用户名: 密码: 验证码:
滚珠型弧面分度凸轮机构的动力学分析及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间分度凸轮机构作为实现“连续输入-间歇输出”功能的关键组件,广泛应用于各种自动机械、生产线和加工中心中。根据点啮合化处理技术,本文在球面包络弧面分度凸轮机构的基础上提出了滚珠型弧面分度凸轮机构,并围绕此机构展开了几何特性、静力学、运动学及动力学方面的研究。本文的主要研究内容如下:
     提出滚珠型弧面分度凸轮机构,对机构的几何特性进行了分析。在球面包络弧面分度凸轮机构的基础上,对凸轮廓面滚道及分度盘球座进行改进设计,分析滚珠型弧面分度凸轮机构的结构特点。利用回转变换张量法及空间啮合原理推导双圆弧滚道弧面凸轮的廓面方程;计算双圆弧滚道弧面凸轮的压力角,并对机构中心距、分度盘回转半径以及分度盘凸轮角速度比值对压力角的影响进行分析,提出了降低压力角的措施;给出螺旋升角的计算公式,并分析了凸轮廓面的曲率,得到了凸轮廓面与滚珠曲面在啮合点处的诱导主曲率。几何特性分析是机构其它方面分析研究的基础,并为结构设计提供了依据。
     对滚珠型弧面分度凸轮机构中的滚珠运动及机构静力学进行了研究。滚珠型弧面分度凸轮机构的滚珠能够沿任意方向转动,滚珠的转动对润滑性能影响很大。对滚珠运动分析得到滚珠与凸轮啮合点处相对滑动速度及其在各坐标轴上的分速度随分度盘转角变化的曲线,并对滚珠的回转运动进行了分析。在滚珠运动分析的基础上对机构进行受力分析,分别得到滚珠、分度盘及凸轮的受力状况。分析滚珠与凸轮啮合时的接触特性,对接触应力进行计算,得到结构参数对接触特性的影响,为改善接触特性提供了依据。对机构建立三维模型并进行运动仿真,验证模型建立的正确性。
     对滚珠型弧面分度凸轮机构的动力学进行了研究。为了得到高速高精度的弧面分度凸轮机构必须研究机构的动力学特性。论文主要采用集中质量法对滚珠型弧面分度凸轮机构进行动力学分析。首先建立机构扭转动力学模型,建立了凸轮与分度盘之间的等效接触刚度,分析广义坐标微小变动量间的几何位移关系,应用拉格朗日方程建立扭转动力学方程。在扭转动力学模型的基础上,进一步考虑输入输出轴的横向振动及轴向振动,得到机构更为精细的动力学模型,并建立其动力学方程。求解动力学方程得到机构多阶固有频率、低阶振型及机构的速度、加速度响应。分析了凸轮轴与分度盘的扭转变形以及刚度变化对动力学特性的影响。
     考虑电机因素,以永磁同步电机为驱动电机,对整个系统进行了动力学分析。建立系统机电耦合动力学模型,通过系统力学方程和电压方程得到机电耦合动力学方程。对机电耦合动力学方程进行求解,得到电机转速、电流以及分度盘与载荷盘的加速度变化曲线,并且得到了电机转速及负载变化对机电耦合振动特性的影响。机电耦合动力学模型的分析揭示了电机与机构动力学特性间的相互联系。引入控制算法后得到系统动力学响应,首先加入PI控制,得到分度盘和载荷盘的加速度曲线,系统动态特性得到改善。通过Simulink分别对PI控制及模糊PI控制下的机电耦合动力学模型进行仿真,得到了电机速度、电流及载荷盘的加速度曲线,仿真结果与理论结果变化趋势一致。通过不同控制算法下的结果对比,发现模糊PI控制下的机构动态性能更好。
     对滚珠型弧面分度凸轮机构进行动力学响应实验研究。首先介绍滚珠型弧面分度凸轮机构结构的主要几何参数,然后对机构进行了固有频率和动态特性测试实验,得到不同输入转速下载荷盘的加速度响应和机构在不同啮合位置时的固有频率,为修正动力学模型及验证理论计算结果提供了实验数据。
     本文的工作为滚珠型弧面分度凸轮机构的进一步研究奠定了基础,并为其它点接触弧面分度凸轮机构提供了借鉴,有助于实现弧面分度凸轮机构的高质量运行。
Spatial indexing cam mechanism is widely used in automatic machines, production lines and machining centers as the key component to realize the function from continuous input to intermittent output. According to point engagement processing technology, based on spherical envelope indexing cam mechanism this paper puts forward globoidal indexing cam mechanism with steel ball and makes research on geometric features, statics, kinematics and dynamics. Main tasks are as follows:
     Globoidal indexing cam mechanism with steel ball was proposed, and structural characteristics of the mechanism were analyzed. Cam profile raceway and indexing plate ball seat were modified based on spherical envelope indexing cam mechanism, and the structural characteristics of globoidal indexing cam mechanism with steel ball were analyzed. Profile equation of globoidal cam with double-circular-arc raceway was derived based on the rotation tensor transformation method and the spatial engagement principle. Pressure angle of globoidal cam was calculated; analysis of influences on pressure angles exerted by the center distance of mechanism, the radius of gyration of the indexing plate and the angular velocity ratio between cam and indexing plate was made; measures as to how to reduce pressure angles were come up with; the calculation formula of helix angle was given and the curvature of cam surface was analyzed, and then the induced main curvature at engaging point between cam profile and ball surface could be obtained. Geometric characteristic was the foundation of mechanism analysis, which could provide basis for structural design.
