用户名: 密码: 验证码:
一种直线电机驱动的六棱锥式并联机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机器人因其具有承载能力强、积累误差小、动态响应快等优点,逐渐成为目前国内外研究的热点之一。本文提出一种由直线电机驱动,导轨呈六棱锥式倾斜布置的新型并联机器人结构,运用仿真分析与实验验证相结合的方法对并联机器人机构学、运动学和动力学等关键理论进行了深入研究,旨在深化并联机器人相关理论和扩大工程化应用范围。本文主要展开了以下几个方面的理论和实验研究:
     (1)提出了一种直线电机驱动的六棱锥式并联机器人总体方案。从驱动方式、铰链组成和导轨布置三方面对比分析了Stewart和Hexaglide两种典型结构并联机器人的特点。以机构的最大转角和最高运动频率为基本性能指标,确定了由课题组自行研制的直线电机驱动、导轨呈六棱锥式倾斜布置的并联机器人结构,通过分析认为其具有速度精度高、运动惯量小和转动角度大等特点。
     (2)建立了六棱锥式并联机器人运动学和动力学通用模型。采用几何法和求导法根据运动连杆长度不变的几何约束条件建立了负载平台位姿与直线电机动子位移、速度和加速度之间的映射关系,并获得了机构的雅克比矩阵;提出质点系法结合拉格朗日法,将运动连杆视为质点系计算其动能,保证运算速度的同时提高了模型的精度,获得了负载平台位姿与直线电机驱动力的映射关系。所建立的数学模型为后续更深入的理论研究和工程应用奠定理论基础。
     (3)确定了六棱锥式并联机器人的主要结构参数。以结构紧凑、无奇异和无机械干涉为原则,讨论运动连杆长度、负载平台半径和导轨倾斜角度变化对机构平动和转动性能的影响;分析了机构运动频率与驱动力、导轨倾斜角度与能耗的关系。完成了机构零部件和基于dSPACE硬/软件的工程设计,成功研制出样机及其控制系统,并进行了运动学和动力学的验证实验,实验结果表明所建立的数学模型是正确的、可行的。
     (4)对六棱锥式并联机器人奇异性和工作空间这一关键理论进行了深入研究。基于雅克比矩阵行列式讨论六棱锥式并联机器人发生奇异的条件,并引入可操作度表征任务轨迹远离奇异位形的程度。分析了机构工作空间的约束条件,采用圆柱坐标搜索法获得了定姿态工作空间和定位置转动工作空间,为轨迹规划提供理论依据。进行了样机的性能测试实验,实验结果表明样机性能与仿真结果吻合并且能够满足总体方案的性能指标要求。
     (5)对六棱锥式并联机器人冗余任务下驱动力优化这一关键理论进行了深入研究。以瞬时动能最小为优化目标,分别采用极值法和遗传算法对单自由度和三自由度冗余驱动力分配进行优化和验证实验。研究结果表明,与冗余自由度上变化规律为零的情况对比,优化后的机构能耗有大幅度降低,说明优化方法是正确的、可行的。
     (6)为将基础研究向工程化应用发展,对六棱锥式并联机器人在车辆工程领域应用方案的可行性进行了探讨。通过对样机特点和不同应用场合的需求分析,提出机构作为车载零部件振动试验台的应用方案设想。采用谐波叠加法通过Matlab编程获得了国家级公路的路谱,并建立了简化的车辆模型,获得了车载零部件六个自由度上的振动情况。进行了振动实验,实验结果表明六棱锥式并联机器人能够较好再现车载零部件振动情况。
Parallel robot has strong bearing capacity, small accumulated error, fast dynamic response and other advantages, so it gradually becomes one of the research focus. This dissertation presents a novel parallel robot driven by linear actuator which rail was tilted as a six pyramid. Combined the method of simulation analysis and experimental verification, mechanism、kinematics and dynamics theory of parallel robot has conducted in-depth research to deepen the parallel robot theory and expand engineering application. This dissertation mainly includes the following several aspects of the theory and experiment research:
     (1) The general structure scheme of the six pyramid parallel robot driven by linear actuator is presented. The structural characteristics of typical Stewart and Hexaglide are analyzed from drive source, hinge and rail structure. Set the maximum angle and maximum frequency as basic performance index, determined the overall program consist of linear actuator and six pyramid rail, through the analysis it has the advantages of high speed and precision, small moment of inertia and large rotation angle.
