用户名: 密码: 验证码:
海拉尔油田凝灰质储层水力压裂力学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海拉尔油田凝灰质储层蕴藏着极为丰富的石油资源,是“十一五”期间重要的勘探开发区块之一。海拉尔油田凝灰质储层属于典型的低孔低渗储层,自然产能很低,储层结构和岩性复杂,常规砂岩的增产技术呈现出很强的不适应性,水力压裂施工频繁出现砂堵事故,导致不能达到预期的加砂量,甚至施工失败,极大的影响了储层的开发效果。基于上述状况,本文开展了海拉尔油田凝灰质储层岩石水力压裂力学理论研究,研究内容与成果如下:
     首先,系统的描述了海拉尔油田凝灰质储层的岩性、电性和沉积等特征;通过薄片鉴定、X-射线衍射、X-衍射全岩分析、电子探针分析、扫描电镜、电镜能谱分析和岩石物性分析等试验,对凝灰质储层矿物学特征进行了分析;通过水浸实验研究了凝灰质储层岩石的水理特征;应用波速各向异性测试、粘滞剩磁法、井筒崩落及热弹性应变恢复确定了储层地应力的方向,通过差应变法、现场小型压裂施工得到储层地应力的大小。分析表明,凝灰质储层岩性复杂,粘土矿物含量高,非偏碱性含凝灰质储层遇水稳定,不会分散,属于正常的硬地层,而易水化碱性和偏碱性含凝灰质储层,遇水水化后将发生软化或泥化作用,对水力压裂产生不利的影响。
     其次,通过密度测定、抗张强度试验、单轴压缩试验、三轴压缩试验,获取了海拉尔油田凝灰质储层的岩石力学参数。从凝灰质岩石材料内部所含缺陷分布的随机性出发,将连续损伤机理和统计强度理论有机的结合起来,建立了海拉尔油田凝灰质岩石损伤软化的本构模型。
     第三,考虑原岩应力、井筒内压及压裂液渗滤影响,推导了井筒应力场,建立了海拉尔油田凝灰质储层裸眼完井及射孔完井的破裂压力计算模型;根据缝尖应力分布,应用断裂力学理论,建立了I-II型复合受载裂缝的最大应力强度准则。应用有限元软件对模型进行了验证。
     第四,根据裂缝宽度模型、压裂液流动压降模型、高度延伸模型及连续性方程,应用迭代法对海拉尔油田凝灰质储层裂缝几何形态进行了计算。
     本文将断裂力学、损伤力学理论与海拉尔油田凝灰质储层性质紧密联系起来,通过理论推导与实验分析,系统的研究了海拉尔油田凝灰质储层的水力压裂力学理论。通过本文的研究,为海拉尔油田凝灰质储层的有效开发提供了强有力的理论指导与技术支持,具有重要的学术价值与现实意义。
Tuffaceous formation in Hailaer basen, which is one of the most important exploration and development tracts during the Eleventh Five-Year Plan period, storages rich petroleum resources. Its low-porosity and low-permeability induce poor natural productivity. In addition, its structures and lithological characters are very complex which make the conventional stimulation technologies unsuitable in the situation. Furthermore, sand plug occures frequently during the hydraulic fracturing operations, which could lead to poor proppant concentration and even operation failure. According to these conditions, a series of studies are proceeded and valuable results are achieved in this paper.
     Firstly, the lithological, electrical and sedimentary characters of the formation are described systematically in the paper. The mineralogical characters of the tuffaceous formation are analyzed by means of slice identification, X ray diffraction, SEM and so on. The enhydrous character is studied by waterlogging test. The orientation and value of formation stress are acquired by anisotropic wave velocity test, viscous remanence method, borehole caving, ASR test, differential strain method and mini-frac test. Based on the analysis, it is shown that the lithological characters of the formation are very complicated and the clay mineral content is high. The alkaline formation is sensitive to the water which induces soften and dispersion of formatin rock and it is adverse for hydraulic fracturing operation, but the others are stable to the water.
