用户名: 密码: 验证码:
膏溶角砾岩力学特性及水损伤模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膏溶角砾岩是一类富含粘土矿物的水敏感性岩体,其强度遇水迅速降低这一特点对该类岩石在隧道工程中的应用具有十分重要的影响,它的强度和变形特征,将直接关系着工程设计、施工和运营的稳定性。
     本文在室内膨胀试验和强度试验的基础上,对膏溶角砾岩的膨胀特性和力学特性进行了比较系统的研究,并通过微观观测对膏溶角砾岩中水-岩相互作用的微观机理进行了探讨,取得了以下部分结果:通过膨胀试验,得出了膏溶角砾岩的膨胀力和膨胀应变的变化规律,提出了Hunder-Amberg修正模型。在此基础上引入时间因素,建立了膏溶角砾岩的时变膨胀本构关系。
     通过单轴和三轴试验获得了膏溶角砾岩在不同含水量、不同围压下的应力-应变曲线特征、变形及强度参数;总结了膏溶角砾岩的应力-应变曲线、弹性模量及强度随围压和含水量的变化规律,以及含水量对脆延转换的影响。
     通过粉晶x衍射、电子扫描电镜等微观试验,研究了水对膏溶角砾岩的微观结构的影响,探讨了水在膏溶角砾岩的赋存方式,从力学作用、物理作用、化学作用等方面分析了水-岩相互作用的机理,在此基础上建立了膏溶角砾岩的水损伤模型。
     结合以上试验结果,对自由能、比自由能的重新定义,并在热力学的基础上,引入水的损伤,将水和力产生的损伤耦合起来,建立了考虑膨胀和损伤影响的膏溶角砾岩的弹塑性本构模型。该模型能很好地模拟岩石应力-应变的峰后曲线。
     本文在试验方面详细研究了膏溶角砾岩的膨胀和力学特性,建立了膏溶角砾岩的膨胀模型和水损伤模型;在理论方面,通过对自由能、比自由能的重新定义,建立了考虑膨胀影响的膏溶角砾岩弹塑性本构模型。本文的研究成果可为类似于膏溶角砾岩这样的水敏感性岩石地层中的设计、施工和运营提供参考。
Gypsum breccia is a type of water-sensitive rock rich in clay. The strength of gypsum breccia decreases rapidly while meeting water, which is critical to the design, construction and maintenance of relevant projects.
     Based on the strength and swelling tests, the swelling characteristics and the mechanical properties of this rock are investigated. The microcosmic mechanism of Water-Rock Interaction(WRI) in gypsum breccia is addressed through microscopic observation. The main research contents are listed as follows:
     According to the swelling test, the change patterns between the swelling stress and the strain of gypsum breccia are obtained, and the improved Hunder-Amberg model is proposed. After that, a constitutive law describing one-dimensional unstable expansion is established by introducing the time factor.
     By the uniaxial and triaxial compression tests, the stress-strain curve, the deformation and strength parameters of gypsum breccia with different initial water contents and different confining pressures are determined, and the change patterns are generalized. The effect of the water content on the brittle-ductile transformation is analyzed.
     With the micro-measurement methods, SEM and XRD, the existing forms of water molecules, that have an influence on the microstructure in gypsum breccia is studied. The mechanism of water-rock interaction is analyzed in the mechanics, physics and chemistry ways. Last, a water damage model is developed.
     From the above results, the re-definition of the free energy and the specific free energy and the introduction of water damage, based on thermodynamics and continuum damage mechanics, the elastic-plastic constitutive model of gypsum breccia considering expansion and damage, are given. Using this model proposed, the rock stress-strain curve after the peak can be simulated well.
     To sum up, the swelling characteristics and the mechanical properties of gypsum breccia are detailedly studied through experiments. The swelling models and the water damage model are established. After the free energy and the specific free energy are re-defined in theory, the elastic-plastic constitutive model of gypsum breccia considering expansion and damage are built. The results obtained here are also applicable to water-sensitive rocks which characteristics are similar to gypsum breccia.
引文
[1] Lajtai E. Z. Microscopic fracture process in a granite[J]. Rock Mechanics and Rock Engineering. 1998, 31(4): 237-250.
    [2] Haimson, B.. True triaxial stresses and the brittle fracture of rock[J]. Pure and Applied Geophysics. 2006, 163(5-6): 1101-1130.