     (2) The kinematics and dynamics model of six pyramid parallel robot are established. According to the geometric constraints that the length of the connecting rod is invariant, the displacement, velocity and acceleration mapping relationship between load platform and linear actuator are established using geometric method and derivation method, and obtained the Jacobian matrix of the robot. Particle system combined with Lagrange method to establish force relationship between load platform and linear actuator is proposed. The kinetic energy is calculated regarding the connecting rod as a particle system, which can guaranteeing the computing speed and improves the precision of the model. The mathematical model is the base of follow-up to more in-depth theoretical study and engineering application of the robot theory.
     (3) Main structure parameters are determined. With compact structure, no singular and mechanical interference principle, the effects of parameter such as connecting rod length, load platform radius and angle of tilt rail change on translation and rotation performance are discussed, the relationship between frequency and force, angle of tilt rail and consumption are analyzed. Completion the engineering design of the robot and selection and configuration of hardware/software based on dSPACE are done successfully developed a prototype and control system, then the kinematics and dynamics of example verification experiment are done to show that the model is correct, feasible.
     (4) Singularity and workspace of the six pyramid parallel robot has conducted in-depth research. Based on Jacobian matrix, singular condition of the six pyramid parallel robot is discussed, and introduce the operational characterization to show the degree of path away from the singularity; workspace constraints are analyzed, and three axis motion range and rotate range are obtained using the cylindrical coordinate search method, provide a theoretical basis for track planning. Experiment for the performance of prototype show that the performance of prototype and simulation results and can meet the design requirements of performance index.
     (5) Optimization of driving forces under redundancy task of the six pyramid parallel robot has conducted in-depth research. Set instantaneous kinetic energy as the optimization target, optimization and validation experiment of single degree of freedom and3DOF redundant driving force distribution are done respectively using the extreme value method and genetic algorithm. The results show that, contrast with zero trajectory case on the redundant degree of freedom, optimized mechanism energy consumption is greatly reduced; the optimization method is correct and feasible.
     (6) Applications of six pyramid parallel robot in the field of vehicle engineering were studied. Based on the prototype characteristics and the requirements of different application occasions, the application scheme of vehicle parts of the vibration test is presented. National A-class road spectrum is obtained using harmonic superposition method by programming with Matlab, and the vibration of vehicle parts on six degree of freedom are obtained by a simplified model. Vibration experiments done to show that the six pyramid type parallel robot can reproduce the vibration of vehicle parts.
引文
[1]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [2]W. Rekdalsbakken. Design and Application of a Motion Platform for a High-Speed Craft Simulator[A]. IEEE International Conference on Mechatronics[C]. Budapest, Hungary: IEEE,2006:38-43.
    [3]R. M. Murray, Z. X. Li, S. S. Sastry. A Mathematical Introduction to Robotic Manipulator[M]. Florida:CRC Press,1994.
    [4]Gough, Whitehall. Universal Tire Test Machine[A]. Proceedings of the FISITA 9th International Technical Congress[C], London:IEEE,1962:351-362.
    [5]张绍国,高峰,杭柏林,等.汽车轮胎滚动阻力试验机测试方法分析[J].中国公路学报,2012,25(1):146-151.
    [6]D. Sewart. A Platform with Six Degrees of Freedom[J]. Proceedings of the IMechE, 1965,180(15):371-385.
    [7]K. H. Hunt. Kinematic Geometry Mechanism[M]. Oxford:Oxford University Press, 1978.