     Secondly, the mechanics parameters of tuffaceous formation rock are acquired by density measurement test, Brazilian test, uniaxial compression test and triaxial compression test. Based on the distributing randomicity of the defects inside the tuffaceous rock, CDM and statistical intensify theory, the constitutive equation is established in the paper.
     Thirdly, considering the influence of in situ stress, fluid pressure and infiltration of fracturing fluid, the borehole stress field model is deduced and the breakdown pressure calculating model for open-hole completion and conventional completion are established. The maximal intensify criteria of I-II mode fracture propagation is established based on the stress distribution and fracture mechanics. The model is testified by finite element software.
     Fourthly, the fracture width model, fluid flow model, fracture height propgating model and continuum model are established in the paper. The fracture geometric parameters can be calculated by iterative method.
     This paper combines the fracture mechanics, damage mechanics with tuffaceous formation characters; accomplishes the experimental analysis and academic study; and researches systematically the hydraulic fractur ing mechanics theory. Based on aboved work, the powerful theoretical instructions and technical support can be supplied for effective development of tuffaceous formation in Hailaer oilfield. Moreover, it has important academic value and realistic meaning.
引文
[1]蔡美峰.岩石力学与工程[M].北京:科学出版社,2005.
    [2]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [3] Roscoe K.H.,Schofield A.N.,Worth C.P.On the yielding of soils[J].Geotechnique,1958,8(1):22~53.
    [4] Roscoe K.H.,Schofield A.N.,Thurairajah A.Yielding of clays in states wetter than critical[ J].Geolechnique,1963,13(1):211~240.
    [5] Roscoe K.H.,Burland J.B.On the generalized stress-strain behavior of“wet”clay[A].Engineering Plasticity.Cambridge University Press,1968:535~609.
    [6] Duncan J.M.,Chang C.Y.Nonlinear analysis of stress-strain in soils[J].Proe.ACSE,1970,96(SM5):1629~1653.
    [7] Lade P.,Duncan J.M.Elastoplastic stress-strain response: cohesive soils[J].Proc.ASCE,1975,101(10):1037~1053.
    [8] Dafalias Y.F.,Herrmann L.R.A bounding surface soil plasticity model[A].Proc Int.Symposium.Soil under Cyeli and Transientloading,1980.
    [9] Dougill J W,Lau J and N J.Mechanics in Eng.ASCE.EMD.,1976:222~355.
    [10] Dragon A and Mroz Z.A continuum model for plastic-behavior of rock and concrete.Int.J.Engineering Science。1979,17:121~137.
    [11] Krajeinovic D.Creep of structure continuous damage mechanics approach.J.of Structure Mechanics,1983,11(1):121~137.
    [12] Krajcinovic D . Continuum Damage Theory of Brittle Materials [J].Appl.Mech.Rev.,1981,48(4):809~815.
    [13] Frabtzikconis G . and Desai C . S . Constitutive model with strain softening.Int.J.Solids Structure,1987,23:733~750.
    [14] Kattan P.L.and Voyiadjis G.Z.A coupled theory of damage mechanics and finite strain elasto-plasticity (I,II).Int.J.Engng.Sci.1990,28:421~435,505~524.
    [15]沈为.树脂基复合材料损伤与损伤力学.复合材料力学进展.罗祖道主编.北京:北京大学出版社,1989.
    [16] Singh U.K.and Digby P.J.The application of a continuum damage model in the finite element simulation of the progressive failure and localization of deformation in brittle rock structures.Int.J.Solids Structure,1989,25:1023~1038.
    [17] Brekelmans W.A.M.Sehreurs P.J.G.and de Vree J.H.P.Continuum damagemechanics for softening of brittle materials,Acta Mechanica,1992,93:133~143.
    [18]沈成武.脆性材料损伤应变软化的数学模型[J].数学杂志,1994,14(1):101~105.
    [19] Li Zhaoxia and Mroz Z.Damage model for viscoplastic-softening behavior: cement paste and concrete.Theory and Appl Frac Mech,1994,20:105~113.
    [20] Li Zhaoxia and Mroz Z.Damage model for hardening and softening material in general state of stress.Acta Mech Solida Sinica,1994,7:323~333.
