    [149]Mal N K. Ramaswamy A V. Hydroxylation of phenol over Sn-silicalite-1 molecular sieve:Solvent effects[J]. J. Mol. Catal. A:Chem.,1996,105(3):149-158.
    [150]Osmundsen C M, Holm M S, Dahl S, et al. Tin-containing silicates:structure-activity relations[J]. Proc. R. Soc. Lond. A,2012, (468):2000-2016.
    [151]Nogier J P, Millot Y. Man P P, et al. Probing the Incorporation of Ti(Ⅳ) into the BEA Zeolite Framework by XRD. FTIR, NMR, and DR UV-jp810722bis[J]. J. Phys. Chem. C, 2009.113(12):4885-4889.
    [152]Niphadkar P S, Kotwa M S, Deshpande S S, et al. Tin-silicalite-1:Synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction[J]. Mater. Chem. Phys.,2009,114(1):344-349.
    [153]Perez-Pariente J. Martens J A, Jacobs P A. Factors affecting the synthesis efficiency of zeolite BETA from aluminosilicate gels containing alkali and tetraethylammonium ions[J]. Zeolites,1988,8(1):46-53.
    [154]Xu G, Zhu X. Li X, et al. Synthesis of pure silica ITQ-13 zeolite using fumed silica as silica source[J]. Microporous Mesoporous Mater.,2010,129(1-2):278-284.
    [155]Herreros B. Klinowski J. Influence of the source of Silicon and Aluminium in the Hydrothermal Synthesis of Sodalite[J]. J. Chem. Soc.-Faraday Trans.1995,91(7): 1147-1154.
    [156]Mountjoy G. Pickup D M, Wallidge G W. et al. XANES Study of Ti Coordination in Heat-Treated (TiO2)x(SiO2)1-x Xerogels[J]. Chem. Mater.,1999,11(5):1253-1258.
    [157]Garcia R. Arranz M. Blasco T, et al. Fluorine-containing organic molecules as structure directing agents in the synthesis of crystalline microporous materials. Part III:Synthesis of all-silica zeolites from fluorine-containing derivatives of 1-benzyl-1-methylpyrrolidinium[J]. Microporous Mesoporous Mater.,2008,114(1-3): 312-321.
    [158]Davis M E, Lobo R F. Zeolite and molecular sieve synthesis[J]. Chem. Mater.,1992, 4(4):756-768.
    [159]Shayib R M, George N C, Seshadri R, et al. Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks[J]. J Am Chem Soc. 2011,133(46):18728-18741.
    [160]Covarrubias C, Quijada R, Rojas R. Synthesis of nanosized ZSM-2 zeolite with potential acid catalytic properties[J]. Micropor. Mesopor. Mater.,2009,117(1-2): 118-125.
    [161]Klinowski J, Thomas J M, Audier M, et al. Solid-state 29Si n.m.r. and high-resolution electron microscopic studies of a silicate analogue of faujasite[J]. J.Chem. Soc., Chem. Commun.,1981, (11):570-571.
    [162]王祥生.郭新闻.刘靖.钛硅沸石的制备及其选择氧化性能[J].大连理工大学学报.1998.(03):104-109.
    [163]Wang X, Zhang X, Wang Y. et al. Performance of TS-1-Coated Structured Packing Materials for Styrene Oxidation Reaction[J]. ACS Catal.,2011.1(5):437-445.
    [164]Sanchez-Sanchez M. van Grieken R, Serrano D P, et al. On the Sn(Ⅱ) and Sn(Ⅳ) incorporation into the AF1-structured AlPO4-based framework:the first significantly acidic SnAPO-5[J]. J. Mater. Chem.,2009,19(37):6833-6841.
    [165]庞文琴,岳勇.杂原子沸石分子筛的研究进展[J].石油化工,1984,(09):620-626.
    [166]Fan W, Duan R-G, Yokoi T, et al. Synthesis. Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species[J]. J Am Chem Soc.2008,130(31):10150-10164.
