用户名: 密码: 验证码:
管状面槽式凸轮分度机构理论与技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出了用于实现平行轴间分度运动的管状面槽式凸轮分度机构,并对其理论与技术进行了较为系统的研究。因机构以钢珠为滚动体,对应的凸轮廓面为槽式管状曲面,故命名为管状面槽式凸轮分度机构。该机构具有压力角情况良好、分度数范围大、适应性强、制造容易等优点,可以广泛应用于平行轴分度运动场合。
     论文以瞬心线和旋轮线为研究工具,将瞬心线视为机构运动的几何表征,凸轮型线视为瞬心线相对运动时钢珠中心发生的旋轮线,并借助瞬心线建立凸轮型线与速比曲线的关系。为此,论文结合凸轮分度机构对旋轮线、瞬心线、速比曲线及其关系进行了研究。归纳了旋轮线的几何学性质和几何形态与发生点位置的关系。研究了曲线的奇点特性,包括切矢方向、奇点阶数和导出曲率等。在此基础上,讨论了旋轮线上奇点的产生条件及性态,得出了不同导出曲率情形的瞬心线条件。分析了含奇点的直线旋轮线的位置特点和瞬心线条件。结合运动特点分析了凸轮分度机构的速比条件及瞬心线特征。针对从动旋轮线在奇点处导出曲率为零及在奇点附近为直线两种情形,分别给出了奇点变异法和拼接法两种速比曲线设计方法,作为奇点应用的实现条件。
     以上述理论为指导,针对凸轮分度机构的基本要求并考虑到现有同类机构的技术局限,论文提出了管状面槽式凸轮分度机构的基本构思。根据啮合副的组成性质,将机构分为正作用式、逆作用式和双作用式三种类型。其中正作用式机构利用多钢珠同时工作有效减小了啮合压力角和工作面层数。逆作用式和双作用式机构利用奇点获得了优良的压力角特性和驱动特性,并扩大了机构的分度数范围。论文借助点与线的啮合模型,对三种类型机构的基本原理和主要特性进行了分析。在此基础上,研究了机构的主要性能,包括钢珠与凸轮廓面的啮合特性、点啮合化的实施方式和参数、钢珠的受力和运动状态、机构对误差的敏度等。
     最后,论文讨论了机构设计和制造的有关问题。对逆作用式机构的原型机进行了设计、制造及原理性试验研究。试验结果证实了机构原理上的正确性和技术上的可行性,达到了预期目标。
The dissertation proposes a new type of indexing cam mechanisms to realize indexing motion between parallel shafts. For adopting tuber surface groove cams the mechanisms are named the tuber surface groove cam indexing mechanisms.The less pressure angle, wide indexing range, good adaptability and manufacturability make the mechanisms wide applied in the occasions of parallel indexing.
     For the dissertation regards the cam mould curves as cycloids, denotes the shafts motion by centrodes, and determines the relation between cam mould curve and speed-ratio curve by centrodes, the cycloid, centrodes and speed-ratio curve of cam indexing mechanisms are studied. The geometry and configuration of cycloid with different position of generant are summarized. The characteristics of singular point on curve are analyzed, including its tangent vector, order and deriving curvature. On the basis of it, the existing conditions and characteristics of singular point on cycloid are discussed, and the relation between the deriving curvature of singular point and centrodes are concluded. The centrodes conditions and characters of linear cycloid are analyzed too. Based on the motion characters, the speed-ratio curve and centrodes of indexing cam mechanisms are analyzed. To realize the zero deriving curvature of singular point and linear cycloid, two methods of designing speed-ratio curve are introduced, which contributes the application of singular point in the proposed mechanisms.
     On the basis of above study works as well as considerations of the demands of indexing mechanisms and the shortages of the traditional parallel indexing cam mechanisms, the dissertation constructs the tuber surface groove cam indexing mechanisms. According the compose of meshing pairs the mechanisms are divided three kinds being named the normal-action, the inverse-action and the double-action tuber surface groove cam indexing mechanisms successively. The first mechanisms decrease pressure angle and reduce meshing layer by more than three balls meshing with the cam at any moment. The second and the third mechanisms have the same distinctive character that there are singular points on the cam mould curve and the curve is line near the points, which contributes the excellent pressure angle, the large loadability and the wide indexing range of the mechanisms. The principle and feasibility of these mechanisms are discussed. The main properties are analyzed including the meshing characteristics of steel ball and cam surface, the method and parameters of mismatch treatment, the force and motion analysis of steel balls, and the sensitivity of the mechanisms to errors.