     Ball motion of globoidal indexing cam mechanism and mechanism statics were studied. Steel ball in globoidal indexing cam mechanism could rotate in any direction, and the rotation of steel ball had great influence on lubrication performance. Through analysis on the movement of steel ball can relative sliding velocity at engaging point between steel ball and cam and the curve of component velocity of steel ball with the rotation angle in each coordinate axis were obtained, and the redundant rotary motion of steel ball was also researched. Based on the analysis of steel ball motion to analyze the force of mechanism could get the force of cam, indexing plate and ball respectively. Analysis of the contact characteristics between cam and steel ball at the engaging point was carried out. contact stress was calculated, and the influence of structure parameters on contact characteristics was analyzed which could be improved by the conclusions. Based of three-dimensional model of the mechanism kinematics simulation was conducted, and simulation results could provide proof of accuracy of the model.
     Dynamics of globoidal indexing cam mechanism with steel ball was studied. To get the globoidal indexing cam mechanism with high speed and high accuracy, dynamic characteristics of mechanism must be researched. This dissertation mainly used lumped mass method to analyze the dynamic characteristics of the mechanism. Torsional dynamic model of the mechanism was firstly established, equivalent contact stiffness between cam and indexing plate was built, geometric displacement relation of minimal variation quantity of generalized coordinates was analyzed, and finally the torsional dynamic equation was established by using Lagrange equation. Based on torsional dynamic model, a more precise dynamic model of the mechanism can be obtained with further consideration of transverse and axial vibration of the input and output shaft, then the dynamic equations were established. Through solving the dynamic equation multiple natural frequencies, low-order vibration mode and velocity and acceleration response of mechanism were obtained. Torsional deformation of cam shaft and indexing plate and the influence of stiffness change on dynamic characteristics were analyzed.
     Motor factors considered, taking the permanent magnet synchronous motor as driving motor, dynamic analysis of the whole system was analyzed. Electromechanical coupling dynamic model of system was established. Through establishment of mechanics equations and voltage equations of system electromechanical coupling dynamic equations were obtained. Through solving the electromechanical coupling dynamic equations motor speed, current, and acceleration curve of indexing plate and load plate were obtained, and the influence of motor speed and load change on electromechanical coupling vibration characteristic was also obtained. Analysis on electromechanical coupling dynamic model can reveal the relationship between motor characteristic and dynamic characteristic of mechanism. By introducing PI control acceleration curves of indexing plate and load plate of the system were reached, and the dynamic characteristic of the system could be improved. Based on Simulink simulations of electromechanical coupling dynamic model based on PI control and fuzzy PI control respectively motor speed, current and the acceleration curve load plate were obtained, and the simulation results and the theoretical results were consistent. Results contrast of different control algorithms proved that the dynamic performance under fuzzy PI control was better.
     Experimental research of dynamic response of globoidal indexing cam mechanism with steel ball was conducted. Main geometric parameters of globoidal indexing cam mechanism with steel ball were introduced; test experiments of natural frequency and dynamic characteristics of mechanism were conducted to obtain both the acceleration response of load plate at different input speed and the natural frequency of mechanism at different engaging positions, which provided experimental data for modifying dynamic model and verifying the theoretical results.