    [167]Perez-Ramirez J, Groen J C, Bruckner A, et al. Evolution of isomorphously substituted iron zeolites during activation:comparison of Fe-beta and Fe-ZSM-5[J]. J. Catal.,2005, 232(2):318-334.
    [168]汪靖.几种重要沸石类材料的制备与应用研究[D].上海:复旦大学,2008.
    [169]Wu P. Komatsu T, Yashima T. Characterization of Titanium Species Incorporated into Dealuminated Mordenites by Means of IR Spectroscopy and 18O-Exchange Technique[J]. J Phys Chem,1996,100(24):10316-10322.
    [170]Wu P. Komatsu T, Yashima T. IR and MAS NMR Studies on the Incorporation of Aluminum Atoms into Defect Sites of Dealuminated Mordenites[J]. J Phys Chem.1995. 99(27):10923-10931.
    [171]Rao P, Matsukata M. Dry-gel conversion technique for synthesis of zeolite BEA[J]. Chem. Commun.,1996,(12):1441-1442.
    [172]Ke X, Xu L. Zeng C, et al. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine[J]. Micropor. Mesopor. Mater.,2007,106(1-3):68-75.
    [173]Song C M, Feng Y, Ma L L. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized by dry gel conversion[J]. Micropor. Mesopor. Mater.,2012,147(1):205-211.
    [174]Chen B, Huang Y. Formation of microporous material AlPO4-18 under dry-gel conversion conditions[J]. Micropor. Mesopor. Mater.,2011,143(1):14-21.
    [175]Boronat M, Corma A, Renz M. et al. Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts[J]. Chem. Eur. J.,2006,12(27):7067-7077.
    [176]Joyner R W, Stockenhuber M. Unusual structure and stability of iron-oxygen nano-clusters in Fe-ZSM-5 catalysts[J]. Catal Lett,1997,45(1-2):15-19.
    [177]Taborda F, Wang Z, Willhammar T, et al. Synthesis of Al-Si-beta and Ti-Si-beta by the aging-drying method[J]. Micropor. Mesopor. Mater.,2012,150(38-46.
    [178]Li C, Xiong G, Xin Q, et al. UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite[J]. Angew. Chem. Int. Ed.,1999, 38(15):2220-2222.
    [179]Mihailova B, Valtchev V, Mintova S, et al. Interlayer stacking disorder in zeolite beta family:a Raman spectroscopic study [J]. Phys. Chem. Chem. Phys.,2005,7(14): 2756-2763.
    [180]Moller K. Yilmaz B, Jacubinas R M, et al. One-Step Synthesis of Hierarchical Zeolite Beta via Network Formation of Uniform Nanocrystals[J]. J. Am. Chem. Soc.,2011, 133(14):5284-5295.
    [181]Sun K, Fan F, Xia H, et al. Framework Fe Ions in Fe-ZSM-5 Zeolite Studied by UV Resonance Raman Spectroscopy and Density Functional Theory Calculations [J]. J Phys Chem C,2008,112(41):16036-16041.
    [182]Mathieu M, Van Der Voort P, Weckhuysen B M, et al. Vanadium-Incorporated MCM-48 Materials:Optimization of the Synthesis Procedure and an in Situ Spectroscopic Study of the Vanadium Species[J]. J Phys Chem B,2001,105(17): 3393-3399.
    [183]Bandyopadhyay R, Ahedi R K, Kubota Y, et al. Synthesis of high-silica Al-SSZ-31 by a steam-assisted conversion method and its catalytic performance in the isopropylation of biphenyl[J]. J. Mater. Chem.,2001,11(7):1869-1874.
    [184]Bhaumik A, Tatsumi T. Pure silica NU-1 and Na- and Al-free Ti-NU-1 synthesized by the dry gel conversion method[J]. Micropor. Mesopor. Mater.,2000.34(1):1-7.
    [185]Millini R, Previde Massara E. Perego G. et al. Framework composition of titanium silicalite-1[J]. J. Catal.,1992,137(2):497-503.