     Finally, the dissertation discusses the problems about the designing and manufacturing of the mechanisms, designs and produces the prototype machine of inverse-action tuber surface cam indexing mechanisms. The running test of the prototype machine shows that the proposed mechanisms are correct in principle, realizable in techniques, and the anticipative purposes are achieved.
引文
[1]Bickford, J. H. Mechanisms for Intermittent Motion[M].New York:Industrial Press, 1972
    [2]刘政昆.间歇运动机构[M].大连:大连理工大学出版社,1991
    [3]邹慧君,殷鸿梁.间歇运动机构设计与应用创新[M].北京:机械工业出版社,2008
    [4]烘允楣.机构设计的组合与变异方法[M].北京:机械工业出版社,1982
    [5]Rees Jones, J. Cams and Cam Mechanisms[M].London:Mechanical Engineering Publications Ltd. for the Institution of Mechanical Engineers,1978
    [6]Chen, F. Y. Mechanics and Design of Cam Mechanisms[M].New York:Pergamon Press Inc. 1982
    [7]于云满,张敏,张义选.精密间歇机构[M].北京:机械工业出版社,1999
    [8]刘昌祺,牧野洋(日),曹西京.凸轮机构设计[M].北京:机械工业出版社,2005
    [9]牧野洋著,胡茂松译.自动机械机构学[M].北京:科学出版社,1980
    [10]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社,1990
    [11]美国专利:2986949[P],1961-06-06
    [14]Jensen, P. W. Cam Design and Manufacture[M].New York:Industrial Press,1965
    [15]Meneghetti,U.,Andrisano, A.O. On the geometry of cyclindrial cams[C].Proceeding of the 5th world congress on Theory of machine and mechanisms,1969:595-598
    [16]Chakraborty J.,Dhande S.G... Kinematics and Geometry of Planar and Spatial Cam Mechanisms[M].New York:Wiley,1977
    [17]Neklutin,C. N. Mechanisms and cams for automatic machines[M].New York:Elsevier, 1969
    [18]H. Makino. Design Restrictions for the Parallel Index Cam (Part 1) [J].Journal of Japanese Society of Precision Engineering (In Japanese),Vol.38, No.8,1972, pp. 638-644
    [19]H. Makino. Design Restrictions for the Parallel Index Cam (Part 2) [J].Journal of Japanese Society of Precision Engineering(in Japanese),Vol.38, No.11,1972, pp. 929-932
    [20]H. Makino. Basic Analysis and Optimal Design of In-line Transfer Indexing Cam[J]. Journal of Japanese Society of Precision Engineering(in Japanese),Vol.45,No.7, 1979, pp.833-838
    [21]T. Maeda and H. Makino. Basic Analysis and Optimal Design of Internal Parallel Indexing Cam[J].Journal of Japanese Society of Precision Engineering(in Japanese),Vol.46, No.10,1980,pp.1297-1302
    [22]Nishioka, M. Parallel indexing cam(in Japanese) [J].Preprint of JSME/JSPE Proceedings, Hitachi,Japan,1981, pp.128-130
