用户名: 密码: 验证码:
高压水射流钻孔破煤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯抽放是治理煤矿瓦斯、防治煤与瓦斯突出的根本措施,但煤层瓦斯抽放钻孔的施工至今仍是工程难题,尤其在松软高地应力的高瓦斯、煤与瓦斯突出煤层。与传统的机械钻头相比,在这类煤层运用高压水射流钻头进行钻孔施工,具有一定的优势,可以作为一种新的方法和技术途径进行深入研究。作为高压水射流煤层钻孔技术研究的理论基础,研究高压水射流钻孔破煤机理,对于完善高压水射流破岩机理的研究、开发出适合于煤层钻孔的射流钻头、攻克水射流煤层钻孔的技术关键并从根本上解决瓦斯抽放钻孔的施工难题具有重要的理论及工程适用价值。
     因此,本文围绕高压水射流钻孔破煤机理这一课题,从以下几个方面进行了研究并得出结论:
     首先,文章对高压水射流结构特性进行了研究。指出煤层中的射流钻孔所涉及的射流问题属于紊动冲击射流问题,并对紊动射流的流域结构、轴线速度、轴线压力的变化规律进行了相应分析,掌握了钻孔中的射流变化规律。
     其次,以高压水射流冲击动态载荷作用下煤岩应力场的分析为基础,对高压水射流破煤过程及机理进行了研究。通过对高压水柱冲击过程的描述,运用球面波理论构建了射流冲击煤岩的力学计算模型,得到了煤岩在冲击动载激发下所产生的应力场解析解,从时间层次上对水射流破煤过程进行了划分,并对各时间段煤岩的损伤破坏方式以及在水射流破煤过程中所起的作用进行了分析研究。得出了在高压水射流破煤钻孔过程中,以前期的射流冲击动载对煤岩损伤破坏作用为主导,后期的准静态压力对煤岩的损伤破坏作用有限,其中在射流的冲击动载作用过程中又以应力波对煤岩的剪切作用和卸载对煤岩的拉伸作用为主的结论。
     再次,本文运用非线性动力有限元法,建立了数值计算模型,采用有限元离散、单点高斯积分、沙漏控制、显式中心差分等技术,以罚函数耦合的方式实现了流体-结构的耦合计算,得到了与理论分析中所做出的射流的冲击作用具有阶段性、应力波在煤岩中衰减极为迅速、卸载效应使煤岩产生拉伸破坏等相似的结论。表明数值计算的模型合理,计算方法可行,计算结果能较好地再现实验手段所不能完成的射流破煤动态演化过程,验证并进一步揭示了射流破煤机理的理论研究成果。
     最后,以高压水射流破煤机理和数值模拟的研究成果为指导,设计了高压水射流煤层钻孔用的偏置式自旋转射流钻头和叶轮式旋转射流钻头。运用所研制的射流钻头,在淮南矿业(集团)公司新庄孜煤矿进行了现场破煤试验。试验表明所研制开发的偏置式自旋转射流钻头及叶轮式旋转射流钻头,具有良好的破煤能力和钻孔效率,从而验证了理论研究和数值模拟对高压水射流破煤机理的研究成果。
The coal and gas outburst, which is a kind of serious project disaster in the process of coal mining, is a major problem that urgently needs to be solved to guarantee the coal mine safety in production. The basic measure to control coal and gas outburst is gas drainage, but the construction of drilling holes is still the difficult project problem until now. However, using the drilling bit of high pressure water jet to carry out the construction of drilling holes and gas drainage has a great superiority with which the traditional mechanical drilling bit is unable to compare. This technic can be studied deeply as a new way and technical approach. As the theoretical principle of technology research of the high pressure water jet drilling holes, the study on mechanism of high pressure water jet breaking coal and drilling holes, which has the important theoretical value and project suitable value, can basically solve several problems of gas drainage and holing construction such as perfecting the breaking rock mechanism of the high pressure water jet, developing the jet drilling bit suiting drilling holes in the coal bed, obtaining the key technology of water jet drilling holes .