    [186]Perez-Pariente J. A. Martens J, A. Jacobs P. Crystallization mechanism of zeolite beta from (TEA)2O, Na2O and K2O containing aluminosilicate gels[J]. Appl. Catal.,1987, 31(1):35-64.
    [187]Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:History and Development from the Earliest Days to the Present Time[J]. Chem. Rev.,2003,103(3): 663-702.
    [188]Kasunic M. Legisa J, Meden A, et al. Crystal structure of pure-silica ZSM-12 with tetraethylammonium cations from X-ray powder diffraction data[J]. Micropor. Mesopor. Mater..2009,122(1-3):255-263.
    [189]van Grieken R, Martos C,Sanchez-Sanchez M,et al. Synthesis of Sn-silicalite from hydrothermal conversion of SiO2-SnO2 xerogels[J]. Micropor. Mesopor. Mater.,2009. 119(1-3):176-185.
    [190]Uguina M A. Serrano D P. Ovejero G. et al. Preparation of TS-1 by wetness impregnation of amorphous SiO2—TiO2 solids:influence of the synthesis variables [J]. Appl. Catal.,1995,124(2):391-408.
    [191]Bandyopadhyay R, Kubota Y, Sugimoto N, et al. Synthesis of borosilicate zeolites by the dry gel conversion method and their characterization[J]. Micropor. Mesopor. Mater.. 1999,32(1-2):81-91.
    [192]Wu P, Miyaji T, Liu Y, et al. Synthesis of Ti-MWW by a dry-gel conversion method[J]. Catal Today,2005,99(1-2):233-240.
    [193]Shah P, Ramaswamy V. Thermal stability of mesoporous SB A-15 and Sn-SBA-15 molecular sieves:An in situ HTXRD study[J]. Micropor. Mesopor. Mater.,2008, 114(1-3):270-280.
    [194]Boronat M, Corma A, Renz M, et al. A Multisite Molecular Mechanism for Baeyer-Villiger Oxidations on Solid Catalysts Using Environmentally Friendly H2O2 as Oxidant[J]. Chem. Eur. J.,2005,11(23):6905-6915.
    [195]Huybrechts D R C, Buskens P L,Jacobs P A. Physicochemical and catalytic properties of titanium silicalites[J]. J. Mol. Catal.,1992.71(1):129-147.
    [196]Zhou J. Hua Z, Zhao J. et al. A micro/mesoporous aluminosilicate:key factors affecting framework crystallization during steam-assisted synthesis and its catalytic property[J]. J. Mater. Chem.,2010,20(32):6764-6771.
    [197]Matsukata M, Ogura M. Osaki T,et al. Conversion of dry gel to microporous crystals in gas phase[J]. Top Catal.1999,9(1-2):77-92.
    [198]Thoma S G, Nenoff T M. Vapor phase transport synthesis of zeolites from sol-gel precursors [J]. Micropor. Mesopor. Mater.,2000,41(1-3):295-305.
    [199]Kim M-H, Li H-X. Davis M E. Synthesis of zeolites by water-organic vapor-phase transport[J]. Micropor. Mater.,1993,1(3):191-200.
    [200]Zhang L. R. Gavalas G. Vapor-phase transport synthesis of ZnAPO-34 molecular sieve[J]. Chem. Commun.,1999,1):97-98.
    [201]Bandyopadhyay M, Bandyopadhyay R, Kubota Y, et al. Synthesis of AlPO4-5 and AlPO4-11 Molecular Sieves by Dry-Gel Conversion Method[J]. Catal. Lett,2000,29(9): 1024-1025.
    [202]Tatsumi T. Jappar N. Properties of Ti-beta zeolites synthesized by dry-gel conversion and hydrothermal methods[J]. J Phys Chem B,1998.102(37):7126-7131.