    [21]李兆霞,肖力光,佘颖禾.脆性固体损伤和局部软化的有限元分析[J].计算结构力学及其应用,1996,13(3):279~286.
    [22] Loland K.E.Continuum damage model for load response estimation of eonerete,Cement and Concrete Research,1980,10,395~402.
    [23]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1982,2:14~16.
    [24]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报,1989,3:40~47.
    [25]周小平,张永兴,朱可善.单轴拉伸条件下岩石本构理论研究[J] .岩土力学,2003,24(增):143~147.
    [26]周小平,张永兴,朱可善.中低围压下细观非均匀性岩石本构关系研究[J] .岩土工程学报,2003,25(5):606~610.
    [27]沈珠江.岩土破损力学与双重介质模型[J].水利水运学报,2002,4:1~6.
    [28]沈珠江.岩土破损力学:理想脆弹塑性模型[J] .岩土工程学报,2003,25(3):253~257.
    [29] C伏尔柯夫,吴学蔺译.强度统计理论[M] .北京:科学出版社,1965.
    [30] Gurson A L.Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation,Growth and Interaction[D].Providence: Brown University,1975.
    [31] T.C.皮萨林科,A.A.别捷列夫著,江明行译.复杂应力状态下的材料变形与强度[M].科学出版社,1983:129~140.
    [32] Krajcinovic D . Continuum damage theory of brittle materials[J].Appl.Mech.Rev.,1981,48(4):809~815.
    [33] Kandarpa S,Kirkner D J,Spencer B F.Stochastic damage model for brittle materials subjected to monotonic loading[J].Journal of Engineering Mechanics.1996(8):788~795.
    [34]李杰,张其云.混凝土随机损伤本构关系[J] .同济大学学报,2001,29(10):1135~1141.
    [35]唐春安.岩石破裂过程中的灾变[M] .北京:煤炭工业出版社,1993.
    [36]李浩.岩石细观损伤理论及其力学过程模型的研究[D].武汉:武汉水利电力大学。1998.
    [37]李浩,任林娥.岩石软化的细观损伤模型[J] .武汉大学学报(工学报),2001,34(2):6~9.
    [38]秦跃平.岩石损伤力学模型及其本构方程[J] .岩石力学与工程学报,2001,20(4): 560~562.
    [39]王学滨,海龙,黄梅,等.岩样单轴拉伸损伤不均匀性分析[J].岩石力学与工程学报,2004,23(9):1446~1449.
    [40]杨松岩,俞茂宏.一种基于混合物理论的非饱和岩土类材料的弹塑性损伤模型[J].岩土工程学报,1998,20(5):58~63.
    [41]杨松岩,俞茂宏.多相孔隙介质的本构描述[J].力学学报,2000,32(1):11~24.
    [42]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628~633.
    [43]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):54~57.
    [44]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226~3231.
    [45]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787~791.
    [46]韦立德,徐卫亚,邵建富.饱和和非饱和岩石损伤软化统计本构模型[J].水利水运工程学报,2003,2:12~17.
    [47] Dems K,Mroz Z.Stability condition for brittle plastic structure with propagation damage surface.J Struc Mech,1985,13(1):85~122.
    [48] Simo J C and Ju J W.Strain and stress based continuum damage models[J].Int.J.Solids Structure,1987,23:821~840.
    [49]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1990
    [50]陈良森,李长春.关于岩石的本构关系[J].力学进展.1992(22):173~181
    [51]殷有泉.岩石的塑性、损伤及其本构描[J]述.地质科学,1995,30(1):63~69
    [52]周光泉,陈德华,席道英.岩石连续损伤本构方程[J].岩石力学与工程学报,1995,14(3):229~235
    [53]沈新普,岑章志,徐秉业.弹脆性软化本构模型的特点及其数值计算[J].清华大学学报(自然科学版),1995,35(2):22~27.
    [54]周维垣,剡公瑞,杨若琼.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,1998,20(5):54~57.
    [55] Hubbert M.K.,Willis D.G.Mechanics of hydraulic fracturing[J].Journal ofPetroleum Technology,1957,9(6):153~168.