     Therefore, this dissertation concentrates on the task of the mechanism of the high pressure water jet breaking coal and the jet drilling bit development which is the key technology of water jet drilling holes in the coal bed to research from following several aspects and drew the following conclusions:
     First, in this dissertation, the structural characteristics of high pressure water jet were researched. The jet problems of jet drilling holes referred in the coal bed belongs to the turbulent impact jet flow problem were pointed out and the turbulent jet flow basin structure, the axial velocity and the rules of axial pressure changing were analysed. The variation regularity of jet flow during drilling hole had been mastered.
     Next, (in the dissertation,) the process and mechanism of the high pressure water jet breaking coal were studied based on the analysis of the coal petrographic stress field under the high pressure water jet flow impact with dynamic load function.
     Through the description of the high pressure water column impact process, the author constructed mechanics calculating model of the jet flow impacting coal-bed by spherical wave theory and obtained the analytic solution on the coal petrographic stress field that producing under the impact moving load stimulation, then divided the water jet flow breaking coal process on the time level and analyzed the coal damage and destruction way at various time as well as the function of water jet flow in the process of breaking coal. After analyzing and studying, the author drew such conclusions: in the process of the high pressure water jet flow breaking coal and drilling holes, the preliminary jet flow impact moving load to the coal damage and destruction effect are given priority and influence ofd quasi-static pressure in the later perio is limited, in which the major effects of the shear action of the stress wave and the stretch action of the unloads are prior in the jet flow impact moving load were analyzed in operating process.
     Then, this dissertation established the numerical computation model with the non-linear dynamic finite element method, achieving the fluid - structure coupling computation with penalty function coupling by using technologies such as the finite element divergence, the single-point Gauss integral, the hourglass control, the explicit centre difference etc., and obtaining the similar conclusions with the theoretical analysis that the jet flow impact function having gradualness, the stress wave weakening extremely rapidly, the unloading effect in the coal causing the tension failure and so on. All these conclusions indicated that the numerical computation model was reasonable and the computational method was feasible, and the computed results could well re-appear the dynamic evolution process of jet flow breaking coal which the experimental method couldn't complete and the mechanism of jet flow breaking coal. The results also identify and further reveal the theoretical research findings of jet flow breaking coal.
     Finally, taking the mechanism of the high pressure water jet flow breaking coal and the numerical simulation research results as the foundation, the dissertation developed and designed the offset type auto-gyration jet bits and impeller type gyration bits which can be used to drilling holes in the coal bed with the high pressure water jet flow, and carried on the field tests by using the developed jet bit in the Xinzhuangzi coal mine of HuaiNan mining industry (group) company. The experiment indicated that the developed offset type auto-gyration bits and impeller type gyration bits have well abilities for breaking coal and drilling efficiency. Research findings that of high pressure water jet flow breaking coal by theoretical research and numerical computation have been provd.
引文
[1]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984,244—247
    [2]沈忠厚.水射流理论与技术[M].山东东营:石油大学出版社,1998,1-9,250-290
    [3]薛胜雄.高压水射流技术与应用[M].北京:机械工业出版社,1998,14-47
    [4]崔谟慎,孙家骏.高压水射流技术[M].北京:煤炭工业出版社,1993,2—18
    [5]杨清文.水射流技术的研究进展和展望[J].煤矿机械,2001,(11):4—6
    [6]沈忠厚.高压水射流技术在钻井中的应用[J].石油钻采工艺,1981,10—15
    [7]Summers D A.Water Jetting Technology[A].London:E &FNSPON,1995,277—283
    [8]Labus T J.Fluid Jet Technology[A].Fundamentals and Application.St.Louis:WJTA,1995,487—503
    [9]WJTA.Jet News[A].St.Louis:WJTA,1997,(7):563
    [10]胡寿根.脉冲高压水射流工作原理及研究现状[J].上海理工大学学报,1997,(1):1-9
    [11]Maurer W.C,Advanced Drilling Techniques[M].Peoamon press,1980,5-20
    [12]D.A.萨莫尔斯.高压水射流在采矿中的应用[J],Mining Engineer,1992,No8,45—50
    [13]Summers D.A,Henry R.L.Water Jet Cutting of Sedimentary Rock[J].Journal of Petroleum Technology,1972,797—802
    [14]Maurer W.C,Heihecker J.K,Love W.W.High Pressure Drilling[J].Mining Engineering,1980.319—331
    [15]Summers D.A,Barker C.R,Keith H.J.Water Jet Drilling Horizontal Holes in Coal[J].Mining Engineering,1980,273—291
    [16]Becke H,Schmidt B.H.Drilling Bore hole in Coal Mines Using H.P.Water[D].USA:2nd American Water Jet Technology Conference,University Missouri-Rolla,1983
    [17]Kennerley P,Phillips R,Just G.D,Summers D.A.A High Pressure Water Jet System for
    Inseam Long Hole Drilling in Coal[D].USA:2nd American Water Jet Technology Conference,Houston Texas,1991
    [18]Ohga K,Higuchi K,Sekimoto Y.Water Jet Drilling for Large Diameter Stress Relief Boreholes in Coal Seams[D].Aus:The AusIMM Annual Conference.Australia,1987
    [19]常建勇,苏东红.瓦斯突出煤层脉冲射流打超前卸压孔防突工艺及设备的研究[J].