     The present study lays foundations for further research on globoidal indexing cam mechanism with steel ball, and provides reference for point engagement globoidal indexing cam mechanism. The research in this dissertation is helpful to realizing a high-quality performance of globoidal indexing cam mechanism.
引文
[1]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社,1990.
    [2]牧野洋(日).自动机械机构学[M].北京:科学出版社,1980.
    [3]石永刚,徐振华.凸轮机构设计[M].上海:上海科学技术出版社,1995.
    [4]于云满,张敏,张义选.精密间歇机构[M].北京:机械工业出版社,1999.
    [5]邹慧君,董师予.凸轮机构的现代设计[M].上海:上海交通大学出版社,1991.
    [6]伏尔默.凸轮机构[M].北京:机械工业出版社,1981.
    [7]刘昌祺,牧野洋,曹西京.凸轮机构设计[M].北京:机械工业出版社,2005.
    [8]贺炜,曹巨江,杨芙莲.我国凸轮机构研究的回顾与展望[J].机械工程学报,2005,41(6):1-6.
    [9]葛荣雨.基于NURBS的空间分度凸轮廓面创成与品质评价技术研究[D].济南:山东大学,博士学位论文,2008.
    [10]张阁,邹慧君,姚燕安.电子凸轮的概念和设计[J].机械设计与研究,2000(增):88-91.
    [11]王程,贺炜.基于单片机的电子凸轮系统研究[J].机械设计与制造,2006(11):4-6.
    [12]姜明.数控凸轮[J].无锡轻工大学学报,1999,18(4):21-24.
    [13]王富东.数字化凸轮及其实现[J].机械设计,2003,20(4):31-33.
    [14]Mike, Woelfel. Introduction to Electronic Cam[J]. Assembly Automation,1999,19(1):17-24.
    [15]L Langlauf. Using Electronic Cams for Motion Control[J]. Power Transmission Design, 1996(6):39-41.
    [16]黄义萍,魏军会.电子凸轮及其在自动化生产中的应用.淮北煤师院学报[J].2001,22(1):46-49.
    [17]王其超.点接触式高速弧面分度凸轮机构的设计[J].大连轻工业学院学报,1992,11(3):85-89.
    [18]曹巨江.可预控点啮合弹性弧面凸轮机构的研究[D].西安:西安理工大学,博士学位论文,2010.
    [19]管荣法,汤从心.凸轮与凸轮机构基础[M].北京:国防工业出版社,1985.
    [20]陶学恒.包络蜗杆分度凸轮机构理论与技术研究[D].大连:大连理工大学,博士学位论文,1997.
    [21]苗苗.双半球形滚子齿式弧面凸轮分度机构动态特性分析[D].大连:大连轻工业学院,硕士学位论文,2006.
    [22]张高峰,杨世平,陈华章,等.弧面分度凸轮机构的研究与展望[J].机械传动,2003,27(3):1-5.
    [23]贺炜,刘言松,王涛,等.弧面分度凸轮机构研究的回顾与展望[J].轻工机械,2003(4):7-10.
    [24]陶学恒,刘健,肖正扬,等.包络蜗杆分度凸轮机构的啮合原理及分析[J].大连理工大学学报,1999,39(5):662-666.
    [25]陶学恒,肖正扬,王其超,等.新型平面包络蜗杆式分度凸轮机构的原理与分析[J].机械科学与技术,2001,20(2):174-176.
    [26]陶学恒,刘健.圆柱形廓面包络蜗杆分度凸轮机构的啮合特征分析与设计[J].机械传动,1999,23(2):19-21,37.
    [27]王其超,陶学恒.新型球面包络蜗杆分度凸轮机构的研究[J].机械科学与技术.1999.18(2):252-254.
    [28]曹西京,杨芙莲,曹巨江.一种全新型弧面球包络凸轮分度机构的研究[J].机械设计与研究,2003,19(1):36-38.
    [29]王其超,马丽敏,肖正扬.新型点啮合式弧面分度凸轮机构的设计与制造[J].机械科学与技术,1996,15(2):203-206.
    [30]陶学恒,王其超,肖正扬.点啮合弧面分度凸轮机构装置性能的实验研究[J].机械科学与技术,1997,16(2):315-318.
    [31]陶学恒,王其超,肖正扬,等.点啮合弧面凸轮分度机构的啮合理论及分析[J].机械科学与技术,1996,(15)4:556-560.