    [8]N. Koyachi, T. Arai, H. Adachi, K. Asami, et al. Geometric Design of Hexapod with Integrated Limb Mechanism of Leg and Arm[J]. IEEE/RSJ Conf.1995,40(3):291-296.
    [9]B. H. Ronen, S. Moshe, D. Shlomo. Kinematics, Dynamics and Construction of a Planarly Actuated Parallel Robot[J]. Robotics and Computer-Integrated Manufacturing, 1998,14(2):163-172.
    [10]M. K. Lee, K. W. Park, Kinematic and Dynamic Analysis of a Double Parallel Manipulator for Enlarging Workspace and Avoiding Singularities[J]. IEEE Transactions on Robotics and Automation,1999,15(6):1024-1034.
    [11]Z. Vava, S. Dubowsky. On the Dynamics of Space Manipulators Using the Virtual Manipulator with Application to Path Planning[J]. Journal of the Astronautical Science, 1990,38(4):441-472.
    [12]常思勤.嵌套式内燃—直线发电集成动力系统[P].中国发明专利,200710132008.
    [13]常思勤,刘梁,施听昕.一种应用轴向充磁永磁体的电磁直线执行器[P].中国发明专利,201010557389.
    [14]张松.六自由度运动平台的控制系统设计与路谱模拟[D].华东理工大学,2011.
    [15]邢继峰,曾晓华,黄华斌.4种形式的六自由度运动平台及其运动性能比较[J].海军 工程大学学报.2002,14(1):2-6.
    [16]刘宝顺.虚轴机床工作空间分析[D].天津大学,1997.
    [17]C. M. Gosselin. Determination of the Workspace of 6-DOF Parallel Manipulators[J]. Journal of Mechanical Design.1990,112(3):331-336.
    [18]刘立军,徐庚保.运载火箭控制系统六自由度数字仿真研究[J].航天控制,1998,40(3):46-47.
    [19]E. G. Papadopoulos, S. Dubowsky. On the Nature Control Algorithms for Free-Floating Space Manipulators[J]. Transactions on Robotics and Automation,1991,7(6):750-758.
    [20]袁海斌,李运华.大型轮式工程车辆转向系统的神经网络PID控制[J].系统仿真学报,2005,17(5):1185-1191.
    [21]王晶,刘小明,李德慧.驾驶模拟器现状及应用研究[J].汽车与船舶,2008,184(11):160-163.
    [22]曹清华,张小行.六自由度运动平台汽车驾驶模拟器临场感研究与开发[J].南昌工程学院学报,2009,28(4):8-11.
    [23]韦有双,杨湘龙,王飞.虚拟现实与系统仿真[M].北京:国防工业出版社,2004.
    [24]汪成为.灵境(虚拟现实)技术的理论实验及应用[M].北京:清华大学出版社,1996.
    [25]尹念东.汽车驾驶模拟器研究现状和技术关键[J].湖北汽车工业学院学报,2002,16(4):7-10.
    [26]熊坚,曾纪国,管欣.驾驶模拟器用于交通系统仿真的研究[J].系统仿真学报,2001,13(1):385-387.
    [27]朱忠祥,毛恩荣.汽车驾驶训练模拟器中的三维建模技术[J].农业机械学报,2004,35(1):22-25.
    [28]周一鸣,毛恩荣.车辆人机工程学[M].北京:北京理工大学出版社,1999.
    [29]J. H. Kim, W. S. Lee, K. K. Park. A Design and Characteristic Analysis of the Motion Base for Vehicle Driving Simulator[J]. IEEE International Workshop on Robot and Human Communication,1997,5(2):290-294.
    [30]W. S. Lee, J. H. Kim, J. H. Cho. A Driving Simulator as a Virtual Reality Tool[A]. Robotics and Automation[C]. Belgium:IEEE International Conference on Leuven, 1998:71-76.
    [31]曾纪国,熊坚,万华森.驾驶模拟器三维场景自动生成系统的开发及应用[J].系统仿真学报,2002,14(6):752-755.
    [32]吴桂忠.世界轮胎生产技术现状与发展趋势[J].轮胎工业,2006,26(8):451-456.