    ??水力采煤与管道运输,1997,(1):22.27
    [20]杨林,李晓红.高压水射流在煤层中钻长孔技术的发展[J],江苏煤炭,2000,(3):42—45
    [21]梁运培,孙东玲,董钢锋.高压水射流扩孔技术的研究[J].煤炭科学技术,2001,(10):28—31
    [22]Maurer W.C.Advanced Drilling Techniques[M].Tulsa ok:The petroleum Publishing Company,1980,23—34
    [23]Hood M et al.a Review of WARC[J].Journal of Engineering for Industry,1992,121—125
    [24]段熊,余力.截割力信号中的岩石破碎机理信息[J].煤炭学报,1993,18(4):27-34
    [25]Tutluoglu.L et.al.Mechanism of WARC[A].Proc.24 the US Symp on Rock Mech,1983,202-210
    [26]Hood M et.al.用水射流辅助刀具切割破碎硬岩机理[J].高压水射流,1984(1),46—54
    [27]李晓红,鲜学福.水射流辅助截齿切割破碎煤岩机理的研究[J].高压水射流,1994
    [28]熊继有等.射流辅助钻井高效破岩机理研究[J].天然气工业,2004(3),69—71
    [29]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984,254-255
    [30]Leach S J Walker G L.The application on high speed liquid Jets to cutting Philosophical Transactions,Royal Society of London,260A,1966:295-308
    [31]Erdmann—Jesnitzer F,Louis H.Rock excavation with high speed water Jets[C].A view on drilling and cuttings results of rock materials in relation to their fracture mechanical behavior Proceedings of the 5th International symposium on Jet Cutting Technology,1980.C3:105-118
    [32]B莫汉蒂,P梦克法莱.水射流钻孔及其在采矿和爆破中的应用[J].高压水射流技术,1987,(2):16—21
    [33]Foreman S E,Secor G A.The mechanics of rock failure due to water jet impact,SPE4.247.1973:10-18
    [34]Rehbinder G A theory about cutting rock with a water jet[J],Rock Mechanics,1980,(12):247—257
    [35]普查拉R J,莱奇姆A S,霍利刘易斯B M.用高压水射流破碎混凝土块[J].高压水射流,1987,(3):23—25
    [36]马楚凯维兹M,惠特J,加里基G.高压水射流冲击时裂缝内水压分布模型研究[J].高压水射流,1987,(3):23-25
    [37]Evers J L,Edding field D L.Liquid phase compressibility in the hydraulic intrusion model[C],Seventh International Symposium on Jet Cutting Technology,Ottawa,Canada,June,1984:419—428
    [38]Vijay M M,Grattan P E,Brierly W H.An experimental investigation of drilling and deep slotting of hard rocks with rotating high pressure water jets[J].Seventh International symposium on Jet Cutting Technology,Ottawa,Canada,June,1984:419-428
    [39]程大中.高压水射流与机械刀具结合破岩初步试验总结[J].高压水射流,1982,(2):1-13
    [40]Cholet H J,Bardin C A.Jet-assisted oil drilling.Seventh International Symposium on Jet Cutting Technology,Ottawa,Canada,June,1984:33-50
    [41]万连德.高压水射流破岩机理的几个问题[M].北京:中国矿业大学,1985,1-28
    [42]Kondo M,Fujji K,Syoji H.On the destruction of mortar specimens by submerged water jets,Second International Symposium on Jet Cutting Technology,Cambridge,U K,1974,B5:69—88
    [43]张作龙,梁忠民.高压淹没水射流破岩实验研究[J].石油矿场机械,2000(5):27—30
    [44]Hwang Jia-Bo and an Hammitt F.G.:Transient distribute on of the stress produced by the impact between a liquid drop and an aluminum body[A],proceeding of the third international symposium on jet cutting technology,(1976)Chicago USA,A1,1-15
    [45]Kinoshita T.An investigation on the compressible properties of Liquid-jet and impact on to the rock surface[A],proceedings of the third international symposium on jet cutting technology,(1976)Chicago U.S.A,A 2,17—32
    [46]Daniel I.M.Experimental studies water jet impact on rock and rocklike materials[A],Proceedings of the third international symposium on jet cutting technology,(1976)Chicago U.S.A,B3,27—46