    [32]仵大伟,王其超.具有滚动齿的锥面包络蜗杆分度凸轮机构[J].机械科学与技术,2000,19(6):938-940.
    [33]赵雪妮,张文林,曹巨江.球锥滚子弧面分度凸轮机构及其可控点啮合的实现[J].机械设计,2002,19(7):15-17.
    [34]曹巨江,徐光中,王茜.空间凸轮机构滚子从动件研究[J].机械科学与技术,2006,25(10):1238-1240.
    [35]W O Harris. Paralled Shaft Drive and Indexing Machine:United States, US5176036A[P]. 1993-01-05.
    [36]张策,杨玉虎,叶青,等.平面行星分度凸轮机构[J].机械科学与技术,1996,15(6):871-873.
    [37]刘明涛,张策,杨玉虎.新型行星分度凸轮机构的原理及廓线[J].机械工程学报,2006,42(2):18-21.
    [38]张策,刘明涛,杨玉虎.新型行星分度凸轮廓线设计及仿真[J].天津大学学报,2006,39(1):100-103.
    [39]刘明涛,张策,杨玉虎.行星分度凸轮机构瞬心线的研究[J].中国机械工程,2005,16(19):1766-1768.
    [40]沈煜,杨玉虎,张大卫,等.新型活齿分度凸轮机构的原理及动态静力分析[J].天津大学学报,2008,41(8):972-977.
    [41]沈煜.活齿分度凸轮机构的创新设计与研究[D].天津:天津大学,博士学位论文,2008.
    [42]G K Chang. Design of Servo Control System by Integral Variable Structure Model Following Control with Application to Roller Gear Cam and Power System[D]. Taiwan:National Sun Yat-sen University,2001.
    [43]葛正浩,冯涛,彭国勋.可以任意增加局部控制条件的凸轮机构通用多项式运动规律[J].机械科学与技术,1998,17(6):986-987.
    [44]J Angeles. Synthesis of Plane Curves with Prescribed Local Geometric Properties Using Periodic Splines[J]. Computer Aided Design,1983,15(3):147-155.
    [45]D M Tsay, C O Huey. Cam Motion Synthesis Using Spline Functions[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1988,110(2):161-165.
    [46]D M Tsay, C O Huey. Spline Functions Applied to the Synthesis and Analysis of Nonrigid Cam-follower Systems[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1989,111(12):561-569.
    [47]E Sandgren, R L West. Shape Optimization of Cam Profiles Using a B-spline Representation [J]. Journal of Mechanisms, Transmissions and Automation in Design,1989,111(6):195-201.
    [48]K Yoon, S S Rao. Cam Motion Synthesis Using Cubic Splines[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1993,115(9):441-446.
    [49]M Neamtu, H Pottmann, L L Schumaker. Designing NURBS Cam Profiles Using Trigonometric Splines[J]. Journal of Mechanical Design,1998,120(6):175-180.
    [50]D M Tsay, G S Hwang. The Synthesis of Follower Motions of Camoids Using Nonparametric B-splines[J]. Journal of Mechanical Design,1996,118(1):138-143.
    [51]D M Tsay, B J Lin. Improving the Geometry Design of Cylindrical Cams Using Nonparametric Rational B-splines[J], Computer Aided Design,1996,28(1):5-15.
    [52]D M Tsay, C O Huey. Application of Rational B-splines to the Synthesis of Cam-follower Motion Programs[J]. Journal of Mechanical Design,1993,115(4):621-626.
    [53]S P Mermelstein, M Acar. Optimising Cam Motion Using Piecewise Polynomials[J]. Engineering with Computers,2003,19(4):241-254.
    [54]M Chew, C H Chuang. Minimizing Residual Vibrations in High-Speed Cam-follower Systems Over a Range of Speeds[J]. ASME Journal of Mechanical Design,1995,117(1):166-172.
    [55]J Lampine. Cam Shape Optimisation by Genetic Algorithm[J]. Computer Aided Design,2003, 35(8):727-737.
    [56]V T Nguyen, D J Kim. Flexible Cam Profile Synthesis Method Using Smoothing Spline Curves[J]. Mechanism and Machine Theory,2007,42(7):825-838.
    [57]S Acharyya, T K Naskar. Fractional Polynomial Mod Traps for Optimization of Jerk and Hertzian Contact Stress in Cam Surface[J]. Computers & Structures,2008,86(3-5):322-329.