    [56] Hubbert M.K.,Willis D.G.Mechanics of hydraulic fracturing[J].Trans.,AIME(1957)210:153~166.
    [57] Haimson B.,Fairhurst C.Initiation and Extension of Hydraulic Fractures in Rocks.SPE 1710.
    [58] Haimson B.,Fairhurst C.Initiation and Extension of Hydraulic Fractures in Rocks[J].SPEJ,Sept.1967:310~318.
    [59] Haimson B.,Fairhurst C.Hydraulic Fracturing in Porous-Permeable Materials[R].SPE 2354.
    [60] Haimson B.Hydraulic Fracturing in Porous and non-porous rock and its potential for determining In-Situ stresses at great depth[D] .PhD thesis,U.of Minnesota,Minneapolis(July,1968).
    [61]黄荣樽.水力压裂裂缝的起裂与扩展[J].石油勘探与开发,第5期,1981.
    [62]李传亮,孔祥言.油井压裂过程中岩石破裂压力计算公式的理论研究[J].石油钻采工艺,2000,22(2):54~56.
    [63] Abbas Ali Daneshy.Rock properties controlling hydraulic fracture propagation[R].SPE 5752,1976.
    [64] Abbas Ali Daneshy.Experimental investigation of hydraulic fracturing through perforations.JPT,October 1973:1201~1206.
    [65] Abbas Ali Daneshy.Experimental Investigation of Hydraulic Fracturing Through Perforations[R].SPE 4333.October,1973
    [66] Behrmann L.A.and Elbel J.L.Effect of perforations on fracture initiation[J].JPT,May 1991:608~615.
    [67] Hazim H.Abass,David L.Meadows,et al.Oriented Perforations– A Rock Mechanicals View[R].SPE 28555
    [68] Yang Z.,Crosby D.G.,et al.Investigation of the factors influencing hydraulic fracture initiation in highly stressed formations[R].SPE 38043
    [69] Papanastasiou P.,Zervos A.Three-dimensional Stress Analysis of a Wellbore with Perforations and a Fracture[R].Paper SPE/ISRM 47378.July,1998
    [70] Ian C.Walton,David C.Atwood,et al.Perforating Unconsolidated Sands: An Experimental and Theoretical Investigation[R].SPE 79041
    [71]李传亮.射孔完井条件下的岩石破裂压力计算公式[J].石油钻采工艺,2002年,24(2):37~38.
    [72]银本才.压裂井射孔设计方法及其软件研制[D].西南石油学院工程硕士论文,2004.
    [73]胡永全,赵金洲,曾庆坤,徐树汉,谢慧华.计算射孔井水力压裂破裂压力的有限元方法.天然气工业,2003,23(2):58~59.
    [74]张广清,陈勉,殷有泉,孙华纯.射孔对地层破裂压力的影响研究.岩石力学与工程学报,2003,22(1):40~44.
    [75]邓金根,蔚宝华,王金凤,等.定向射孔提高低渗透油藏水力压裂效率的模拟试验研究[J].石油钻探技术,2003年,31(5):14~16.
    [76] Detournay E.and Carbonell R.Fracture mechanics analysis of the breakdown process in minifrac or leek-off tests[R].Paper SPE 28076,presented at the SPE/ISRM Rock Mechanics in Petrolwum Engineering Conference , Delft ,Netherland(August 8-10,1998.)
    [77] Detournay E.and Cheng A.Poroelastic Response of a borehole in a non-hydrostatic stress field[J].International Journal of Rock Mechanics and Mining Science & Geomechanics abstracts(June 1988)25,No.3,171~182.
    [78] Detournay E.and Cheng A.Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium[J].Int.J.Solids & Structure(March 1991)27,NO.13,1645~1662.
    [79] Detournay E.and Cheng A.Influence of pressurization rate on the magnitude of the breakdown pressure[R].Proc.,33rd Symposium on Rock Mechanics,Santa Fe,New Mexico,USA(1992),325~333.
    [80] Detournay E.and Cheng A.Fundamentals of poroelasticity[M].Comprehensive Rock Engineering,J.A.Hudson(ed.),Oxford,UK,Pergamon Press(1993)2,113~171.