    [203]Inagaki S. Nakatsuyama K, Kikuchi E, et al. Effect of Steam on the Steam-Assisted Crystallization of *BEA-Type Zeolite[J]. Bull. Chem. Soc. Jpn.,2010,83(1):69-74.
    [204]Sano T. Kiyozumi Y, Mizukami F, et al. Steaming of ZSM-5 zeolite film[J]. Zeolites. 1992,12(2):131-134.
    [205]Zaidi S S A, Rohani S. Progress towards a dry process for the synthesis of zeolite-A review[J]. Rev.Chem. Eng.,2005,21(5):265-306.
    [206]Alfaro S, Valenzuela M A. Bosch P. Synthesis of silicalite-1 by dry-gel conversion method:factors affecting its crystal size and morphology [J]. J. Porous Mater.,2009, 16(3):337-342.
    [207]杨娜,岳明波,王一萌.干胶法合成分子筛[J].化学进展,2012,(24):253-261.
    [208]Jappar N. Xia Q H, Tatsumi T. Oxidation activity of Ti-beta synthesized by a dry-gel conversion method[J]. J. Catal.,1998.180(2):132-141.
    [209]Xia Q H. Tatsumi T. Crystallization kinetics of nanosized Tip zeolites with high oxidation activity by a dry-gel conversion technique[J]. Mater. Chem. Phys.,2005.89(1): 89-98.
    [210]Ramaswamy V. Shah P. Lazar K, et al. Synthesis, Characterization and Catalytic Activity of Sn-SBA-15 Mesoporous Molecular Sieves[J]. Catal Surv Asia,2008,12(4): 283-309.
    [211]Hanggi P, Borkovec M. Reaction-rate theory:fifty years after Kramers[J]. Rev Mod Phys,1990,62(2):251-341.
    [212]Cavani F, Raabova K, Bigi F, et al. A Rationale of the Baeyer-Villiger Oxidation of Cyclohexanone to ε-Caprolactone with Hydrogen Peroxide:Unprecedented Evidence for a Radical Mechanism Controlling Reactivity[J]. Chem. Eur. J.,2010,16(43): 12962-12969.
    [213]Bryce M R. Recent progress on conducting organic charge-transfer salts[J]. Chem. Soc. Rev.,1991,20(3):355-390.
    [214]Corma A. Iborra S, Velty A. Chemical Routes for the Transformation of Biomass into Chemicals[J]. Chem. Rev.,2007,107(6):2411-2502.
    [215]Avelino Corma M T N, Laszlo Nemeth Michael Renz. Sn-MCM-41-a heterogeneous selective catalyst for the Baeyer-Villiger oxidation with hydrogen peroxide[J]. Chem. Commun.,2001.2190-2191.
    [216]Chu N. Yang J, Li C, et al. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization[J]. Micropor. Mesopor. Mater. 2009,118(1-3):169-175.
    [217]Wang H. Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores[J]. Angew. Chem. Int. Ed.,2006,45(45):7603-7606.
    [218]Ivanova,Ⅱ, Kuznetsov A S, Yuschenko V V, et al. Design of composite micro/mesoporous molecular sieve catalysts[J]. Pure Appl. Chem.,2004,76(9): 1647-1658.
    [219]Choi M. Srivastava R. Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks [J]. Chem. Commun.,2006.42):4380-4382.
    [220]Lopez-Orozco S, Inayat A, Schwab A, et al. Zeolitic Materials with Hierarchical Porous Structures [J]. Adv. Mater.,2011,23(22-23):2602-2615.
    [221]Mal N K, Bhaumik A. Ramaswamy V, et al., Synthesis of Al-free Sn-containing molecular sieves of MFI. MEL and MTWtypes and their catalytic activity in oxidation reactions[J]. Stud. Surf.Sci. Catal.,1995:44(94):317-324.
    [222]Guisnet M. Magnoux P. Coking and deactivation of zeolites[J]. Appl. Catal.,1989, 54(1):1-27.
    [223]Choi M. Na K. Kim J. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature,2009,461(7261):246-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700