    [47]Chermensky G P.Pulsed Water Jet Pressure in Rock Breaking,Proceedings of the 5th international symposium on jet cutting technology,1980,C6:155—164
    [48]K.玻茨克兰克,M.斯莱特.用有限元法模拟水射流切割过程[J].高压水射流,1990,(1):4-11
    [49]徐晓东.水射流与刀具结合破岩的数值分析及图像处理[D],北京:中国矿业大学,1997
    [50]倪红坚,王瑞和,白玉湖.高压水射流破碎岩石的有限元分析[J].石油大学学报(自然科学版),2002,(3):37—40
    [51]倪红坚,王瑞和,张延庆.高压水射流作用下岩石破碎机理及过程的数值模拟研究[J],应用数学和力学,2005,(12):1445-1452
    [52]张文华,汪志明,于军泉.高压水射流破岩动态过程的数值研究[J].岩土力学,2003(10):91—94
    [53]吴迪宏.射流喷嘴性能影响因素的分析与评价[D],天津科技大学,2003
    [54]董志勇.射流力学[M].北京:科学出版社,2005,11—57
    [55]庄礼贤,尹协远,马晖扬.流体力学[M].中国科学技术大学出版社,1997,22-56
    [56]吴子牛.计算流体力学基本原理[M].科学出版社,2001,58-74
    [57]董志勇.冲击射流[M].北京:海洋出版社,1997,68-90
    [58]董志勇,吴持恭,杨永全.射流冲击水垫塘入射点旋涡掺气特性的研究[J].力学学报,1995,(3):294-303
    [59]吴家龙.弹性力学[M].上海:同济大学出版社,1993,90-95
    [60]杨宝俊,王宝昌,张伯军.弹性波理论[M].长春:东北师范大学出版社,1990.106-110
    [61]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002,19
    [62]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992,70—72
    [63]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984,163-170
    [64]乔纳斯A·朱卡斯等著,张志云,丁世用,魏传忠译.碰撞动力学[M].北京:兵器工业出版社,1989,35—39
    [65]阿肯巴赫(著),徐值信,洪锦如(译).弹性固体中波的传播[M].上海:同济大学出版社,1992,126—131
    [66]胡德绥.弹性波动力学[M].北京:地质出版社,1989,159—163
    [67]许红涛,卢文波.爆破破岩过程中的动态卸载效应探讨[J].岩土力学,2003.12,24(6):969—973
    [68]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社,2000.4,37—64
    [69]Close J C.Natural fracture in coal[A].In:Hydrocarbons from coal.Law B E and Rice D D ads.AAPG,Snxdies in Geology 38,1993,119—132
    [70]Gamson P,Beamish B,Johnson David.Effect of coal microstructure and secondary mineralization on methane recovers[J].Geological Special Publication.1998(199):165-179
    [71]Gamson P,Beamish B,Johnson David.煤层显微构造和次生矿化作用对甲烷回采率的影响[J].夏锁林译,煤层气,1998,16(1):21-28
    [72]霍永忠,张爱云.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探,1998,26(6):28-32
    [73]王生维,张明,庄小丽.煤储层裂隙形成机理及其研究意义[J].地球科学,1996,21(6):637—640
    [74]王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学-中国地质大学学报,1995,20(5):557-561
    [75]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,1995,14(1):53—59
    [76]傅雪海,秦勇,李贵中.储层渗透率研究的新进展[J].辽宁工程技术大学学报(自然科学版),2001,20(6):739-743
    [77]傅雪海,秦勇,薛秀谦等.储层孔、裂隙系统分形研究[J].中国矿业大学学报(自然科学版),2001,30(3):225—228
    [78]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].江苏徐州:中国矿业大学出版社,2003.11,19-25
    [79]张慧,王晓刚,员争荣等.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002.9,21(3),278—284
    [80]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.9,8-9
    [81]徐涛.煤岩破裂过程固气耦合数值试验[D],辽宁沈阳:东北大学博士学位论文,2004,19
    [82]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性—理论、模型与应用[M].北京:科学出版社,2004,26—32
    [83]Bear J.多孔介质流体动力学[M].北京:中国建筑材料出版社,1983,30-68
    [84]孔祥言.高等渗流力学[M].中国科技大学出版社,1999,19—20
    [85]周创兵,熊文林.论岩体的渗透特性[J].工程地质学报,1996,4(2):69-73
    [86]Tyler,Roger,Laubch S E.Effects of compaction on clear characteristics[J].Gas Research
    ??Instltute GRI91/0072,1991,141—151
    [87]张胜利.煤层割理及其在煤层气勘探开发中的意义[J].煤田地质与勘探,1995.8,23(4):27—30