    [58]H Qiu, C J Lin, Z Y Li, et al. A Universal Optimal Approach to Cam Curve Design and Its Applications[J]. Mechanism and Machine Theory,2005,40(6):669-692.
    [59]陈志新.共轭曲面原理基础[M].北京:科学出版社,1985.
    [60]冯德坤,马香峰.包络原理及其在机械方面的应用[M].北京:冶金工业出版社,1994.
    [61]赵韩,丁爵曾,梁锦化.凸轮机构设计[M].北京:高等教育出版社,1993.
    [62]H S Yan, W T Cheng. Curvature Analysis of Spatial Cam-follower Mechanisms[J]. Mechanism and Machine Theory,1999,34(2):319-339.
    [63]H S Yan, H H Chen. Geometry Design of Globoidal Cams with Generalized Meshing Turret-Rollers[J]. Journal of Mechanical Design,1996,118(2):243-249.
    [64]H S Yan, H H Chen. Geometry Design of Roller Gear Cams with Hyperboloid Rollers[J]. International Journal of Mathematical and Computer Modeling,1995,22(8):107-117.
    [65]J S Lo, C H Tseng. A Study on the Bearing Contact of Roller Gear Cams[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(35):4649-4662.
    [66]杨方.弧面凸轮分度机构啮合理论分析[J].大连轻工业学院学报,1995,(3):46-52.
    [67]葛荣雨,冯显英,褚良敏,等.圆锥滚子摆动从动件圆锥凸轮机构的廓面构建[J].机械设计,2006,23(6):35-37.
    [68]常宗瑜,张策,杨玉虎.用包络理论生成空间分度凸轮的啮合曲面[J].机械设计,2000,17(2):10-11.
    [69]葛正浩,蔡小霞,王月华,等.应用包络面理论建立弧面凸轮廓面方程[J].机械设计,2004,21(2):27-29.
    [70]李俭,殷国富.圆锥滚子直动从动件圆锥凸轮机构廓面方程的解析方法[J].机械设计,2003,20(11):13-15.
    [71]D M Tsay, H M Wei. Design and Machining of Cylindrical Cams with Translating Conical Followers[J]. Computer Aided Design,1993,25(10):655-661.
    [72]D M Tsay, G S Hwang. Application of the Theory of Envelope to the Determination of Camoid Profiles with Translating Followers[J]. Journal of Mechanical Design,1994,116(1):320-325.
    [73]D M Tsay, H M Wei. A General Approach to the Determination of Planar and Spatial Cam Profiles[J]. Journal of Mechanical Design,1996,118(1):259-265.
    [74]D M Tsay, H C Ho. Consideration of Manufacturing Parameters in the Design of Grooved Globoidal Cam Indexing Mechanisms[J]. Journal of Mechanical Engineering Science,2001, 215(1):95-103.
    [75]何有钧,邹慧君,郭为忠,等.圆柱滚子从动件凸轮廓面的等距曲面自动综合[J].机械设计,2000,17(5):32-34.
    [76]徐瑞霞,黄克正,李新强.针对空间凸轮工作廓面的间接建模方法[J].机械设计,2006,23(2):48-50.
    [77]郭为忠,邹慧君.共轭曲面自适应综合的离散解析原理[J].机械工程学报,1999,35(4):11-14.
    [78]郭为忠,邹慧君,王石刚.共轭曲面自适应分析的离散解析原理[J].机械工程学报,2000,36(2):36-39.
    [79]郭为忠,王石刚,邹慧君,等.凸轮CAD/CAM中廓面自适应生成的共扼曲面离散解析原理[J].机械设计与研究,1998,14(S1):79-80,76.
    [80]郭为忠,邹慧君,王石刚,等.凸轮廓面特性自适应分析的共轭曲面离散解析原理[J].机械设计与研究,1999,15(1):40-42.
    [81]杨玮,曹巨江.复杂弧面凸轮曲率和应力分析及其CAD[J].机械设计与制造工程,2002,31(2):11-13.
    [82]方代正,张淳,曹西京.钢球滚子弧面凸轮分度机构的设计与压力角计算[J].机械科学与技术,2003,22(增刊):154-156.
    [83]刘明,丁江民.弧面分度凸轮压力角计算及滚子运动分析[J].机械传动,2008,32(6):104-106.