    [33]伍江涛,夏松茂.美国国家公路安全管理局(NHTSA)轮胎安全标准的制修订浅析(一)[J].橡胶科技市场,2005,3(20):15-17.
    [34]A. Ortiz, J. A. Cabrera. J. Castillo, et al. Analysis and Evaluation of a Tire Model Through Test Data Obtained Using the IMM Tire Test Bench[J]. IEEE Transactions on Robotics and Automation,2003,19(5):801-809.
    [35]M. D. Beer, M. Sadzik, E. M. Fisher, et al. Tire Pavement Contact Stress Patterns From the Test Tire of the Gaitanis Heavy Vehicle Simulator[J]. International Journal of Robotics Research,2004,23(3):221-235.
    [36]D. E. Adams, J. Jaques, M. Strus. Tire Modal Impact Testing and Forced Response Analysis[J]. Experimental Techniques,2006,30(2):61-69.
    [37]陶柯,郭丹,毕树国.基于ANSYS的轮胎试验机A型架的运动数值仿真[J].机械工程师,2005,(11):118-119.
    [38]罗阳,黄锡朋,刘刚.汽车轮胎力学特性的试验研究[J].同济大学学报,1997,25(5):543-546.
    [39]涂学忠.VMI推出万用轮胎试验机[J].轮胎工业,2000,1(3):113-117.
    [40]郭孔辉,杨杰.六自由度轮胎试验机[P].中国发明专利,201010281819.
    [41]杨建森.悬架K&C特性对汽车操纵性的敏感性分析[D].吉林大学,2008.
    [42]谢暴,陶其铭,安荣.基于ADAMS与K&C试验的汽车操纵稳定性改进研究[J].安徽工程科技学院学报,2009,24(4):19-22.
    [43]耶尔森,赖姆帕尔.汽车底盘基础[M].北京:科学普及出版社,1992.
    [44]J. C. Dixon. Tires, Suspension and Handling[M]. Cambridge University Press,1991.
    [45]C.Marco, S.Massimo. The Effects of Design Parameters on the Workspace of a Turin Parallel Robot [J]. The International Journal of Robotics Research.1998,17 (8):886-902.
    [46]孙蓓蓓,张启军,孙庆鸿.汽车发动机悬置系统解耦方法研究[J].振动工程学报,1994,7(3):240-245.
    [47]谢伟东,王磊.随机信号在路面不平度仿真中的应用[J].振动测试与诊断,2005,25(2):126-130.
    [48]檀润华,陈鹰,姚东方.路面随机激励下的汽车振动仿真[J].振动测试与诊断,2000,20(2):119-122.
    [49]庞剑,何华.汽车振动与噪声[M].北京:北京理工大学出版社,2006.
    [50]G. S. Paddan, M. J. Grinffin. Evaluation of Whole Body Vibration in Vehicles[J]. Journal of Sound and Vibration,2002,253(1):195-213.
    [51]秦民,林逸,马铁利.应用ADAMS软件研究整车平顺性中几个问题的探讨[J].中国机械工程,2003,14(5):430-433.
    [52]赵保平,王刚,高贵福.多输入多输出振动试验应用综述.装备环境工程,2006, 3(3):25-32.
    [53]荣辉,范培卿,丁洪生.六自由度并联平台的灵敏度分析与参数优化[J].机械设计与研究,2007,23(8):34-36.
    [54]C. Gosselin, J. Angeles. Singularity Analysis of Close-Loop Kinematic ChainsfJ]. IEEE Transactions on Robotics and Automation,1991,6(3):78-92.
    [55]贺利乐,刘宏昭,王朋,等.基于改进遗传算法的六自由度并联机器人位置正解研究[J].应用科学学报,2005,23(5):526-529.
    [56]H. R. Mohammadi Danial, P. J. Zsombor Murray, J. Angeles. Singularity Analysis of Planar Parallel Manipulator[J]. Mechanism and Machine Theory,1995,33(7):931-944.