    [3] Rodríguez-Gordillo J., Sáez-Pérez M. P.. Effects of thermal changes on Macael marble: Experimental study[J]. Construction and Building Materials. 2005, 20(6): 355-365.
    [4] Louis, L., David, C. et. Microstructural control on the anisotropy of elastic and transport properties in undeformed sandstones[J]. International Journal of Rock Mechanics and Mining Sciences. 2005, 42(7-8 SPEC. ISS.): 911-923.
    [5] Lashkaripour, G. R.. Predicting mechanical properties of mudrock from index parameters[J]. Bulletin of Engineering Geology and the Environment. 2002, 61(1): 73-77.
    [6] Niandou, H., Shao, et.. Laboratory investigation of the mechanical behaviour of tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences. 1997, 34(1): 3-16.
    [7]周维垣.高等岩石力学[M],北京:水利电力出版社, 1990.
    [8] ISRM Commission on Swelling Rocks, Suggested Methods for Laboratory Testing of Argillaceous Swelling Rocks, ISRM Commission on Swelling Rocks, 1989.
    [9] Huang S. L., Aughenbaugh N. B.. Swelling Pressure Studies of Shales[J]. International Journal of Rock Mechanics and Mining Sciences. 1986, 23(5): 371-377.
    [10] Einstein H. H.. Tunneling in Swelling Rock[J]. Underground Space. 1979, 4(1), 51-61.
    [11]孙钧,李成江.复合膨胀渗水围岩-隧洞支护系统的流变机理及其粘弹塑性效应,中国科学院基金资助课题,上海, 1985.
    [12]陈宗基,闻营梅.膨胀岩与隧洞稳定[J].岩石力学与工程学报, 1983, 2(1): 1-10.
    [13]温春莲.初始含水率,容重及载荷对膨胀岩特性影响的试验研究[J].岩石力学与工程学报, 1992, 11(3): 304-311.
    [14]张玉军,唐仪兴.李家窑膨胀岩膨胀性能的试验研究[J].岩土力学, 1999, 20(3): 35-40.
    [15] Robertson A. M.. Lateral Swelling Pressure in Active Clay[C]. Sixth Regional Conference for Africa on Soil Mechanics & Foundation Engineering, Darbanm South Africa, September 1975.
    [16] Villar M. V., Lloret A.. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science. 2008, 39(1-2): 38–49.
    [17] Holtz W. G., Gibbs H. J.. Engineering Properties of Expansive Clays, Proc. Am. Soc. Civ. Engrs.121, 1956.
    [18] Komornik A., Zeitten J. G.. Laboratory Determination of Lateral and Vertical Stresses in Compacted Swelling Clay[J]. J Mater. 1970, 5(1): 108-128.
    [19] Franklin J. A.. A Ring Swell Test for Measuring Swelling and Shrinkage characteristics of rock[J]. International Journal of Rock Mechanics and Mining Sciences. 1984, 21(3): 113-121.
    [20]傅学敏,潘清莲.软岩的膨胀规律和膨胀机理[J].煤炭学报, 1990(2): 1345-1367.
    [21] Davison L. R., Atkinson J. H.. Continuous Oedometer Testing of Soils[J]. Quarterly Journal of Engineering Geology, London, 1990, Vo1.23, 347-355.
    [22] Lo, K. Y., Lee, Y. N.. Time-Dependent Deformation Behaviour of Queenston Shale[J]. Canadian Geotechnical Journal. 1990(5): 461-471.
    [23]杨庆,焦建奎,栾茂田.膨胀岩土侧限膨胀试验新方法与膨胀本构关系[J].岩土工程学报, 2001, 23(1): 49-52.
    [24]杨庆,廖国华.膨胀岩三轴膨胀试验的研究[J].岩石力学与工程学报, 1994, 13(1): 51-58.
    [25]杨庆.膨胀岩与巷道稳定[M].冶金工业出版社, 1995.
    [26]杨庆,廖国华.膨胀岩三维膨胀本构关系的研究[J].岩石力学与工程学报, 1995, 14(1): 33-38.
    [27]茅献彪,缪协兴.膨胀岩特性的细观力学试验研究[J].矿山压力与顶板管理, 1995(1): 60-63.
    [28]缪协兴,杨成永.膨胀岩体中的湿度应力场理论[J].岩土力学, 1993, 14(4): 49-55.