    [84]F D Furman. Cams-elementary and Advanced[M]. New York:John Wiley&Sons Inc,1921.
    [85]J A Hrones. Analysis of Dynamic Forces in a Cam-driven System[J]. Trans. ASME,1948, (70): 473-482.
    [86]D B Mitchell. Test on Dynamic Respones of Cam Follower Systems[J]. Mechanical Engineering,1950, (72):467-471.
    [87]D A Stoddart. Polydyne Cam Design[J]. Machine Design,1953,25(1):121-135; 1953,25(2): 146-154; 1953,25(3):149-164.
    [88]D Tesar, G K Matthew. The Dynamic Synthesis, Analysis, and Design of Modeled Cam Systems[M]. Lexington, Massachusetts:Lexington Books,1976.
    [89]M P Koster. Vibrations of Cam Mechanisms[M]. London:Mecmillan Press,1974.
    [90]C N Neklutin. Mechanisms and Cams for Automatic Machines[M]. New York:American Elsevier,1969.
    [91]J Rees, Jones. Cams and Cam Mechanisms[M]. London:Mechanical Engineering Publications Ltd for the Institution of Mechanical Engineers,1978.
    [92]F Y Chen. Mechanical and Design of Cam Mechanisms[M]. New York:Pergamon Press Inc, 1982.
    [93]郭连声,柴邦衡.凸轮机构[M].北京:机械工业出版社,1981.
    [94]邹慧君.凸轮机构的现代设计[M].上海:上海交通大学出版社,1991.
    [95]R G Forsythe. Generation and Use of Orthogonal Polynomials for Data-fitting with a Digital Computer[J]. Journal of the Society for Industrial and Applied Mathematics,1957.5(2):74-88.
    [96]T Weber. Cam Dynamics via Filter Theory[J]. Machine Design,1960,32(21):160-165.
    [97]S Gutman. To Avoid Vibration-try This New Cam Profile[J]. Production Engineering,1961, 32(44):42-48.
    [98]F Freudenstein. On the Dynamics of High-speed Cam Profiles[J]. International Journal of Mechanical Sciences,1960 (1):342-349.
    [99]C N Neklutin. Tring-type Cam Profiles[J]. Journal of Mechanical Design,1959, (10):175-187.
    [100]M Choubey, A C Rao. Optimum Sensitivity Synthesis of a Cam System Incorporating Manufacturing Tolerances[J]. ASME,1980:31-80.
    [101]肖正扬,杨洋,刘晓云.自动机械凸轮从动件简谐梯形通用运动曲线运动学优化[J].轻工业学院学报,1985,(2):20-30.
    [102]张策,杨玉虎.跃度连续的通用简谐梯形组合凸轮曲线[J].大连轻工业学院学报,1995,14(3):8-15.
    [103]杨玉虎,姚燕安.跃度连续的通用简谐梯形运动规律的参数优化[J].大连轻工业学院学报,1995,14(3):42-45.
    [104]刘言松,贺炜.弧面分度凸轮机构动力学仿真[J].现代制造工程,2006(1):118-119.
    [105]G K Matthew. The Modified Polynomial Specification for Cam[C]. Proceedings of the 5th World Congress on Theory of Machine and Mechanisms,1979:1299-1302.
    [106]H Kwakemaak, J Smit. Minimum Vibration Cam Profile[J]. Journal of Mechanical Engineering Science,1968(10):219-227.
    [107]孔午光,杨华明,王晶,等.低速大质量凸轮从动件系统的动力学问题[J].西安交通大学学报,1990,24(4):171-176.
    [108]于强,孔午光.高速机构运动规律的主动设计[J].机械传动,1993,17(4):1-4.
    [109]孔午光,孙剑,王晶,等.用卷积滤波法设计高速凸轮曲线[J].西安交通大学学报,1993,25(1):71-80.
    [110]M P Koser. Effect of Flexibility of Driving Shaft on the Dynamic Behavior of a Cam Mechanism[J]. ASME,1975,97b(2):595-602.
    [111]D D Ardayfio. Kinetothermoelasto Dynamic Systhesis of Cam Profiles[J]. Mechanisms and Machine Theory,1980,15(1):1-4.
    [112]R C Winfrey. Elasic Link Mechanism Dynamics[J]. Trans. ASME, Journal of Engineering for Industry,1971,93B:268-272.