    [88]Tremain C M,Whitehead N H.Natural fracture(cleat and joint)characteristics and pattern in Upper Cretaceous and Tertiary rocks of the San Juan basin[J].Gas Research Institute GRI90/0014,1990,73—84
    [89]Duchar J,Dusek F,Svododa J.The behavior of rocks at stress wave loading[J].RETC Proceeding,1975,115—129
    [90]Zhou Yonghong.Crack Pattern Evolution and a Fractal Damage Constitutive Model for Rock[C].Int.J.Rock Mech.Min.Sci.1998.35(3):245—254
    [91]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984,36—59
    [92]李夕兵,赖海辉,朱成忠.冲击载荷下岩石破碎能耗及其力学性能的探讨[J].矿冶工程,1988,8(1):15—19
    [93]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994,1-80
    [94]单仁亮.岩石冲击破坏力学模型及其随机性研究[D],中国矿业大学北京研究生部,1997
    [95]徐芝纶.弹性力学[M].北京:人民教育出版社,1979,1980,5—20
    [96]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995,506—515
    [97]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002,219—228
    [98]谢和平.分形岩石力学[M].北京:科学出版社,1996,1-10
    [99]东南大学等合编.土力学[M].北京:中国建筑工业出版社,2005,61—73
    [100]王瑞和,倪红坚.高压水射流破岩钻孔过程的理论研究[J].石油大学学报(自然科学版),2003,27(4):44—47
    [101]张建国等.油层渗流力学[M].东营:石油大学出版社,1998,37-56
    [102]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997,141—147,251—270.
    [103]Terrien M.Emission acoustiqueet comportment post—critique dun beton solliciteen traction.Bull.De liaison desponds et chausses,1980,105,65—72
    [104]冯西桥.脆性材料的细观损伤理论和损伤结构的安定分析[D],清华大学博士学位论文,1995
    [105]Ortiz M.A continuum theory of crack shielding in ceramics[J].Appl,Mech,1987,54—58
    [106]Holmquist T J,Johnson G R,Cook W H.A computational constitutive model for concrete subjective to large strain,high strain rates,and high pressure[A].14th Int Symposium on Ballistics[C].USA:American Defense Prepareness Association,1993:591-600
    [107]宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法[J].爆炸与冲击,2003.1,23(1):56-60
    [108]孟凡中.弹塑性有限变形理论和有限元法[M].北京:清华大学出版社,1985,2—13
    [109]陈材侃.计算流体力学[M].重庆:重庆出版社,1992,4-20
    [110]Hughes T J R,Liu W K,Thomas K Z.Lagrangian-Eulerian finite element formulation for incomoressible viscouse flows[J].Compute meths Appl Mech Engrg,1981,29(3):329—349
    [111]Liu W K,Belytschko T,Herman C.An arbitrary Lagrangian—Eulerian finite element method for pathdependent materials[J].Compute meths Appl Mech Engrg,1986,58(2):227-245
    [112]Nob W F.CEL:A time—dependent two—space—dimensional coupled Eulerian—Lagrangian code,in:B.Alder,S.Fembach and M.Rotenberg,eds.Methods in Computational Physics 3,Academic press,New York,1964
    [113]Donea J,Fasoli—Stellap,et al.Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems,in:Trans.SMIRT-4,Paper B1/2,USA,1977,15—19
    [114]Belytschko T,Kennedy J M.Computer modelsfor subassembly simulation.Nucl.Engrg.Design,1978,49:17—38
    [115]Belytschko T,Kennedy J M,etal.Quasi—Eulerian finite element formulation for fluid—structure interaction.J.Pressure Vessel Technol.ASME,1980,1 02:62-69
    [116]Nomura T.ALE finite element computation of fluid—structure interaction problems.Comput.Meths.Appl.Mech.Engrg,1994,112:291—308
    [117]Nomura T,Hughes T J R.An arbitrary Lagrangian-Eulerain finite element method for interaction of fluid and a rigid body.Comput.Meths.Appl.Mech.Engrg,1992,95:115—138.
