用户名: 密码: 验证码:
某水利枢纽工程非溢流坝与地基整体稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体是地质体的组成部分,是漫长地质发展史的产物。由于水工建设中坝基岩体所处的地质环境复杂,而且还始终处于一定的地应力和渗流作用下,因此,大坝岩体力学问题相对应变得越来越复杂,复杂条件下大坝与地基的整体稳定性研究显得非常重要。本文以某水利枢纽工程的非溢流坝为研究对象,通过现场调查、理论分析、解析计算和数值模拟等多种研究方法,紧密结合岩石力学理论与工程实践,对非溢流坝与地基的整体稳定性展开了研究,并提出了相应的坝基处理措施,解决了企业生产难题,并对岩体质量评价方法进行了有益的探讨。
     主要研究如下:
     1、对研究区的工程地质和水文地质进行了详细的调查研究,分析了坝址区的地层、岩性、地质构造特征,并对坝基岩体进行了风化分带。
     2、对坝基岩体质量进行了详细的研究,采用岩石强度、风化特征、完整性系数、岩体质量指标及地下水为主要因素,在分别应用三种分级方法评价岩体质量的基础上,提出了一种岩体质量评价的新方法——综合分级方法,并利用综合分级结果对坝基岩体进行了稳定性评价。
     3、在室内岩石物理力学试验的基础上,根据坝址区岩体的自身特点,采用一定的工程弱化方法确定了坝基岩体的力学参数,供设计和稳定性分析所用。
     4、采用工程地质分析法对非溢流坝段的稳定性进行了定性的分析;应用刚体极限平衡法对大坝建成后的非溢流坝进行了抗滑稳定计算;并利用FLAC3D数值模拟软件对非流溢坝在建成并蓄水后最危险工况下的应力与变形进行了模拟分析。研究结果表明,非溢流坝与地基整体稳定,数值模拟与解析计算取得了一致的结论。
     5、根据调查和稳定分析的结果,对坝基的薄弱环节提出了一系列相应的处理措施,且均已被该工程采用,该工程已运行一年多未发现任何渗漏现象。
Rock mass is the constituent part of geologic body,and is the product of long geological development history.Because the geological environment where the rock mass of dam foundation locates is complex in the water conservancy project constructs,moreover,it is under certain crustal stress and seepage function all the time, therefore,the question of dam rock mechanics becomes more and more complex relatively,and study on the whole stability of dam and foundation under the complex condition appears extremely important. In this dissertation,taking non-overflow dam section of some hydro-junction project as the object of study,using investigation, theoretical analysis,analytical calculation and value simulation etc.research techniques,and combining theory of rock mechanics with the project practice closely,it has launched the study on overall stability of non-overflow dam sections and the foundation,and proposed corresponding processing measures of dam foundation which solved difficult problems in enterprise produce,and has carried on beneficial discussions to quality evaluation methods of rock mass.
     The main researches are as follows:
     1、It has conducted the detailed investigation and study on the engineering geology and hydrology geology of the studied area,analyzed detailedly stratum,lithology,geologic structure characteristic of dam site area,and has carried on the weathering zoning to dam foundation rock mass.
     2、It conducted the detailed research to the rock quality of dam foundation,taking rock intensity、weathering characteristic、complete coefficient、rock mass quality index and ground water as the primary factors,on the base of applying three kinds of graduation methods to appraise rock mass quality,and proposed a new method of rock mass quality appraisal---synthesis graduation method,and has carried on the stable appraisal using the synthesis graduation result to the dam foundation rock mass.
     3、On the basis of the indoor tests of rock physics mechanical , according to own characteristic of rock mass of dam site area,it used certain project attenuation method to ascertain the mechanics parameter of dam foundation rock mass used for design and stability analysis.
     4、Using the engineering geology analytic method to carry on the qualitative analysis to the non-overflow dam section stability;and applying the rigid body limit equilibrium method to carry on the calculation of anti-slide stability of the non-overflow dam after it is constructed;and using FLAC3D value simulation software,it carries on simulation analysis and appraisal to the dam foundation stress and the dam distortion under the condition of the most dangerous operating mode after the non-overflowed dam section has been set up and stored water.The research result demonstrated that the whole non-overflow dam section is stable,and the consistent conclusion has obtained from both value simulation and analysis calculation.
     5、According to the investigation and the stable analysis result,it put forward a series of corresponding processing measures used in this project to the weak links of dam foundation,and this project has been operated for more than a year and has no any leakage phenomenon.