    [23]J. R. Jones, K. S. Tsang. Optimal Configrations for Parallel Shaft Indexing Mechanisms[C].Proceedings of the 7th World congress on the Theory of Machines and Mechanisms(1987):1687-1690
    [24]Backhouse,C. J. and Rees Jones, J. Envelope theory applied to globoidal cam surface geometry[J].Proc.Instn Mech. Engrs, Part C, Journal of Mechanical Engineering Science,1990,204(C6):409-416
    [25]Oizumi, T.,Emura, T. A Globoidal-cam Type Gearing[C].Proceeeding of the 1992 International power Transmission and Gearing Conference:535-541
    [26]Jie-Shing Lo, Ching-Haun Tseng, Chung-Biau Tsay. A study on the bearing contact of roller gear cams[J].Computer Methods in Applied Mechanics and Engineering, Volume 190, Issues 35-36,8 June 2001:4649-4662
    [27]Yan, H. S.,Chen, H. H. Geometry Design and Machining of Roller Gear Cams with Cylindrical Rollers[J].MMT,1994, Vol.29:803-812
    [28]Hong-Sen Yan, Hsin-Hung Chen. Geometry Design of Globoidal Cams With Generalized Meshing Turret-Rollers[J].ASME Journal of Mechanical Design.1996(6),Vol. 118:243-249
    [29]Jen-Yu Liu, Hong-sen Yan. Surface Geometry of Variable Pitch Cylindrical Cams with Conical Meshing Elements[J].ASME Journal of Mechanical Design,1994(9),Vol. 116:862-866
    [30]M. A. Gonzalez-Palacios, J. Angeles.The Generation of Contact Surface of Indexing Cam Mechanisms—A Unified Approach[J].ASME Journal of Mechanical Design, 1994(6),Vol.116:369-374
    [31]Tsay, D. M. and Lin, B. J. Profile determination of planar and spatial cams with cylindrical roller-followers[C].Proc. Instn Mech. Engrs, Part C, Journal of Mechanical Engineering Science,1996,210(C6):565-574
    [32]Tsay, D. M. and Lin, B. J. Improving the geometry design of cylindrical cams using nonparametric rational B-splines[J].Computer Aided Des.,1996,25(1):5-15
    [33]Takno, M.,Toyama, S.Dynamics of indexing cam mechanism and speed-up of its motion[C]. Proceeding of the 5th world congress on Theory of machine and mechanisms, 1969:1408-1411
    [34]Gonzalez-Palacios,M. A.,Angeles,J. Cam Synthises[M].Dordrecht:Kluwer Academic Publishers,1993
    [35]D. M. Tsay, C.O.Huey. Application of Rational B-Spline to the Synthesis of Cam-Follower Motion Program[J].ASME Journal of Mechanical Design,1993(9),Vol. 115:621-626
    [36]K. Yoon, S.S. Rao. Cam Motion Synthesis Using Cubic Spline[J].ASME Journal of Mechanical Design,1993(9),Vol.115:441-446