    [118]Nitikitpaiboon C and Bathe K J.An arbitrary Lagrangain—Eulerain velocity potentialformulation for fluid—structure interaction.Computers and Structures,1993,
    ??4/(4/5):871—891
    [119]王瑁成,邵敏.有限元基本原理和数值方法[M].北京:清华大学出版社,1997,58—83
    [120]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998,247-266
    [121]吴仲华.工程流体力学[M].北京:清华大学出版社,1978,36—49
    [122]窦国仁.紊流力学(上册)[M].北京:人民教育出版社,1981,13—27
    [123]窦国仁.紊流力学(下册)[M].北京:高等教育出版社,1987,47-65
    [124]王汝元.气体动力学[M].东营:石油大学出版社,1989,34-87
    [125]李兆敏.流体的粘弹性对孤立涡的抑止机理[J].石油大学学报,1991,(4):45-49
    [126]张绍槐.喷射钻井井底流场的试验架研究及单喷嘴钻头的井下试验[J].石油钻采工艺,1983(5):1-12
    [127]王德新.喷速对射流等速核长度及轴线动压力影响的实验研究[J].石油钻采工艺,1982,(6),9—13
    [128]姜正行等.用LDA研究湍流射流的相似形[J].空气动力学学报,1986,(4):108—115
    [129]柯李文,闫喜勤.湍流射流实验研究[J].空气动力学学报,985,(4):90-97
    [130]孙宝江,沈忠厚.脉冲喷嘴射流特性实验研究[J].石油大学学报,1992,1(4):32—35
    [131]孙家俊.水射流切割技术[M].徐州:中国矿业大学出版社,1992,3—35
    [132]郑祖光.影响高压水射流喷嘴性能的因素[J].高压水射流,1982,(2):38—42
    [133]尤明庆.双喷嘴旋转速度的理论计算公式[J].高压水射流,1990,(1):18—19
    [134]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991,5-33
    [135]孟国庆.高压水射流冲击下物体的破坏[J].高压水射流,982,(4)
    [136]岑可法,樊建人.工程气固多相流的理论与计算[M].杭州:浙江大学出版社,1990,67—78
    [137]袁建强.水力机械联合破岩技术的实验研究[D],石油大学,1992
    [138]叶敬棠,柳兆荣,许世雄.流体力学[M].上海:复旦大学出版社,1990,1-30
    [139]夏震寰.现代水利学[M].北京:高等教育出版社,1992,4—14
    [140]余常昭.紊动射流[M].北京:高等教育出版社,1993,32-43
    [141]廖荣庆,张绍槐,熊继有.喷嘴射流和漫流特性对钻速的影响[J].石油钻采工艺,1988(2):49—54
    [142]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19—38
    [143]倪红坚,王瑞和,葛洪魁.高压水射流破岩的数值模拟分析[J].岩石力学与工程学
    ??报,2004,23(4):550—554
    [144]胡寿根,丁胜.脉冲高压水射流工作原理及研究现状[J].华东工业大学学报,1997,19(2):1—9
    [145]张运棋.高压水射流切割原理及其应用[J].武汉工业大学学报,1994,16(4):13-18
    [146]唐建新,尹光志,魏作安.高压水射流技术在煤矿预抽防突中的试验研究[J].西安科技学院学报,2003,23(2):19—22
    [147]李根生,马加计,沈晓明等.高压水射流处理地层的机理及试验[J].石油学报,1998,19(1):96—99