引文
[1]张进林.大渡河长河坝水电站坝肩边坡稳定性研究[D]:[硕士学位论文].成都:成都理工大学,2006
    [2]王明友.锅浪跷水电站坝基岩体质量分级及力学参数研究[D]:[工程硕士学位论文].成都:四川大学,2006
    [3] American Society of Civil Engineers.Foundation for dams[C]//Asilomar Conference Grounds Pacific Grove California.New Yerk:American Society of civil Engineers,1974:17-21
    [4] KIERSCH G A.Vaiont reservoir disaster[J].CIVIL Engng,1964,34:32-39
    [5]王仁坤,林鹏,周维坦.复杂地基上高拱坝开裂与稳定研究[J].岩石力学与工程学报,2007,26(10):1951-1958
    [6] Terzaghi K.Rock defects and load on tunnel support.In:Proctor R V,White T,editor.Rock tunneling with steel supports.Youngstown,OH:Commercial Shearing Co.,1964.p.15-99
    [7] Deere D.U.,Miller R.P.Engineering classification and index properties for intact rocks.Technical Report No.AFNL-TR-65-116,Air Force Weapons Laboratory,New Mexico,1966
    [8] Deere D.U.Technical description of rock cores for engineering purposes.Rock Mech.& Engng.Geol.,1964,1:17-22
    [9]徐光黎.岩石地下工程岩体质量评价综述[J].工程地质,1999(3):14-18
    [10] Bieniawski Z T . Engineering classification of jointed rock masses. Trans.S.Afr.Inst.Civ.Eng.,1973,15(12):335-344
    [11] Bieniawski Z T.Classification of rock masses for engineering:the RMR system and future trends.In:Hudson J A,editor.Comprehensive rock engineering,vol.3.UK:Pergamon Press;1993,p.553-573
    [12] Bieniawski Z T.Rock masses classification in Rock engineering.In:Bieniawski ZT,editor.Proceedings f the Symposium on Exploration for Rock engineering,vol.1.Rotterdam:A.A.Balkema;1976.p.97-106
    [13] Bieniawski Z T.Engineering rock masses classifications:a complete manual for engineers ang geologists in mining,civil and petroleum engineering.New York:Wiley,1989.p.215.
    [14] Barton N.,Lien R.,Lunde J.Engineering classification of rock masses for the design of tunnel support.J.Rock andMech.,1974,6(4):189-236
    [15] Barton N Some new Q-value correlations to assist in site characterization and tunnel design.Int.J.Rock Mech.&Min.Sci.Geomech.Abstr.,2002,39(2):185-216.
    [16] Hoek E.Srength of rock and rock masses.ISRM New Journal,1994,2(2):4-16
    [17] Hoek E,Marinos P,Benissi M.Applicability of the geological strength index(GSI) classification for very weak and sheared rock masses The case of Athens Schist Formation.Bull Eng Geol Env,1998,57:151-160
    [18] Hoek E.,Brown E T.Practical estimates of rock mass strength.Int.J.Rock Mech. & Min.Sci.Geomech.Abstr.,1997,34(8):1165-1186
    [19] Palmstr¢m A.Characterizing rock masses by the RMi for use in practical rock engineering,Part 1:the development of the rock mass index(RMi).Tunnelling Undergronud Space Technol.,1996;11(2):175-188
    [20] Palmstr¢m A.RMi-a rock mass characterization system for rock engineering purposes.PhD thesis,University of Oslo,Norway,1995.
    [21]中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99))[S].北京:.中国计划出版社,1999
    [22]中华人民共和国国家标准.工程岩体分级标准(GB50218-94)[S].北京:中国计划出版社,1994
    [23]杜时贵,李军,徐良明等.岩体质量的分形表述[J].地质科技情报,1997(1):91-96