    [81] Papanastasiou P.,Thiercelin M.,et al.The influence of plastic yielding on breakdown pressure in hydraulic fracturing[R].Proc.,35th U.S.Symposium on Rock Mechanics,Reno,Nevadda,USA(1995),281~286.
    [82] Papanastasiou P.and Thiercelin M.Influence of inelastic rock behavior in hydraulic fracturing[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts(June 1993)33,No.7,1241~1247.
    [83] Papanastasiou P . A coupled Elasto-plastic hydraulic fracturing model[ J ] . International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts(1997)34,240.
    [84] Van Dam D.B.,Papanastasiou P.,de Pater C.J.Impact of Rock Plasticity on Hydraulic Fracture Propagation and Closure[R].SPE 63172
    [85] Van Dam D.B.,Papanastasiou P.,de Pater C.J.Impact of Rock Plasticity on Hydraulic Fracture Propagation and Closure[R].SPE 78812
    [86] Shao J.F.and Homand S.Influences of Heat Convection and Plastic Deformation on Hydraulic Fracture Initiation and Reservoir Compaction[R].SPE 47387
    [87] Van Ketterij R.G.,de Pater C.J.Impact of Perforations on Hydraulic Fracture Tortuosity[R].SPE 56193
    [88] Ahmed Abou-sayed,Karim Zaki,et al.Fracture Propagation and Formation Disturbance during Injection and Frac-Pack Operation in Soft Compacting Rocks[R].SPE 90656.
    [89] Martin A.N.Crack Tip Plasticity: A Different Approach to Modeling Fracture Propagation in Soft Rocks[R].SPE 63171
    [90] David P.Yale, Brian Cowford.Plasticity and Permeability in Carbonates: Dependence on Stress Path and Porosity[R].SPE 47582
    [91] Griffith A . A . The phenomenon of rupture and flow in solids[J].Phil.Trans.Roy.Soc.London,1921,A221:163~198.
    [92] Orowan E.Fatigue and fracture of metals[M].John Wiley & Sons Inc.,New York,1952.
    [93] Irwin G.R.Analysis of stresses and strain near the end of a crack traversing a plate[J].J.App.Mech.1957,24:361~364.
    [94] Erdogan F.and Sih G.C.On the crack extension in plates under plane loading and tranverse shear[J].ASME,Journal of Basic Engineering,1963,85:519~527.
    [95] Chang K.J.On the maximum strain criterion– A new approach to the angled crack problem[J] .Engineering Fracture Mechanics,1981,14:107~124.
    [96] Hellan K.Introduction to fracture Mechanics[M].McGraw-Hill,International Editions,Singapore.
    [97] Sih G.C.Strain-energy-density factor applied to mixed mode crack problems[J].International Journal of Fracture,1974,10:305~321.
    [98] Rice J.R.Mathematical analysis in the mechanics of fracture.Fracture,An Advanced Treatise[M],New York,USA,Academic Press,1968.
    [99] Dugdale D.S.Yielding of steel sheets containing slits[J].J.Mech.Phys.Solids,1960,8:100~104.
    [100] Jason T . Dugdale crack in a material with continuous damage formation[J].Eng.Frac.Mech.1977,9:891~899.
    [101] Bui T.D.,Mamora D.D.,Lee W.J.Transient Pressure Analysis for Partially Penetrating Wells in Naturally Fractured Reservoirs[R].SPE 60289
    [102]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [103]冯西桥.脆性材料的细观损伤理论与损伤结构的安定分析[D].博士学位论文.清华大学,1995.
    [104]胡蓓雷,赵国藩.混凝土I-II复合型裂纹有效断裂准则[J].大连理工大学学报,1996,36(6):776~781.
    [105]谈金祝,黄文龙,戴树和.双轴向荷载I-II复合型裂纹积分断裂准则探讨[J].南京化工大学学报,1996,18(4):74~79.
    [106]林晓斌,孙国有,薛继良.I-II复合型裂纹的弹塑性有限元分析[J].浙江大学学报,1987,21(3):75~83.