    [29]卢爱红,茅献彪.湿度应力场的数值模拟[J].岩石力学与工程学报, 2002, 21(增2): 2470-2473.
    [30]王贤能,韩会增,文江泉.膨胀岩边坡工程中膨胀与流变的耦合效应[J].地质灾害与环境保护, 1997, 8(4): 33-40.
    [31]焦建奎.膨胀岩膨胀特性的试验研究[D].大连理工大学硕士学位论文, 1999.
    [32] Pejon, O. J., Zuquette, L. V.. Effects of strain on the swelling pressure of mudrocks[J]. International Journal of Rock Mechanics and Mining Sciences. 2006, 43(5): 817-825.
    [33] Pejon, O. J., Zuquette, L. V.. Analysis of cyclic swelling of mudrocks[J]. Engineering Geology. 2002, 67(1-2): 97–108.
    [34]朱珍德,张爱军,邢福东.红山窑膨胀岩的膨胀和软化特性及模型研究[J].岩石力学与工程学报, 2005, 24(03): 389-393.
    [35]朱珍德,张爱军,张勇,邢福东.基于湿度应力场理论的膨胀岩弹塑性本构关系[J].岩土力学, 2004, 25(05): 700-702.
    [36]沈照理,王焰新.水-岩相互作用研究的回顾与展望[J].中国地质大学学报, 2002, 27(2): 820-826.
    [37]王永新.水-岩相互作用机理及其对库岸边坡稳定性影响的研究[D].重庆大学. 2006.
    [38]沈照理.应该重视水-岩相互作用的研究[J].水文地质工程地质. 1991, 18(2): 1-4.
    [39]沈照理.应该继续重视与开展水-岩相互作用的研究[J].水文地质工程地质, 1997(4): 16-20.
    [40] Seedsman R.. The behaviour of clay shales in water[J]. Canadian Geotechnical Journal. 1986, 23(1): 18-22.
    [41] Ojo, O.. The effect of moisture on some mechanical properties of rock. Mining Science and Technology[J]. 1990, 10(1): 45-157.
    [42] Colback P S B, Wild B L.. Influence of moisture content on the compress strength of rock. Proc.3rd Canadian Rock Mech symp[C]. University of Toronto, 1965, 385-391.
    [43] Laijtai E Z, Schmidtke R H, Bielus L P.. The effect of water on the time - dependent deformation and fracture of a granite[J]. International Journal of Rock Mechanics and Mining Sciences. 1987, 24(4): 247-255.
    [44] Hawkins, A. B., McConnell, B. J.. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology, 1992, 25(2):115-130.
    [45] Dunning J, Douglas B, MillerM, et al. The role of the chemical environment in frictional deformation: stress corrosion cracking and comminution[J]. Pageoph., 1994, 143(1/2/3): 151-178.
    [46] Atkinson B K, Meredith P G.. Stress corrosion cracking of quartz: a note on the influence of chemical environment[J]. Tectonophysics, 1981, 77(1-2): 1-11.
    [47] Logan, J. M., Blackwell, M. L.. The influence of chemically active fluids on the frictional behavior of sandstones. EOS, Trans. Am. Geophys. Union, 1983, 64: 835-842.
    [48] Dieterich, J. H., Conrad, G.. Effects of humidity on time and velocity dependent friction in rocks[J]. Journal of Geophysical Research. 1984, 89(B6): 4196-4202.
    [49] Feucht L J, LoganM. Effects of chemically active solutions on shearing behavior of a sandstone[J]. Tectonophysics, 1990, 175(1/2/3): 159-176.
    [50] Karfakis, M. G., Akram, M. Effects of chemical solutions on rockfracturing[J]. International Journal of Rock Mechanics and Mining Sciences 1993, 30(7): 1253-1259.
    [51] Rebinder P. A, Schreiner L .A, Zhigach K. F, Hardness reducers in drilling: a physico-chemical method of facilitating mechanical destruction of rocks during drilling[M]. Moscow: A kadNaunk, Tansl, by CSIRO, Melboune, Australia: [s.n], 1994.
    [52]陈刚林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报, 1991, 34(3): 335-342.
    [53]吴海青.孔隙水对岩石变形特性的影响及其工程意义[M].第二次全国岩石力学与工程学术会议论文集,知识出版社, 1989.