    [113]邹慧君,张毅.凸轮机构考虑间隙时的动力响应的研究[J].上海交通大学学报,1992,26(1):22-127.
    [114]H R Kim, W R Newcombe. The Effect of Cam Profile Errors And System Flexibility on Cam Mechanism Output[J]. Trans. ASME, Mechanisms and Machine Theory,1982,17(1):57.
    [115]A Cardona, M Geradin. Time Integration of The Equation of Motion in Mechanism Anaslysis[J]. Computers & Structures,1989,33:802-820.
    [116]A Cardona, M Geradin. Rigid And Flexible Joint Modelling in Multibody Dynamics Using Finite Elements[J]. Computer Methods in Applied Mechanics and Engineering,1991,89: 395-418.
    [117]A Cardona, M Geradin. A Supereleent Formulation for Mechanism Analysis[J]. Computer Methods in Applied Mechanics and Engineering,1992,100:1-29.
    [118]蔡正敏,刘华.弧面分度凸轮机构的动力学分析[J].机械传动,1999,23(1):2-5.
    [119]吴义忠,李广安.弧面分度凸轮机构动力学特性的研究[J].机械设计,1998,15(8):12-14.
    [120]杨玉虎.高速凸轮分度传动系统动力学理论与实验研究[D].天津:天津大学,博士学位论文,1999.
    [121]贺炜,彭国勋,胡亚平,等.弧面分度凸轮机构传动系统非线性动力学特性研究[J].机械工程学报,2000,36(11):33-38.
    [122]贺炜,祁广利,胡亚平.关于弧面凸轮分度机构装置动态性能的实验研究[J].现代机械,2000(3):30-33.
    [123]贺炜,祁广利,张剑锋,等.弧面分度凸轮机构传动系统动态响应的实验研究[J].西北轻工业学院学报,1998,16(3):1-7.
    [124]刘常春,金作成.空间分度凸轮机构动态测试速度及其误差研究[J].农业机械学报,1994,25(S1):28-31.
    [125]代洁.空间弧面分度凸轮机构机电耦合动力学特性研究[D].济南:山东大学,硕士学位论文,2002.
    [126]王新文.弧面分度凸轮机构机电系统动力学模型研究[D].济南:山东大学,硕士学位论文,2001.
    [127]郭培全.分度凸轮虚拟切削加工系统研究[D].济南:山东大学,博士学位论文,2004.
    [128]肖正杨,熊第霖,凸轮机构动力学前沿的若干问题[J].机械科学与技术,1994,13(4):59-64.
    [129]常宗瑜,张策,杨玉虎.运用凯恩方程建立弧面分度凸轮机构的动力学模型[J].机械工程学报,2001,37(3):34-40.
    [130]常宗瑜.含间隙弧面分度凸轮机构的动力学研究[D].天津:天津大学,博士学位论文,2000.
    [131]常宗瑜,张策,杨玉虎,等.含间隙弧面分度凸轮机构动力学的实验研究[J].机械强度,2006,28(2):173-177.
    [132]钟掘,陈先霖.复杂机电系统耦合与解耦设计-现代机电系统设计理论的探讨[J].中国机械工程,1999,10(9):1051-1054.
    [133]鞠立华.飞轮储能系统机电耦合非线性动力学研究[D].南京:东南大学,硕士学位论文,2005.
    [134]王湘.递纸机构的机电耦合动态分析与研究[J].轻工机械,2008,26(4):42-45.
    [135]贺建军.复杂机电系统机电耦合分析与解耦控制技术[D].长沙:中南大学,博士学位论文,2004.
    [136]孟杰,陈小安,合烨.高速电主轴电动机-主轴系统的机电耦合动力学建模[J].机械工程学报,2007,43(12):160-165.
    [137]姚延风,刘强,吴文镜.基于刚柔一机电藕合的机床直线电机进给系统动态性能仿真研究[J].振动与冲击,2011,30(1):191-196.
    [138]林利红,陈小安,周伟,等.永磁交流伺服精密驱动系统机电耦合振动特性分析[J].振动与冲击,2010,29(4):48-53.
    [139]王其超.滚动式回转面包络点啮合环面蜗杆传动理论与技术的研究[D].大连:大连理工大学,博士学位论文,2001.
    [140]常治斌,龚青山,何小龙.基于Pro/ENGINEER的空间弧面分度凸轮3D建模与数控加工仿真[J].制造业自动化,2009,31(2):63-67.