    [148]孔园波,华安增.裂隙岩石破裂机理研究[J].煤炭学报,1995,20(1):72—76
    [149]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报,1995,14(3):236-245
    [150]易灿,李根生,胡永堂.淹没条件下锥形喷嘴射流破岩效率实验研究[J].石油钻探技术,2001,29(1):10-11
    [151]李根生,易灿,吴波.双射流喷嘴破岩扩孔的实验研究[J].石油钻探技术,2001,29(3):9—10
    [152]徐立,汪志明,沈忠厚.定常情况下旋转射流中导向叶轮受力的理论计算[J].石油大学学报,1997,21(2):33-35
    [153]杨永印,沈忠厚,王瑞和,周卫东.径向水平钻进技术试验研究[J].石油钻探技术,1998,26(1):4-7
    [154]步玉环,王瑞和,沈忠厚.旋转射流流线分析及旋流强度的计算[J].石油大学学报,1998,22(5):45—47
    [155]江山,方涓,殷秋生,白俊英.高压水射流超细粉碎的压力与粒度的关系[J].中国安全科学学报,1995,5(5):42—47
    [156]蒋运华,辛承梁.高压水射流计算机模拟可视化初探[J].中国安全科学学报,1995,19
    [157]刘庭成,白俊英,白春雪.高压水射流技术综述[J].冶金设备,1995,(93):51-53
    [158]王瑞和,周卫东,沈忠厚等.旋转射流破岩钻孔机理研究[J].中国安全科学学报,1999,9:1—5
    [159]李根生,沈忠厚,彭烨.自动旋转喷嘴的理论研究[J].石油学报,1995,16(4):148—153
    [160]胡晓,胡拂,徐晓东.水射流辅助破岩机理浅析[J].煤矿机械,2003(9):49-51
    [161]张作龙,梁忠民.高压淹没水射流破岩实验研究[J].石油矿场机械,2000,29(5):27—29
    [162]倪红坚,王瑞和,张延庆.高压水射流作用下岩石的损伤模型[J].工程力学,2003,23(5):59-62
    [163]高文学,刘运通,杨军.脆性岩石冲击损伤模型研究[J].岩石力学与工程学报,2000,19(2):153-156
    [164]杨小林,员小有,吴忠等.爆破损伤岩石力学特性的试验研究[J].岩石力学与工程学报,2001,20(4):436-439
    [165]杨永印,沈忠厚,王瑞和,周卫东.旋转磨料射流破岩钻孔试验研究[J].石油钻探技术,1999,27(4):4-6
    [166]孙宝江,王汝元,沈忠厚.一种新型自振脉冲喷嘴的设计[J].石油大学学报,1994,18(3):31-34
    [167]梁立成.北京航空工艺研究所高压水射流切割技术[J].中国安全科学学报,1995,5(5):189—190
    [168]周长山,沈忠厚,李根生.自振空化水射流冲击压力脉动的实验研究[J].石油大学学报,1996,20(5):35-39
    [169]张政,汪志明.射流切槽参数对岩石应力分布规律的影响[J].石油钻采工,2001,23(4):21-23
    [170]徐立,汪志明,王瑞和,沈忠厚.高速超高压水射流喷管内外湍流流场的数值模拟[J].石油大学学报,1997,21(4):18-22
    [171]管志川,李春山,苑明顺.多股撞击射流流场的数值模拟研究[J].石油学报,1998,19(2):117-121
    [172]王效敏等.高压水射流技术译文集[C].北京:煤炭工业出版社,1982,1-18
    [173]赵阳升,宋选民,康天合.岩体一流体系统的失稳研究[J].山西矿业学院学报,1993,11(2):23—27
    [174]赵阳升,冯增朝,常宗旭.试论岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2002,21(增):1931-1933
    [175]王瑞和.油气井工程高压水射流技术研究[M],北京:石油大学出版社,1998,74-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700