    [54]康红普.水对岩石的损伤[J].水文地质工程地质, 1994(3): 39-41.
    [55]缪协兴.湿度应力场理论的耦合方程[J].力学与实践, 1995, 17(6): 22-24.
    [56]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学, 2000, 21(1): 64-67.
    [57]颜玉定.饱水时间对岩石动态参数的影响[A].岩土力学与工程的新进展[C].广州:华南理工大学出版社, 1996. 7-11.
    [58]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性-第一部分:试验研究[J].岩石力学与工程学报, 2000, 19(4): 403-407.
    [59]王咏嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性-第二部分:时间分形分析[J].岩石力学与工程学报, 2000, 19(5): 551-556.
    [60]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测[J].岩石力学与工程学报, 2002, 21(7): 935-939.
    [61]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学, 2002, 23(3): 284-287.
    [62]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报, 2003, 22(4): 547-551.
    [63]陈炳瑞,冯夏庭,丁梧秀等.化学腐蚀下岩石应力-应变进化神经网络本构模型[J].东北大学学报(自然科学版), 2004, 25(7): 695-698.
    [64]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩石力学与工程学报, 2004, 25(9): 1363-1367.
    [65]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J].岩石力学与工程学报, 2004, 23(21): 3571-3576.
    [66]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J].岩石力学与工程学报, 2005, 24(8): 1283-1288.
    [67]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测.岩石力学与工程学报, 2002, 21(7): 935-939.
    [68]谭卓英等.酸化环境下岩石强度弱化效应的实验模拟研究[M].第六次全国岩石力学与工程学术会议论文集,武汉, 2000.
    [69]谭卓英,刘文静,闭历平等.岩石强度损伤及其环境效应实验模拟研究[J].中国矿业, 2001, 10(4): 49-53.
    [70]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报, 2002, 21(6): 822-827.
    [71]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报, 2002, 21(4): 526-531.
    [72]汤连生,王思敬.岩石水化学损伤的机制及量化方法探讨[J].岩石力学与工程学报, 2002, 21(3): 314-319.
    [73]汤连生,张鹏程,汪洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报, 2004, 23(19): 3337-3341.
    [74]汤连生,周翠英.渗透与水化学作用之受力岩体的破坏机制[J].中山大学学报(自然科学版), 1996, 35(6): 95-100.
    [75]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版), 2000, 39(5): 126-128.
    [76]朱效嘉.软岩的水理性质[J].矿业科学技术, 1996, 4(3): 46-50.
    [77]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利电力出版社, 1998.
    [78]熊厚金,张良辉,邹小平等.岩土工程化学导论[J].岩土工程学报, 1999, 21(4): 403-407.
    [79]何满潮,熊伟,胡江春,武贵华.松散软岩工程中的问题及对策[J].矿山压力与顶板管理, 2005, 22(2): 47-48.
    [80]何满潮,景海河,孙晓明著.软岩工程力学[M].北京:科学出版社, 2002.
    [81]冯启言,韩宝平.鲁西南地区红层软岩水岩作用特征与工程应用[J].工程地质学报, 1999, 7(3): 266-271.
    [82]刘长武,陆士良.软岩的风化效应及其对巷道维护的影响[J].中国矿业大学学报, 2000, 29(1): 70-72.
    [83]刘长武,陆士良.泥岩遇水崩解软化机理的研究[J].岩土力学, 2000, 21(1): 28-31.
    [84]谭罗荣,孔令伟.特殊岩土工程土质学[M].北京:科学出版社, 2006.
    [85]周翠英,邓毅梅,谭祥韶,刘柞秋.软岩在饱水过程中微观结构变化规律研究[J].中山大学学报:自然科学版, 2003, 42(4): 98-102.
    [86]周翠英,邓毅梅,谭祥韶,林春秀.软岩在饱水过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报, 2004, 23(22): 3813-3817.
    [87]周翠英,邓毅梅,谭祥韶,刘柞秋.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报, 2005, 24(1): 33-38.
    [88]周翠英,谭祥韶,邓毅梅,张乐民.特殊软岩软化的微观机制研究[J].岩石力学与工程学报, 2005, 24(3): 394-400.
    [89]周翠英,张乐民.软岩与水相互作用的非线性动力学过程分析[J].岩石力学与工程学报, 2005, 24(22): 4036-4041.