    [37]L. N. Srinivasan, Q. Jeffrey. Designing Dynamically Compensated and Robust Cam Profiles with Bernstein-Bezier Harmonic Curves[J].ASME Journal of Mechanical Design, 1998(3),Vol.120:41-45
    [38]A. I.Mahyuddin, A. Midha, A. K. Bajaj. Evaluation of Parametric Vibration and Stability of Flexible Cam-Follower Systems[J].ASME Journal of Mechanical Design, 1994(3),Vol.116:291-297
    [39]A.I.Mahyuddin, A. Midha. Influence of varying Cam Profile and Follower Motion Event Type on Parametric Vibration and Stability of Flexible Cam-Follower systems[J].ASME Journal of Mechanical Design,1994(3),Vol.116:298-305
    [40]M. Chew, C. H. Chuang. Minimizing Residual Vibrations in High-Speed Cam-Follower Systems Over a Range of Speed[J].ASME Journal of Mechanical Design,1995(3),Vol. 117:160-172
    [41]V.D. Borisov. Computer-Aided Design of cylinder Cams[J].Stanki Instrument,1984, Vol. 55:7-9
    [42]郭伟,司黎明.平行分度凸轮机构的并行设计[J].机械与电子,1993(1):25-27
    [43]孟彩芳,,田梦倩.模糊分析法在平行分度凸轮机构运动规律选择中的应用[J].大连轻工业学院学报,1995,14(3):57-60
    [44]杨玉虎,陆锡年.弧面分度凸轮机构的参数设计[J].机械设计,1994,11(5):15-19
    [45]苗淑静,杨玉虎等.弧面分度凸轮机构啮合理论分析[J].机械科学与技术.2002,21(6):936-937,962
    [46]杨芙莲,葛正浩.圆柱分度凸轮的轮廓修正[J].西北轻工业学院学报,1995,13(3):8-11,82
    [47]金英善.圆柱分度凸轮轮郭曲面及其曲率分析[J].大连轻工业学院学报,1995,14(2):19-23
    [48]薛云娜.精密间歇机构分度凸轮的优化设计[D].济南:山东大学,2002
    [49]李建功,杜明华.利用柱面坐标设计弧面分度凸轮的轮廓曲面[J].机械科学与技术,2003,22(4):609-610
    [50]Peng Guoxun, Xiao Zhengyang, Tian Huimin. Unified optimal design of external and internal parallel indexing cam mechanisms[J].Mechanism and Machine Theory, Volume 23, Issue 4,1988, Pages 313-318
    [51]陶学恒,王其超.弧面分度凸轮机构的运动几何特性分析[J].机械设计,1997(10):21-23
    [52]杨玉虎.高速凸轮分度传动系统动力学理论与实验研究[D].天津:天津大学,1999
    [53]初飞雪.分度凸轮机构运动规律及CAD的研究[D].天津:天津大学,1999
    [54]鞠华.空度分度凸轮机构运动学分析及其CAD软件开发[D].咸阳:西北轻工业学院,1998
    [55]何富春,张玉华.平行分度凸轮机构运动谱设计[J].安徽工业大学学报(自然科学版),2005,22(2):118-120
    [56]黄颖为.平行分度凸轮动力学模型的建立[J].西北建筑工程学院学报(自然科学版),1999,16(4):25-28
    [57]吴义忠,李广安.弧面分度凸轮机构动力学特性的研究[J].机械设计,1998(8):12-14
    [58]贺炜,胡亚平.弧面分度凸轮机构传动系统非线性动力学特性研究[J].机械工程学报,2000,36(11):33-38
    [59]Chang Zongyu, Zhang Ce, Yang Yuhu, Wang Yuxin. A study on dynamics of roller gear cam system considering clearances[J].Mechanism and Machine Theory, Volume 36,Issue 1,1 January 2001,Pages 143-152
    [60]Xinqiang Sun, Yuhu Yang. A Study on Dynamics Modeling and Analysis of Parallel Indexing Cam System[C].The 11th World Congress in Mechanism and Machine Science v.3[C].2004:1040-1043
    [61]苗淑静,韩晓玲,白胜.平行分度凸轮机构动力学优化[J].机械设计,2005(11):87-88