    [107]陈增涛,王铎.复合型裂纹的混合开裂准则[J] .哈尔滨工业大学学报,1994,26(4):127~131.
    [108]戴羿,郑光华,洪其麟.复合型裂纹疲劳扩展规律的研究[J].航空学报,1987,11(8):572~578.
    [109]徐华荣,朱冠美,盛沛英,等.混凝土I、II复合型裂纹的断裂规律[J] .长江科学院院报,1987(2):13~20.
    [110]徐道远,梁正平,王德俊,等.混凝土I、II复合型裂纹断裂判据的探讨[J] .水利学报,1982(6):57~61.
    [111]于骁中,张彦秋,曹建国,等.混凝土复合型(I、II)裂纹断裂准则的计算和实验研究[J] .水利学报,1982(6):27~37.
    [112]孙国有,薛继良,兰青生,等.空洞扩张与I-II复合型裂纹的断裂参量[J] .浙江大学学报,1994,28(1):1~8.
    [113]徐纪林,薛以年,韩金虎.平面应力弹塑性复合型断裂研究[J] .力学学报,1984,16(5):495~503.
    [114]谈金祝,黄文龙,戴树和.双轴向载荷I-II复合型裂纹J积分断裂准则探讨[J] .南京化工大学学报,1996,16(4):74~79.
    [115]杨秀夫,刘希圣,陈勉,等.国内外水压裂缝几何形态模拟研究的发展现状.西部探矿工程,1997,9(6):8~11.
    [116]杨秀夫.三维水力压裂的数值模拟研究[D] .博士学位论文,石油大学(北京),1998.
    [117]邱蜀峰.中高渗透油藏压裂设计与分析模型研究[D].硕士学位论文,西南石油大学,2005.
    [118] Howard G.C.,Fast C.R.Hydraulic Fracturing[M].Monograph series,Dallas,1970.
    [119] Khristianovich S.A.,Zheltov,Y.P.Formation of Vertical Fracture by mean of highly viscous liquid[sR].Proceeding of the world Petroleum Congress,Seetion11,1955.
    [120] Zheltov Y.P.,Khristianovich S.A.On the mechanism of hydraulic fracturing of an oil-bearing stratum[R].Izvest,Akad,Nauk SSR,OTN(1995)5,3~41(in Russian).
    [121] Geertsma J.Dekerk F.A rapid method of predicting Width a extent of hydraulically induced fractures[J].JPT,Dec,1969.
    [122] Daneshy A.A.Numerical Solution Sand Transport in hydraulic fracturing[J].JPT,Jan,1978.
    [123] Daneshy A.A.On the design of vertical hydraulic fractures[J].Trans,AIME,JPT(Jan.1973):83~93.
    [124] Perkins T.K.,Kern L.R.Width of hydraulic fracture[J].JPT(Sept,1961):937~949.
    [125] Nordgren R.P.Propagation of vertical hydraulic fracture[J].Soc.Pet.Eng.J,Aug,1972,306~314.
    [126] Biot M.A.,Masse L.,Medlin W.L.A two-dimensional theory of fracture propagation[R].SPEPE(Jan.1986):17~30.
    [127] Geertsma J.A comparison of the theory for predicting width and extent of the AIME.Mach,Vol.101,1979.
    [128] Barenblatt G.L.Mathematical theory of equilibrium cracks[J].Advance in applied mechanics(1962)7,55.
    [129] Abe H.,Mura T.,Keer L.M.Growth rate of a penny-shaped crack in hydraulic fracturing of rocks[J].Geophys.Res.(1976)81,5335.
    [130] Warpinski N.R.Measurement of width and pressure in a propagating hydraulic fracture[J].SPEJ(Feb,1985)46-54.
    [131] Simonson E.R.,Abou Sayed,Clitfon R.J.Containment of massive hydraulic fracture[J].SPEJ,Feb,1978.
    [132] Tada H.,Paris P.,Irwin G.The stress analysis of crack handbook.Del research corp.,Hellertown,Pa(1973).
    [133] Yew C.K.,Koelsch T.A.Study on the mechanics of hydraulic fracturing.EXXON production research company special report,EPR.15PR.80.