    [57]C. Innocenti. Forward Kinematics in Polynomial Form of the General Stewart Platform[J]. Journal of Mechanical Design,2001,123(2):254-260.
    [58]刘国光.基于改进蚁群算法的四杆机构优化设计[J].农业机械学报,2006,37(1):149-151.
    [59]杨传岩,王洪波,黄真.三角平台并联机器人工作空间结构与参数影响[J].机械科学与技术,1992,92(3):32-36.
    [60]黄真.空间机构学[M].北京:机械工业出版社,1991.
    [61]J. Plucker. On a New Geometry of Space[J]. Philosophical Trans 1865,155(2):725-791.
    [62]R. A. Ball. Treatises on the Theory of Screws[M]. England:Cambridge UniversityPress, 1900.
    [63]A. T. Yang, F. Freundenstein. Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms[J]. Trans. ASME,1964,4(2):300-308.
    [64]K. J. Waldron. The Constraint Analysis of Mechanisms[J]. Journal of Mechanics,1966, 2(1):101-114.
    [65]C. Innocenti, V. P. Castelli. Direct Position Analysis of the Stewart Platform Mechanism[J]. Mechanism Machine Theory,1990,25(6):611-621.
    [66]X. H. Zhao, S. X. Peng. Direct Displacement Analysis of Parallel Manipulators[J]. Journal of Robotic Systems,2000,17(6):341-345.
    [67]H. Sadjadian, H. D. Taghirad. Comparison of Different Methods for Computing the Forward Kinematics of a Redundant Parallel Manipulator[J]. Journal of Intelligent and Robotics Systems,2005,44(3):225-246.
    [68]J. S. Zhao, Y. Xu, Z. Liang, et al. On the Forward and Inverse Displacement of Spatial Parallel Manipulators[J]. Int. J. Adv. Manuf. Technology,2006(29):1284-1294.
    [69]J. P. Merlet. Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis [J]. The International Journal of Robotics Research,2004,23(3): 221-235.
    [70]C. W. Wampler. Forward Displacement Analysis of General Six-in-Parallel SPS Platform Manipulators Using Soma Coordinates[J]. Mech. Mach. Theory,1996,31(3): 331-337.
    [71]Z. Geng, L. Haynes. A 3-2-1 Kinematic Configuration of a Stewart Platform and its Application to Six DOF Pose Measurements[J]. Int. J. Robot Comput. Integr. Manufact, 1994,11(1):23-34.
    [72]C. Zhang, S. Song. Forward Kinematics of a Class of Parallel (Stewart) Platforms with Closed Form Solutions[J]. Robot. Syst,1992,9(1):93-112.
    [73]C. Zhang, S. Song. Forward Position Analysis of Nearly General Stewart Platforms[J]. Trans. ASME, J. Mech,1994,116(1):54-60.
    [74]J. Yang, Z. Jason. Closed Form Forward Kinematics Solution to a Class of Hexapod Robots[J]. IEEE Transactions on Robotics and Automation,1998,14(3):503-508.
    [75]刘辛军,张立杰,高峰.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法[J].机器人,2000,22(6):457-464.
    [76]黄田,汪劲松Stewart并联机器人位置空间解析[J].中国科学,1998,28(2):136-145.
    [77]刘迎春,余跃庆.两4R冗余度柔性机器人协调操作的运动规划[J].中国机械工程,2004,15(14):1272-1276.
    [78]J. P. Merlet. Designing a Prallel Manipulator for a Specific Workspace[J]. International Journal of Robotics Research,1997,16(4):545-556.
    [79]M. Badescu, C. Mavroidis. Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms with Joint Constraints[J]. ASME Journal of Mechanical Design,2004,12(6): 291-300.
    [80]C. M. Gosselin, E. Iavoie, P. Toutant. Robotics Spatial Mechanisms and Mechanical Systems[J]. ASME Journal of Mechanics,1992,114(45):323-328.