    [90]徐则民,黄润秋,杨立中.斜坡水-岩化学作用问题[J].岩石力学与工程学报, 2004, 23(16): 2778-2787.
    [91]徐则民,杨立中.路基边坡岩体腐蚀的评价研究[J].铁道工程学报, 2005, 24(22): 4036-4041.
    [92]徐则民,黄润秋,范柱国.滑坡灾害孕育一激发过程中的水-岩相互作用[J].自然灾害学报, 2005, 14(1): 1-9.
    [93]徐则民,黄润秋,唐正光.岩体化学风化的非连续性及其科学意义[J].地球科学进展, 2006, 21(7): 706-712.
    [94]徐则民.水岩化学作用对斜坡水文地质及滑坡的影响[J].自然灾害学报,2007, 16(5): 16-23.
    [95] Kachanov, L. M., On the creep fracture time[J]. Izv. AN SSR, Otd. Tekhn. Nauk, 1958, (8): 23-31.
    [96] Rabotnov Y N. On the equation of state for creep[J]. Progress in Applied Mechanics. 1963, 307-315
    [97] Lemaitre J. and Chaboche J. L.. Aspect phenomen-ologique dela Ruptrue par endommagement[J]. demec. Appl.. 1978, 2(3).
    [98] Hult J.. Effect of voids on creep rate and strength, damage mechanics and continuum model[J] (Eds.: N.stubbs and Krajcinovc D.). ASCE, New York, 1985, 13-24.
    [99] Leckie, F. A.. The micro- and macromechanics of creep rupture[J]. Engineering Fracture Mechanics 1986, 25(5-6): 505-521.
    [100] Murakami S.. Anisotropic aspects of material damage and application of continuum damage mechanics, continuum damage mechanics. Theory and Applications (Eds: Krajcinovc D./ Lemaitre J. L.), Springer-Verlay Wien-New York. (1987): 91-134.
    [101] Murakami S.. Mechanical modeling of material damage[J]. Journal of Applied Mechanics, Transactions ASME. 1988, 55(2): 280-286.
    [102] Weibull W. Kg. Svenska Vetanskapsakad Handl., 151, Stockholm(1939).
    [103] Sahimi M, Arbabi S.. Mechanics of disordered solids. I. Percolation on elastic networks with central forces, II. Percolation on elastic networks with bond-bending forces, III. Fracture properties[J]. Physical Review B. 1993, 47(2): 695-722
    [104]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社, 1993.
    [105]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报, 1996, 15(1): 55-61.
    [106]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报, 1998, 17(6): 628-633.
    [107]曹文贵,赵衡,张玲,张永杰,考虑损伤阀值影响的岩石损伤统计软化本构模型及其参数确定方法[J].岩石力学与工程学报, 2008, 27(6): 1148-1154.
    [108] Khoroshun L. P., Nazarenk L. V. A model of the short-term damageability of transversally isotropic material[J]. International Applied Mechanics. 2001, 37(1): 66-74.
    [109]谢和平.岩石,混凝土损伤力学[M].徐州:中国矿业大学出版社, 1990.
    [110] Curran D R, Shockey D A, Seaman L. Dynamic fracture criteria for a polycarbonate[J]. Journal of Applied Physics. 1973, 44(9): 4025-4038.
    [111]柯孚久,白以龙,夏蒙芬.理想微裂纹系统演化的特征[J].中国科学(A辑), 1990(6): 621-631
    [112]柯孚久,白以龙,夏蒙芬.固体中微裂纹系统统计演化的基本描述[J].力学学报, 1991, 23(3): 290-298.
    [113] Han W S, Xia M F, Bai Y L. Statistical formulation and experimental determination of growth rate of micrometer cracks under impact loading[J]. International Journal of Solids and Structures. 1997, 34(22): 2905-2925.
    [114]夏蒙芬,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(I)[J].力学进展, 1995, 25(1): 1-40
    [115]夏蒙梦,柯孚久,吕永华,白以龙.理想微裂纹系统中的随机扩展效应[J].中国科学(A辑), 1991(3): 276-284.
    [116] Budiansky, B., O'connell, R. J.. Elastic moduli of a cracked solid[J]. International Journal of Solids and Structures. 1976, 12(2): 81-97.
    [117] Gurson A. L.. Theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, Transactions of the ASME. 1977, 99(H1): 2-15.