    [62]彭国勋,肖正扬.平行分度凸轮机构的精度分析[J].西北轻工业学院学报,1989,7(2):1-9
    [63]何晶昌.平行分度凸轮机构凸轮轮廓设计误差估计[J].机械传动,2008,32(5):76-77
    [64]唐善华.平行分度凸轮廓线交点的寻求及平滑过渡处理[J].机械设计,2008,25(9):19-21
    [65]郝英慧,马卫华.弧面分度凸轮廓面加工精度分析[J].吉林工业大学学报,1996,26(2):102-105
    [66]熊晓航,胡秉辰.圆柱分度凸轮的廓面误差分析[J].机械,1999,26(5):40-42
    [67]王海燕,刘昌祺.弧面分度凸轮轮廓误差评定的数学模型[J].西安交通大学学报,1999,33(11):95-99
    [68]尚锐,高虹,张波.圆柱分度凸轮廓面的测量及误差分析[J].轻工机械,2004(2):67-69
    [69]殷鸿梁.圆柱凸轮分度机构的计算机辅助设计[J].全国第三届机构学年会论文(1985)
    [70]赵韩,江擒虎.弧面分度凸轮机构的计算机辅助设计[J].合肥工业大学学报:自然科学版,1994,16(2):58-61
    [71]吴春春.外接平行分度凸轮轮廓曲线的计算机辅助设计[J].重庆钢铁高等专科学校学报,1996,11(2):68-75
    [72]张佩勤,王连荣.圆柱分度凸轮机构的计算机辅助设计[J].沈阳工业学院学报,1997,16(4):6-10
    [73]田梦倩,孟彩芳.平行分度凸轮机构智能CAD系统的研究[J].江苏机械制造与自动化,1998(2):10-12
    [74]张俊,董继先.基于CAD动态图解法的平行分度凸轮机构设计[J].陕西科技大学学报(自然科学版),2006,24(2):69-72
    [75]徐青,金作成.圆柱分度凸轮的加工控制方法[J].山东工业大学学报,1994,24(3):258-261
    [76]仲继广.空间分度凸轮数控加工系统[D].山东工业大学,1995
    [77]唐伟.高速圆柱分度凸轮的数控加工[J].制造技术与机床,1997(9):29-30
    [78]金作成,陈龙宝.圆柱分度凸轮机构的设计及凸轮的数控加工[J].机械传动,2002,26(4):50-52
    [79]刘兴亮,曹巨江.弧面凸轮的单侧磨削加工研究[J].机械设计与制造,2009(1):177-179
    [80]刘言松,贺炜.弧面分度凸轮机构动态仿真[J].现代机械,2005(4):23-24,52
    [81]吴雪艳,杨玉虎,沈煜,张策.平行分度凸轮机构虚拟设计研究[J].机械设计,2004,21(6):10-12
    [82]郝彩红,尹明富.平行分度凸轮机构设计专家系统的开发及三维运动仿真[J].机械设计与制造,2007(1):65-66
    [83]何富春,吴义成.平行分度凸轮的参数化设计及数控加工[J].机械工程师,2007(1):120-121
    [84]陈学文,王良文,李安生,唐维刚.基于vB的平行分度凸轮机构参数化设计[J].机械传动,2009,33(4):39-41
    [85]G..Dittrich. Konstruktion and herstellung spharischer kurvengetribe[J]. Konstruktion,1966(10):421-426
    [86]Chakraboty, J. and Dhande, S.G. Kinematics and Geometry of Planar and Spatial Cam Mechanism[M].New York:John Wiley and Sons, Inc.,1977
    [87]Gonzalez-Palacios, M. A. and Angeles, J. The generation of contact surfaces of indexing cam mechanisms:a unified approach[C].Proceedings of ASME Design Automation Conference on Advances in Design Automation,1990. Vol.2, pp.359-364
    [88]Gonzalez-Palacios,M. A. and Angeles, J. Synthesis of contact surface of spherical cam oscillating roller-follower mechanisms:a general approach[J].J. Mech. Des. T. ASME,1994,116,311-319
    [89]王其超,陶学恒,肖正扬.新型球面空间分度凸轮机构啮合特性的研究[J].机械工程学报,1996,32:19-23
    [90]张策,杨玉虎等.平面行星分度凸轮机构[J].机械科学与技术,1996,15(6):871-873
    [91]张策,杨玉虎,王浩,刘明涛.一种行星分度凸轮机构[P].中国专利:ZL02124122.8,2003-04-30
    [92]王皓,张策,杨玉虎.行星分度凸轮机构凸轮廓线的儿何设计[J].机械工程学报,2003,vol.39(3):13-16
    [93]Wang H.,Zhang C.,Lin Z.,Chen G.,Meshing Analysis of the Planetary Indexing Cam Mechanism[J].Transactions of the ASME:Journal of Mechanical Design.2005 vol.127(2): 340-346