    [81]A. Ilian, Bonev, C. M. Gosselin. Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechnisms[J]. IEEE Transactions on Robotics,2006, 22(5):1011-1017.
    [82]J. P. Merlet. Parallel Robots[M]. Netherlands:Kluwer Academic,2000.
    [83]理查德.摩雷,李泽湘,夏恩卡.萨斯特里.机器人操作的数学导论[M].北京:机械工业出版社,1998.
    [84]F. Tahmasebi, L. W. Tsai. Workspace and Singularity Analysis of a Novel Six-DOF Parallel Mini-Manipulator[J]. Journal of Applied Mechanisms and Robotics,1994,1(2): 31-40.
    [85]J. Sefrioui, C. M. Gosselin. On the Quadratic Nature of the Singularity Curves of Planar Three Degree of Freedom Parallel Manipulators[J]. Mechanism and Machine Theory, 1995,30(4):533-551.
    [86]D. Bhaskar, C. Prasun. A General Strategy Based on the Newton-Euler Approach for the Dynamic Formulation of Parallel Manipulators[J]. Mechanism and Machine Theory, 1999,34(6):801-824.
    [87]J. L. Min, X. L. Cong, N. L. Chong. Dynamics Analysis of the Gough-Stewart Platform Manipulator [J]. IEEE Transactions on Robots and Automation,2000,16(1):94-98.
    [88]杨璟泉,吴盛林,曹建.考虑驱动分支惯量影响的Stewart平台动力学研究[J].中国机械工程,2002,13(12):1009-1012.
    [89]李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究[J].机械科学与技术,1999,18(1):41-43.
    [90]P. B. Horin, S. Djerassi, M. Shoham. Dynamics of a Six Degrees of Freedom Parallel Robot Actuated by Three Two Wheel Carts[J]. Multibody Syst Dyn,2006,10(16): 105-121.
    [91]D. Bhaskar, T. S. Mruthyunjaya. Closed-Form Dynamic Equations of the General Stewart Platform Through the Newton-Euler Approach[J]. Mechanism and Machine Theory,1998,33(7):993-1012
    [92]杨建新,汪劲松,郁鼎文.空间并联机构运动学与动力学逆解得模块化计算方法[J].机械工程学报,2005,41(5):104-107.
    [93]常宗瑜,张策,杨玉虎,等.运用凯恩方程建立弧面分度凸轮机构的动力学模型[J].机械工程学报,2001,37(3):34-40.
    [94]刘迎春,余跃庆,姜春福.冗余度机器人研究动向[J].机械设计与研究,2003,19(1):24-27.
    [95]H. Seraji. Configurantion Control of Redundant Manipulators:Theory and Implementat-ion[J]. IEEE Transactions on Robotics and Automation,1989,5(4):427-490.
    [96]A. Miiller, P. Maisser. Generation and Application of Prestress in Redundantly Full-Actuated Parallel Manipulators[J]. Multibody System Dynamics,2007,18(2): 259-275.
    [97]V. Garg, S. B. Nokleby, J. A. Carretero. Wrench Capability Analysis of Redundantly Actuated Spatial Parallel Manipulators[J]. Mechanism and Machine Theory,2009,44(5): 1070-1081.
    [98]邵华,关立文,王立平,等.冗余并联机床驱动力优化解析[J].清华大学学报(自然科学版),2007,47(8):1325-1329.
    [99]叶平,孙汉旭,张秋豪.基于自运动控制的冗余度机器人运动学优化[J].机械工程学报,2004,40(12):128-132.
    [100]G. Maher, Mohamed, C. M. Gosselin. Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms[J].2005,21(3):277-287.
    [101]吴江宁,骆涵秀,李世伦.并联式六自由度电液伺服平台[J].中国机械工程,1997,8(6):92-94.
    [102]车林仙4-RUPaR并联机器人机构及其运动学分析[J].机械工程学报,2010,46(3):35-41.
    [103]Y. Lu, B. Hu. Analyzing Kinematics and Solving Active/Constrained Forces of a 3SPU+UPR Parallel Manipulator[J]. Mechanism and Machine Theory,2007,42(10): 1298-1313.