    [24]连建发,慎乃齐,张杰坤.分形理论在岩体质量评价中的应用研究[J].岩石力学与工程学报,2001,20(增):1695-1698
    [25]连建发,慎乃齐,张杰坤.基于可拓方法的地下工程围岩评价研究[J].岩石力学与工程学报,2004,23(9)
    [26]李强.BP神经网络在工程岩体质量分级中的应用研究[J].西北地震学报,2002(3):220-224
    [27]章杨松.岩石质量指标的计算机模拟及其风险分析[J].地质灾害与环境保护,2002(1).44-47
    [28]马淑芝,贾洪彪,唐辉明等.利用”岩体裂隙率”评价工程岩体的质量[J].水文地质工程地质,2002(1):10-12
    [29]谷德振著.岩体工程地质力学基础[M].北京:科学出版社,1979
    [30]康增云.武都水利枢纽工程坝与地基整体稳定性研究[D]:[硕士学位论文].成都:四川大学,2006
    [31]王兴然,邓昌铁.刚体极限平衡法分析坝基深层抗滑稳定的探讨[J].河海大学学报,1989(2):66~71
    [32]张怡霞.坝后为倾斜地面时坝体抗滑稳定计算(三倾斜面法)[J].四川水力发电,1983(2):56~69
    [33]陈革强.刚体极限平衡法浅析[J].河海水利,1999(2):16~18
    [34]郝建斌.大柳树坝址稳定性模型试验研究[D]:[硕士学位论文] .西安:长安大学,2003
    [35]吴世伟.结构可靠度分析[M] .北京:人民交通出版社,1990
    [36]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998
    [37]王富耻,张朝辉.ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社,2006
    [38]日本软脑株式会社.3D~σ用户手册,1997
    [39]孙国权,李娟,胡杏保.基于FLAC3D程序的采空区稳定性分析[J].金属矿山,2007,2:29~31
    [40]陈伟,李世海.允许变形及断裂的三维离散元计算方法[J].岩石力学与工程学报,2004,Vol.23(4):545~549
    [41]武晓晖,宋宏伟.岩土工程反分析法的应用现状与发展[J].矿业工程:矿山地质,2003,5:29~33
    [42]姜弘道,李昭银.三维边界元在地下洞群围岩变形与稳定分析中的应用[J].岩土工程学,1992,Vol.14(5):12~18
    [43]张勇慧,郑榕明.DDA方法的改进及应用[J].岩土工程学报,1998,Vol.20(2):109~111
    [44]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997
    [45]王明华.金沙江溪洛渡水电站地下洞室围岩分类及稳定性评价[D]:[硕士学位论文].成都:成都理工学院,2001
    [46]罗一忠.大面积采空区失稳的重大危险源辨识[D]:[博士学位论文].长沙:中南大学,2005
    [47]乔国文.大跨度、深埋地下洞室群围岩稳定性工程地质研究[D]:[硕士学位论文].成都:成都理工大学,2005
    [48]张乐种.水平岩层地区隧道围岩稳定性研究[D]:[硕士学位论文].长安:长安大学,2006
    [49]张贵科.节理岩体正交各向异性等效力学参数与屈服准则研究及其工程应用[D]: [博士学位论文].南京:河海大学,2006
    [50]张永兴.岩石力学[M].北京:中国建筑工业出版社,2004
    [51]柳群义.构皮滩水电站边坡岩体结构面概率模型与岩体质量分级研究及应用[D]:[硕士学位论文].长沙:中南大学,2005
    [52]孙广忠.岩体结构力学[M].北京:科学出版社,1988,1~4
    [53]陈强.地下洞室围岩岩体结构量化研究及块体稳定性评价[D]:[博士学位论文].成都:成都理工大学,2006
    [54]曾杰.走马岭隧道岩体结构特征及围岩稳定性研究[D]:[硕士学位论文].重庆:重庆大学,2006
    [55]刘远征.锦凌水库坝基岩体质量评价与稳定性数值模拟[D]:[硕士学位论文].辽宁:辽宁工程技术大学,2004
    [56]唐胜传.复杂场地高坝建设适宜性的工程地质研究[D]:[博士学位论文].成都:成都理工大学,2002
    [57]林韵梅等.岩石分级的理论与实践[M].北京:冶金工业出版社,1996
    [58]高谦等.地下工程系统分析与设计[M].北京:中国建材工业出版社,2005
    [59]汪亦显,曹平.坚硬节理岩体力学参数的确定方法[G].采矿科学技术前沿论坛论文集,2006,11
    [60]姜平,孟伟.基于岩体质量分级的岩石力学参数研究[J].三峡大学学报(自然科学版),2004,Vol.26(5):424~427
    [61]陈祥.黄岛地下水封石油洞库岩体质量评价及围岩稳定性分析[D]:[博士学位论文].北京:中国地质大学,2007
    [62] Bieniawski Z T.Determining rock mass for deformability:experience from case histories.Int J Rock Mech Min Sci Geomech Abstr,1978;15:237-247
    [63] Serafim J.L., Pereira J.P.Consideration of the geomechanical classification of Bieniawski.In:Proc.Int.Syrup.on Engineering Geology and Underground Construction,Lisbon 1(Ⅱ),33-44,1983
    [64]徐海清.贵州省鱼简河水库坝基岩体力学参数研究[D]:[硕士学位论文].武汉:中国地质大学,2004
    [65]中华人民共和国水利行业标准.混凝土重力坝设计规范(SL319-2005)[S].北京:中华人民共和国水利部,2005
    [66]裴钻.武都水库坝基岩体结构特征及其深层抗滑稳定研究[D]:[硕士学位论文].成都:成都理工大学,2007
    [67]中华人民共和国电力行业标准.水工建筑物荷载设计规范(DL5077-1997)[S].北京:中华人民共和国水利部,1997
    [68]张国祥、刘宝琛.潜在滑移面理论及其在边坡分析中的应用[M].长沙:中南大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700