    [134] Lu C.K.,Yew C.H.On bonded half-planes containing two arbitrarily oriented cracks study of containment of the hydraulically induced fractures.
    [135] Van Eekelen.Hydraulic fracture geometry:Fracture containment in layered formation[J].SPEJ,June,1982.
    [136] Advani S.H.,Ganggerao,H.V.S,Chang,H.Y.,et al.Hydraulic Fracture modeling for the Eadtern Gas Shales Project[R].Proceeding DOE Second Eastern Gas Shales Symposim,Morgantown,1978.
    [137] Advani S.H.,Chang H.Y.Komar C.A.,et al.Rock mechanics aspects of hydraulic fracturing in the Devonian Shale[R].2lth Rock Mechanics Symposium,1980.
    [138] Advani S.H.,Lee J.K.Finite element model simulations associated with hydraulic fracturing[J].SPEJ,Vol22,April,1982.
    [139] Cleary M.P.,Keck R.G.,Mear M.E.Microcomputer models for the design ofhydraulic fractures[R].SPE 11628.
    [140] Settari A.Simulation of hydraulic fracturing processes[J].SPEJ,Dec.1980,487~500.
    [141] Palmer I.D.Comprehensive design formulate for hydraulic fracture[R].SPE 9295.
    [142] Palmer I.D.,Davids M.W.,Jeu S.J.Analysis of unconventional behavior obsevered during coalbed fracturing treatments[R].Proceedings 1989 Int CBM Symp,1989.
    [143] Palmer I.D.,Kinard C.M.,Fryar R.T.Sandless water fracture treatment in Warrior Basin Coalbeds[R].Proceedings 1993 Int CBM Symp,1993.
    [144] Palmer I.D.,Carrol H.B.Numerical solution for Height and Elonged hydraulic fracturing[R].SPE 11627.
    [145] Palmer I.D.,Craig H.R.Modeling of asymmetric vertical growth in eongated hydraulic fracture and application to first MWX Stimulation[R].SPE 12879.
    [146] Luiskutty C.T.,Tomutsa L.,Palmar L.D.A three-dimensional semi-analytical model of hydraulic fracture growth through weak barriers[J].SPE/PE,Aug,1989.
    [147] Settari A.,Cleary M.P.Development and testing of pseudo-three-dimensional model of hydraulic fracture Geometry[R].SPE 10505.
    [148]依同春,王鸿勋.水平裂缝压裂设计数值方法的研究[J].华东石油学报,1986.
    [149]吴迪祥,赵学孟,郭恩昌.水力压裂裂缝几何形态的数值模拟[J].石油钻采工艺,1986(6):59~65
    [150]刘翔颚.水力压裂裂缝垂向延伸机理研究报告.1988.
    [151]王鸿勋.水力压裂原理(第一版)[M].北京:石油工业出版社,1987.
    [152]王鸿勋,张士诚.水力压裂设计数值计算方法(第一版)[M].北京:石油工业出版社,1998.
    [153]郭大立,纪禄军,赵金洲等.煤层压裂裂缝三维延伸数值模拟及产量预测研究[J].应用数学和力学,2001,22(4):337~344.
    [154] Zhao Jinzhou,Hu Yongquan,Guo Dali et al.Hydraulic fracturing technique of low permeability coalbed methane reservoir[R].SPE 38095.
    [155]陈勉,陈治喜,黄荣樽,邓金根.非均质地层水力压裂研究[J].东北大学学报(自然科学版),Vol.15,采矿专辑,1994,309-312.
    [156]陈治喜,陈勉,黄荣樽,等.层状介质中水力裂缝的垂向扩展[J].石油大学学报(自然科学版),1997,21(4):23~27.
    [157]杨丽娜,陈勉.水力压裂中多裂缝间相互干扰力学分析[J].石油大学学报(自然科学版),2003,27(3):43~45.
    [158]仇伟德,鲁连军.用于预测水力裂缝缝高的新拟三维流场模型[J].石油大学学报(自然科学版),2002,26(5):48~52.