    [118] Horii H., Nemat-Nasser S. Overall moduli of solids with microcracks: load-induced anisotropy[J]. Journal of the Mechanics and Physics of Solids.1983, 31(2): 155-171.
    [119] Nemat-Nasser S., Obata M.. Microcrack model of dilatancy in brittle materials[J]. Journal of Applied Mechanics, Transactions ASME. 1988, 55(1): 24-35.
    [120] Ju J. W., Lee X.. Micromechanical damage models for brittle solids, part I: tensile loadings[J]. Journal of Engineering Mechanics. 1991, 117(7): 1495-1514.
    [121] Lee X., Ju J. W.. Micromechanical damage models for brittle solids, part II: compressive loadings[J]. Journal of Engineering Mechanics. 1991, 117(7): 1515-1536.
    [122] Bazant, Z. P., Prat, P. C.. Microplane model for brittle plastic material: part I Theory[J]. Journal of Engineering Mechanics. 1988, 114(10): 1672-1688.
    [123] Bazant Z. P., Prat, P. C.. Microplane model for brittle plastic material: part II.Verification[J]. Journal of Engineering Mechanics. 1988, 114(10): 1689-1702.
    [124] Bazant, Zdenek P., Ozbolt, Josko.. Nonlocal microplane model for fracture, damage, and size effect in structures[J]. Journal of Engineering Mechanics. 1990, 116(11): 2485-2505.
    [125]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报. 1993, 12(4): 8-15.
    [126]杨更社,谢定义,张长庆等.岩石损伤特性的CT识别[J].岩石力学与工程学报, 1996, 15(1): 48-54.
    [127]杨更社,谢定义,张长庆等.岩石单轴受力CT识别损伤本构关系的探讨[J].岩土力学, 1997, 18(2): 29-34.
    [128]杨更社,谢定义,张长庆等.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报, 1998, 17(3): 279-285.
    [129]杨更社.岩石细观损伤力学特性及本构关系的CT识别[J]. 2000, 25(增刊): 102-106.
    [130]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报, 1999, 18(5): 497-502.
    [131]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学, 2001, 22(2): 130-133.
    [132]任建喜,葛修润,杨更社.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报, 2001, 20(4): 425-431.
    [133]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报, 1995, 17(1): 24-30.
    [134]肖洪天,周维垣.脆性岩石变形与破坏的细观力学模型研究[J].岩石力学与工程学报, 2001, 20(2): 151-155.
    [135]刘立,朱文喜,路军富等.层状岩体损伤演化与应变关系的研究[J].岩石力学与工程学报, 2006, 25(2): 350-354.
    [136] Marigo J. J.. Modelling of brittle and fatigue damage for elastic material by growth of microvoids[J]. Eengineering Fracture Mechanics, 1985, 21(4): 861-874.
    [137] Krajcinovc D., Fonseka G U.. Continuous damage theory of brittle materials, part I and part II[J]. ASMEJ. Appl. Mech.. 1981, 48(4): 809-824.
    [138] Rousselier G.. Finite deformation constitutive relations including ductile fracture damage. Three-dimensional Constitutive relations and Ductile Fracture (Eds: S. Nemat-nasser), North-Holland Publishing Company, 1981.
    [139] Lemaitre J.. Continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, Transactions of the ASME. 1985, 107(1): 83-89.
    [140] Shen W., Peng. L. H. Yue, Shen Z., Tang X. D.. Elastic damage and energy dissipation in anisotropic solid material[J]. Engineering Fracture Mechanics. 1987, 33(2): 273-281.
    [141] Simo J. C., Ju J. W.. Strain- and stress-based continuous damage models, part I. formulation, part II .Computational aspects. International Journal of Solids and Structures. 1987, 23(7): 821-869.
    [142] Ju J. W.. On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. International Journal of Solids and Structures. 1989, 25(7): 803-833.
    [143] Halm D., Dragon A.. A model of anisotropic damage by mesocrack growth; unilateral effect[J]. International Journal of Damage Mechanics. 1996, 5(4): 384-402.
    [144] Shao J. F.. Poroelastic behaviour of brittle rock materials with anisotropic damage. Mechanics of Materials, 1998, 30(1): 41-53.
    [145] Shao J. F, et al. Model of induced anisotropic damage in granites. International Journal of Rock Mechanics and Mining Sciences. 1999, 36(8): 1001-1012.