    [104]H. Hamoon, A. Yasser, F. Abbas. Kinematics and Dynamics Modeling of a New 4-DOF Cable-Driven Parallel Manipulator [J]. Intelligent Mechatronics and Robots,2011,1(4): 1-7.
    [105]赵强,阎绍泽.双端虎克铰型六自由度并联机构的动力学模型[J].清华大学学报(自然科学版),2005,45(5):610-613.
    [106]于晖,孙立宁,张秀峰,等.虎克铰工作空间研究及其在6-HTRT并联机器人中的应用[J].中国机械工程,2002,13(21):1830-1834.
    [107]赵建文,杜志江,孙立宁,虎克铰干涉判定准则及其优化设计方法的研究[J].机械设计,2004,21(11):45-48.
    [108]丁汉,吴建华,王英,等.高加速度系统的快速高精度定位控制[J].自然科学进展,2008,18(10):1143-1150.
    [109]张晋东.基于dSPACE的混合动力汽车AMT电机控制系统[D].吉林大学,2006.
    [110]J. Pusey, A. Fattah, S. Agrawal, et al. Design and Workspace Analysis of a 6-6 Cable Suspended Parallel Robot[J]. Mechanism and Machine Theory,2004,39(7):761-778.
    [111]I. A. Bonev, J. Ryu. A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators[J]. Mechanism and Machine Theory,2001,36(1):15-28.
    [112]T. Yoshikawa. Manipulability of Robotic Mechanisms[J]. The International Journal of Robotics Research,1985,4(1):3-9.
    [113]卿建喜,李剑锋,方斌.冗余驱动Tricept并联机构的驱动优化[J].机械工程学报,2010,46(5):8-14.
    [114]D. Chakarov. Study of the Antagonistic Stiffness of Parallel Manipulator with Actuation Redundancy[J]. Mechanism and Machine Theory,2004,39(6):583-601.
    [115]Huang Tian, Li Meng, Zhao Xinmei, et al. Conceptual Design and Dimensional Synthesis of a 3-DOF Module of the TriVariant a Novel 5-DOF Reconfigurable Hybrid Robots[J]. IEEE Trans.on Robotics and Automation,2005,21(3):449-456.
    [116]韦红雨,田社平,王志武,等.遗传算法在串—并联冗余系统可靠性优化设计中的应用[J].机械设计与制造,2005,8(8):1-3.
    [117]D. E. Whitney. The Mathematics of Coordinated Control of Prosthses and Manipulator [J]. Jouranl of Dynamic System and Mechanism Control,1972,94(4):303-309.
    [118]刘洪,彭增雄,荆崇波.轴向柱塞泵滑靴油膜形状的遗传算法数值分析[J].排灌机械工程学报,2012,30(1):75-79.
    [119]李涛,李升才.结构振动台试验研究现状与发展[J].嘉应学院学报(自然科学),2011,29(2):49-52.
    [120]B. Rogerio, J. F. Silvam. Shaking Table Tests of Two Different Rein Forcement Techniques Using Polym Eric Grids on an Asymmetric Limestone Full-Scaled Structure[J]. Engineering Structures,2009,31(6):1321-1330.
    [121]曲颖.六自由度振动试验台伺服控制系统设计[D].哈尔滨工业大学,2011.
    [122]段虎明,石峰,张开斌,等.中国典型汽车道路谱研究的构建及应用[J].中国测试,2009,35(4):76-79.
    [123]刘建.汽车道路谱的AR模型重构方法研究及实现[D].江苏大学,2010.
    [124]M. Zribi, V. Ciarletti. Characterization of the Soil Structure and Microwave backs-cattering Based on Numerical Three Dimensioned Surface Representation[J]. Analysis with a Fractional Brwnian Model,2005,20(72):159-169.
    [125]苏金明Matlab高级编程(第二版)[M].北京:电子工业出版社,2008.
    [126]常思勤.汽车动力装置[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700