    [94]马慧丽.间歇机构创新设计研究[D].天津:天津大学,2005
    [95]刘明涛.行星分度凸轮机构的创新设计与研究[D].天津:天津大学,2005
    [96]成正江.分度凸轮机构的创新设计与研究[D].天津:天津大学,2006
    [97]周斌.一种新型高速分度凸轮机构的研究[D].天津:天津大学,2007
    [98]陶学恒.包络蜗杆分度凸轮机构理论与技术的研究[D].大连:大连理工大学,1997
    [99]刘健,肖正扬,吴宏基,陶学恒等.包络蜗杆分度凸轮装置[P].中国专利:ZL95232871.2,1997-08-06
    [100]陶学恒,肖正扬,王其超等.新型平面包络蜗杆式分度凸轮机构的原理与分析[J].机械科学与技术,2001,20(2):174-176
    [101]陶学恒,刘健.圆柱形包络蜗杆分度凸轮机构的啮合特征分析与设计[J].机械传动,1999,23(2):19-21,37
    [102]仵大伟,王其超.具有滚动齿的锥面包络蜗杆分度凸轮机构[J].机械科学与技术,2000,19(6):938-940
    [103]沈煜.活齿分度凸轮机构的创新设计与研究[D].天津:天津大学,2008
    [104]尹建伟.圆锥滚子圆柱分度凸轮机构工作轮廓的设计[J].机械设计,1998(7):11-13
    [105]田普建,曹巨江,曹西京.一种新型钢球滚子分度机构的设计与研究[J].机械设计与制造,2007,(5):44-45
    [106]郭金龙.新型球形滚子圆柱凸轮分度机构的设计[J].机械研究与应用,2009,(5):74-76
    [107]Hong-Sen Yan, Hsin-Hung Chen. Geometry design of roller gear cams with hyperboloid rollers[J].Mathematical and Computer Modelling, Volume 22,Issue 8, October 1995, Pages 107-117
    [108]曹西京,杨芙莲等.一种全新型弧面球包络凸轮分度机构的研究[J].机械设计与研究,2003,19(1):36-38
    [109]苗苗,陶学恒.球形滚子弧面凸轮分度机构模态分析[J].大连轻工业学院学报,2005,24(4):286-288
    [110]方代正,黄绍服.钢球滚子弧面凸轮分度机构的设计与受力分析[J].煤矿机械,2005,(7):55-57
    [111]李海霞.钢球滚子弧面分度凸轮机构CAD/CAM系统研究[D].济南:山东大学,2009
    [112]曹巨江,张文林,赵雪妮,点啮合球锥滚子弧面分度凸轮机构的曲率及接触域分析[J].机械科学与技术,2002,21(4):591-592
    [113]赵雪妮,曹巨江,卢军,点啮合球锥滚子弧面分度凸轮机构的接触应力分析[J].机械传动,2003,27(4):38-40
    [114]尹明富,赵镇宏.一种弧面分度凸轮机构[P].中国专利:ZL200320130967.9,2004-12-22
    [115]M Nishiokal, T Nishimural.Synthesis of the internal parallel cam mechanism[C]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science. Volume 212, Number 7/1998:577-585
    [116]张玉华,任广法.内置式平行分度凸轮机构[J].机械传动,2007,31(4):6-8,5
    [117]张玉华.对称内啮合平行分度凸轮装置[P].中国专利:ZL200410014907.X,2005-1-26
    [118]佐佐木重夫著,苏步青译.微分几何学[M].上海:上海科学技术出版社,1963
    [119]梅向明,黄敬之.微分儿何[M].北京:高等教育出版社,1981
    [120]杨基厚.机构运动学与动力学[M].北京:机械工业出版社,1987
    [121]王德伦.机构运动微分几何学研究[D].大连:大连理工大学,1994
    [122]王德伦,肖大准.平面四杆机构的Ball点和Burmester点曲线[J].大连理工大学学报,1994,34(4):409-418
    [123]詹葵华,刘敬资.连杆曲线直线导引有限接近法全面解[J].机械设计,2009(11):24-26
    [124]李霞,王知行.利用鲍尔点求解直线导路机构方法的研究[J].机械科学与技术.2000, 19(2):254-255,258
    [125]C.П.芬尼可夫著,高彻译.微分几何[M].北京:高等教育出版社,1957
    [126]李特文(苏)著,卢贤占等译.齿轮啮合原理[M].上海:上海科学技术出版社,1984
    [127]吉贝·德芒热(法),让皮尔·普热(法)著,王向东译.曲线于曲面的数学[M].北京:商务印书馆,2000
    [128]马香峰,虞洪述,吕荣寰.确定共轭曲面的方法及其应用[M].北京:机械工业出版社,1989
    [129]徐秉业,黄炎,刘信声.弹塑性力学及其应用[M].北京:机械工业出版社,1984
    [130]成大先.机械设计手册(第1卷)[M].北京:化学工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700