    [146] Dougill J. W., Lau J. C., Burt N. J.. Toward a theoretical model for progressive failure and softening in rock, concrete and similar materials[J]. Mech in Engng., ASCE-END. 1976, 335-355.
    [147] Suaris. J., Ouyang C.. Damage model for cyclic loading of concrete[J]. Journal of Engineering Mechanics. 1990, 116(5): 1020-1035.
    [148] Loland K E.. Concrete damage model for load-response estimation of Concrete[J]. Cement and Concrete Research, 1980(10): 392-492.
    [149] Mazars J.. A model of unilateral elastic damagible material and its application to concrete[C]. Proceedings of the RILEM, International Conference on Fracture Mechanics of Concrete, Lausanne, Switzerland, 1985.
    [150] Dragon A., Mroz Z.. A Continuum model for plastic-brittle behaviour of rock and concrete. International Journal of Engineering Science. 1979, 17(2): 121-137.
    [151] Frantziskonis G, Desai C. S.. Constitutive model with strain softening[J]. International Journal of Solids and Structures. 1987, 23(6): 733-750.
    [152] Frantziskonis G, Desai C. S.. Analysis of a strain softening Constitutive model[J]. International Journal of Solids and Structures. 1987, 23(6):751-767.
    [153] Costin L. S..Time-dependent damage and creep of brittle rock. Damage Mechanics and Continuum Modeling (Eds: N. Stubbs and D. Krajcinovic), ASCE.New York, 1985: 25-38.
    [154]周维坦,杨延毅.节理岩体的损伤断裂模型及其验证[J].岩石力学与工程学报, 1991, 10(1): 43-54.
    [155]周维坦,杨延毅.节理岩体的损伤断裂力学模型及其在坝基稳定分析中的应用[J].水利学报. 1990, 11: 48-54.
    [156]凌建明,蒋爵光,傅永胜.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报, 1992, 11(4): 43-54.
    [157]王金龙,林卓英,吴玉山等.脆性岩石的损伤与裂隙扩展[J].岩土力学, 1990, 11(3): 1-8.
    [158]卢应发,葛修润.岩石损伤本构理论[J].岩土力学, 1990, 11(2): 67-71.
    [159]李久林,唐辉明.分形几何在岩体损伤分析中的应用[J].工程勘察. 1994, 2: 6-9.
    [160]赵永红.岩石弹脆性分维损伤本构模型[J].地质科学, 1997, 32(4): 487-494.
    [161]殷有泉.考虑损伤的节理本构模型[J].工程地质学报, 1994, 2(4): 1-6.
    [162]殷有泉.岩石的塑性,损伤及其本构表述[J].地质科学, 1995, 30(1): 63-70.
    [163]周光泉,陈德华,席道瑛.岩石连续损伤本构方程[J].岩石力学与工程学报, 1995, 14(3): 229-235.
    [164]李新平,朱维申.多裂隙岩体的损伤断裂模型及模型试验[J].岩土力学, 1991, 12(2): 5-14.
    [165]施建勇.考虑损伤的软土地基变形分析[J].岩土工程学报, 1998. 20(2): 2-5.
    [166]陶振宇,曾亚武,赵震英.节理岩体损伤模型及验证[J].水利学报,1991, 6: 52-58.
    [167]李长春,付文生,袁建新等.考虑温度效应的岩石损伤内时本构关系[J].岩土力学, 1991, 12(3): 1-10.
    [168]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报, 1992, 14(2): 1-11.
    [169]张盛东.混凝土本构理论研究进展与评述[J].南京建筑工程学院学报, 2002(3): 44-53.
    [170] Rescende L.. A Damage Mechanics Constitutive Theory for the Inelastic Behaviour of concrete[J]. Computer Methods in Applied Mechanics and Engineering, 1987, 60(1): 57-93.
    [171] Oritiz, M. A constitutive theory for the inelastic behavior of concrete[J]. Mechanics of Materials, 1985, 4(1): 67-93.
    [172] Collombet F Modelization de I'endommagement anisotrope [J].Aplication au comportment du beton sous solicitations multiaxiales, These de 3eme cycle, LM.T., University Paris, France, 1995.
    [173] Ju J. W.. On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects[J]. International Journal of Solids and Structures. 1989, 25(7): 803-833.