    [141]胡新蕾.基于UG的弧面分度凸轮机构的参数化设计及仿真分析[D].青岛:青岛大学,硕士学位论文,2009.
    [142]方代正.基于Pro/E的弧面凸轮分度机构建模研究[J].机床与液压,2006,(6):227-228.
    [143]刘言松,贺炜,唐学飞,等.弧面分度凸轮三维实体模型的建立[J].组合机床与自动化加工技术,2004,(6):36-37.
    [144]梁延德,宋丽娟.弧面分度凸轮的三维建模[J].机械设计与制造,2006,(8):142-143.
    [145]丛明,刘静,李全普.复杂弧面分度凸轮精确建模的新方法[J].中国机械工程,2009,20(6):669-673.
    [146]张慧,赵晓峰,黄海波.弧面分度凸轮的模型构造方法研究[J].机械传动,2002,26(3):18-20.
    [147]张玲爱,张跃明,杨延峰.基于Pro/E的弧面分度凸轮的三维设计[J].机械设计,2005,22(7):23-25.
    [148]罗仁芝,胡自化.连续分度弧面凸轮的三维实体造型方法研究[J].机械设计与制造,2007,(12):174-176.
    [149]曹西京,曹巨江,孙军艳.复杂弧面凸轮的可视化设计[J].轻工机械,2005,23(3):59-62.
    [150]张策.机械动力学(第二版)[M].北京:高等教育出版社,2008.
    [151]熊万里.机电耦合传动系统的非平稳过渡过程与系统广义同步特性研究[D].沈阳:东北大学,博士学位论文,2000.
    [152]钱平.伺服系统[M].北京:机械工业出版社,2005.
    [153]王成元.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1995.
    [154]陶永华,尹怡欣.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [155]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2003.
    [156]C C Lee. Fuzzy Logic in Control Systems:Fuzzy Logic Control[J]. Part Ⅰ. IEEE Transactions on System, Man, Cybernet,1990,20(2):404-418.
    [157]C L Chen, P C Chen, C K Chen. Analysis and Design of Fuzzy Control Systems[J]. Fuzzy Set System,1993,57:125-140.
    [158]Z Bingul, G E Cook, A M Strauss, et al. Application of Fuzzy Logic to Spatial Thermal Control in Fusion Welding[J]. IEEE Transactions on Industrial Applications,2000,36(6): 1523-1530.
    [159]L A Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes[J]. IEEE Transactions on System, Man, Cybernet,1973(3):28-44.
    [160]G V Ditzhuijzen. The Controlled Cooling of Hot Rolled Strip:A Combination of Physical Modeling Control Problems and Practical Adaptation[J]. IEEE Transactions on Automatic Control,1993,38:1060-1065.
    [161]R W Moffat. Computer Control of Hot strip Cooling Temperature with Variable Flow Laminar sSpray[J]. Iron and Steel Engineer,1985(11):21-28.
    [162]宫勇,王艳秋.永磁同步电机模糊PI控制的仿真研究[J].辽宁工学院学报,2007,27(5):291-294.
    [163]范桓,刘少山,李鑫,等.基于模糊PI控制器的永磁同步电机矢量控制仿真研究[J].工业仪表与自动化装置,2009,(3):79-81.
    [164]马磊.基于模糊P1控制的推进电机调速研究[D].武汉:华中科技大学,硕士学位论文,2006.
    [165]邹乾.两相混合式步进电机的模糊PI控制方法研究[D].杭州:浙江大学,硕士学位论文, 2010.
    [166]周晖.基于模糊PI控制的永磁同步电机矢量控制系统实现及性能研究[D].杭州:浙江大学,硕士学位论文,2006.
    [167]张榜英,孙炜,黄鹏辉,等.永磁同步电机PMSM的模糊PI控制方法[J].吉首大学学报(自然科学版),2008,29(2):79-82.
    [168]张国良,曾静.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002.
    [169]魏巍.MATLAB控制工具箱技术手册[M].北京:国防工业出版社,2004.
    [170]沈蕴方.空间啮合原理及SG-71型蜗轮副[M].北京:冶金工业出版社,1983.
    [171]C K Chen, S T Chiou, Z H Fong, et al. Mathematical Model of Curvature Analysis for Conjugate Surfaces with Generalized Motion in Three Dimensions[J]. Journal of Mechanical Engineering Science,2001,215(C4):487-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700