    [159] Clifton R.J.,Abou-Sayed A.S.On the computation of three-dimensional geometry of hydraulic fractures[R].SPE 7943.
    [160] Clifton R.J.,Abou-Sayed A.S.A variational approach to the three-dimensional geometry of hydraulic fractures[R].SPE/DOE 9879.
    [161] Cleary M.P.,Kavvadas M.,Lam K.Y.A fully three-dimensional hydraulic fracture simulator[R].SPE 11631.
    [162] Cleary M.P.,Lan K.Y.Development of a fully three-dimensional simulator of analysis and design of hydraulic fractures[R].SPE/DOE 11631.
    [163] Cleary M.P.Keek R.G.,Mear M.E.Microcomputer models of the design of hydraulic fractures[R].SPE/DOE 11628.
    [164] Bouteca M.J.3D analytical model for hydraulic fracturing.Theory and field test[R].SPE 13276.
    [165] Lee,E.L.Jants.A three-dimensional hydraulic propagation theory coupled with two- dimensional proppant transport[R].SPE 19770.
    [166] Settari A.,Cleary M.P.Three-dimensional simulation of hydraulic Fracturing[J].JPT,July,1984.
    [167] Papanastasiou P., Zervos A.Three-Dimensional Stress Analysis of a Wellbore with Perforations and a Fracture[R].SPE 47378.
    [168]陈勉,陈志喜,黄荣樽.三维弯曲水力裂缝力学模型及计算方法[J].石油大学学报,1995年7月,第9卷.
    [169]张平,赵金洲,郭大立.水力压裂裂缝三维延伸数值模拟研究[J].石油钻采工艺,1997,19(3):53~59.
    [170]张平,赵金洲.裂缝三维延伸数值模拟与端部脱砂压裂技术[J].河南石油,1997(2):28~31.
    [171]李勇明,赵金洲,郭建春.考虑缝高压降的裂缝三维延伸数值模拟[J].钻采工艺,2001,24(1):34~37.
    [172]郭建春,赵金洲,敖西川.压裂压力递减分析三维模型与应用[J].天然气工业,2003,23(2):72~74.
    [173]王仲茂,胡江明.水力压裂形成裂缝的形态研究[J].石油勘探与开发,1994,21(6):64~68.
    [174]阳友奎,肖长富,邱贤德,吴刚.水力压裂裂缝形态与缝内压力分布[J].重庆大学学报(自然科学版),1995,18(3):20~26.
    [175]王晓泉,陈作,姚飞.水力压裂技术现状及发展展望[J].钻采工艺,1998,21(2):28~32.
    [176]胥元刚.水力压裂的几个新进展[J].西安石油学院学报,1998,13(4):51~54.
    [177]李峰,汪越胜,赵经文.油气井压裂裂缝高度分析[J].哈尔滨工业大学学报,1999,31(4):22~25.
    [178]姚飞,王晓泉.水力裂缝起裂延伸和闭合的机理分析[J].钻采工艺,2000,23(2):21~24.
    [179]楼一珊,黄立新,杨群,向东.利用地应力计算压裂裂缝几何参数的新方法[J].江汉石油学院学报,2000,22(3):57~58.
    [180]练章华,康毅力,徐进,徐兴华.裂缝宽度预测的有限元数值模拟[J].天然气工业,2001,21(3):47~50.
    [181]马新仿,黄少云,张士诚.全三维水力压裂过程中裂缝及近缝地层的温度计算模型[J].石油大学学报(自然科学版),2001,25(5):38~41.
    [182]马新仿,张士诚.水力压裂技术的发展现状[J].河南石油,2002,16(1):44~47.
    [183]杨秀夫,陈勉,刘希圣.水压裂缝缝内流场的理论研究[J].西南石油学院学报,2002,24(1):87~90.
    [184]王秀娟,赵永胜,王良书,兰玉波.大庆喇萨杏油田水力压裂人工裂缝形态研究[J].石油学报,2002,23(4):51~55.
    [185]蒋廷学,汪绪刚,关文龙,曹斌.裂缝强制闭合条件下的压降分析新模型[J].2003(1):78~81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700