    [174]彭向和,杨春和.复杂加载史下混凝土的损伤及其描述[J].岩石力学与工程学报, 2000, 19(2): 157-164.
    [175]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报. 1999, 18(1): 23-27.
    [176]陈卫忠,李术才,朱维申等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用[J].岩石力学与工程学报, 2000, 19(2): 131-135.
    [177]秦跃平,张金峰,王林.岩石损伤力学理论模型初探[J].岩石力学与工程学报, 2003. 22(4).
    [178]沈新普,泽农,慕容子,徐秉业.岩土材料弹塑性正交异性损伤耦合本构理论[J].应用数学和力学. 2001, 22(9): 927-933.
    [179]熊江陵,李建华.太行山隧道膏溶角砾岩工程特性试验研究[J].隧道建设, 2007, 27(Sup.1): 6-8, 15.
    [180]宋岳,徐建闽.万家寨引黄入晋工程泥质膨胀岩工程地质研究[J].水利水电工程设计, 2001 (1).
    [181]铁道部第一勘测设计院. TB10115-98铁路工程岩石试验规程[S].北京:中国铁道出版社, 1998.
    [182]刘晓丽,王思敬等.含时间效应的膨胀岩膨胀本构关系[J].水利学报, 2006, 37(2): 195-199.
    [183] Einstein H H.. Suggested method for laboratory testing of argillaceous swelling rock[J]. International Journal of Rock Mechanics and Mining Sciences. 1989, 26(5): 415-426.
    [184]姚海林,杨洋,程平,吴万平.膨胀土壤标准吸湿含水率及其试验方法[J].岩土力学, 2004, 25(6): 856-859.
    [185]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报, 2003, 22(1): 53-60.
    [186]蔡美峰.岩石力学工程[M].北京:科学出版社, 2002.
    [187]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社, 2002.
    [188]冒海军.板岩水理特性实验研究与理论分析[D].中国科学院武汉岩土研究所博士学位论文. 2006.
    [189]余寿文,赵西桥.损伤力学[M].北京:清华大学出版社, 1997.
    [190]杨光松.损伤力学和复合材料损伤[M].北京:国防工业出版社, 1995.
    [191]龚晓南,叶黔元,徐日庆.工程材料本构方程[M].北京:中国建筑工业出版社, 1995
    [192] J. lemaitre著,倪金刚,陶春虎译.损伤力学教程[M].北京:科学出版社, 1996.
    [193]李兆霞.损伤力学及其应用[M].北京:科学出版社, 2002.
    [194]匡震邦.非线性连续介质力学[M].上海:上海交通大学出版社, 2002.
    [195] Kuhl, D., Bangert, F., Meschke, G.. Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling[J]. International Journal of Solids and Structures. 2004, 41(1): 15-40.
    [196] Kuhl, D., Bangert, F., Meschke, G.. Coupled chemo-mechanical deterioration of cementitious materials. Part II: Numerical methods and simulations[J]. International Journal of Solids and Structures. 2004, 41(1): 41-67.
    [197] Stabler, J., Baker, G.. On the form of free energy and specific heat in coupled thermo-elasticity with isotropic damage[J]. International Journal of Solids and Structures. 2000, 37(34): 4691-4713.
    [198] Collins, I.F., Houlsby, G.T.. Application of thermomechanical principles to the modelling of geotechnical materials[A]. Proceedings of the Royal Society of London A[C]. 1997, 453(1964): 1975-2001.
    [199]夏旺民.黄土弹塑性损伤本构模型及工程应用研究[D].西安理工大学博士学位论文. 2005.
    [200] Le Bellégo, C., Pijaudier-Cabot, G., Gérard, B., Dubé, J.-F., Molez, L.. Coupled mechanical and chemical damage in calcium leached cementitious structures[J]. Journal of Engineering Mechanics. 2003. 129(3): 333-341.
    [201] Contrafatto, L., Cuomo, M.. A new thermodynamically consistent continuum model for hardening plasticity coupled with damage[J]. International Journal of Solids and Structures. 2002, 39(25): 6241-6271.
    [202] Xiao, Y.. A multi-mechanism damage coupling model[J]. International Journal of Fatigue. 2004, 26(11): 1241-1250.
    [203]王立峰,朱向荣.纳米硅水泥土弹塑性本构模型研究[J].浙江大学学报(工学版), 2008, 42(1): 94-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700