用户名: 密码: 验证码:
EN-1离子固化剂加固黄土边坡机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路路基边坡的防护措施是公路水土保持中的重要组成部分,开展公路路基边坡防护措施研究对公路水土保持建设实践具有重要意义。采用室内土壤理化性质试验和人工模拟路基边坡冲刷试验的研究方法,系统地研究了EN-1离子型土固化剂掺量(0、0.01%、0.05%、0.10%、0.15%、0.20%)对0-30 cm和30-100 cm土层塿土和黄绵土水分有效性、结构稳定性、入渗性、抗崩解性及土壤有机质含量、土壤酸度等理化性质的影响,探讨了不同EN-1固化剂掺量和掺入厚度(0、5、10、15、20 cm)时,黄土路基边坡坡面水土流失规律、坡面流特征及抗冲刷性能,优选出了适用于不同土质和土层黄土的最佳固化剂掺量及掺入厚度。通过逐步回归分析法建立的土壤侵蚀量预测模型,阐明了EN-1离子型固化剂对坡面土质的加固机理。论文所取得的主要结论如下:
     1、EN-1固化剂可降低土壤水分的有效性,固化剂掺量越高,影响越大。其中,对塿土水分有效性的影响略大于黄绵土,对上层土壤(0-30 cm土层)水分有效性的减弱作用明显高于下层土壤(30-100 cm土层)。固化剂掺量大于0.15%后,有利于改善塿土和0-30 cm黄绵土土壤结构性能,掺量0.20%对土壤结构的优化效果最为显著;掺量大于0.01%时,有利于提高土壤结构稳定性,掺量0.15%效果最为显著。在黄绵土30-100 cm土层中,固化剂优化了土壤结构、提高了土壤结构稳定性,掺量0.01%时土壤结构最优,掺量0.20%时结构稳定性最优。
     2、固化剂掺量在0.10%~0.15%时,塿土和黄绵土均具有最大的土壤入渗能力。固化剂明显提高了土壤的抗崩能力,较高掺量(≥0.15%)对塿土抗崩性能的提高效果更为明显,而适中的掺量(0.10%)则更适合黄绵土抗崩性能的提高。固化剂掺量越高,土壤有机质含量越高,pH值越低。
     3、路基边坡土壤加入固化剂后,增加了坡面流平均流速,降低了坡面流侵蚀动力,坡面流态为层流、急流。其中,固化剂掺量对黄绵土坡面流速的增加效果大于塿土,对塿土坡面流态的影响较大,对黄绵土坡面流态影响较小。固化剂的掺入降低了黄土坡面的产流量和产沙量,掺量0.10%时降低效果最为显著。固化剂掺量对塿土边坡产流量和产沙量的影响效果大于黄绵土,对0-30 cm土层的边坡产流量影响效果大于30-100 cm土层,而对边坡产沙量的影响效果与之相反。
     4、在塿土中,EN-1掺入厚度为15 cm的固化土边坡坡面流速最大,20 cm最小;在黄绵土中,掺入厚度10 cm的固化土边坡坡面流速最小,20 cm最大。不同掺入厚度时的塿土和黄绵土坡面流态均为层流、急流。10 cm厚度时坡面流雷诺数和阻力系数最大,弗洛德数最小;20 cm厚度时雷诺数和阻力系数最小,弗洛德数最大。掺入厚度越大,塿土坡面产流量越小,黄绵土坡面产流量越大,20 cm厚度固化土边坡产沙量最低,坡面最稳定。
     5、利用逐步线性回归分析法建立的土壤侵蚀量预测模型能较好的评价黄土路基边坡土壤的可蚀性,预测土壤侵蚀量,阐明固化剂对不同土质边坡的加固机理。在塿土0-30 cm土层,固化剂通过增加土壤的饱和导水率和毛管饱水稳性团聚体含量,减小土壤静水崩解速率加固边坡;在塿土30-100 cm土层,固化剂通过增加土壤的有机质含量,降低土壤的饱和含水量加固边坡;在黄绵土0-30 cm土层,固化剂通过降低土壤的静水崩解速率和pH值加固边坡;在黄绵土30-100 cm土层,固化剂通过降低土壤的静水崩解速率和饱和含水量,增加风干土水稳性团聚体含量加固边坡。
     综合EN-1离子固化剂掺量对黄土边坡土壤的水分有效性、结构性、入渗性、抗崩性、肥力、酸性及抗冲刷性能的影响后,建议在黄土地区路基边坡坡面防护工程中应用EN-1土壤固化剂时,最佳掺量选择为0.10%左右,掺入厚度选择为20 cm时即可显著提高黄土路基边坡坡面土壤抵抗径流冲刷的能力,防止因坡面侵蚀破坏而引起的边坡失稳。
The protective measures for highway subgrade slope are an important component of soil and water conservation on highway and the study on them have important significance to the construction of highway soil and water conservation. Through the laboratory test and theory analysis, this text studied the influences of the EN-1 contents(0, 0.01%, 0.05%, 0.10%, 0.15%, 0.20%)on physical and chemical properties for tier soil and loessal soil in the 0-30 cm and 30-100 cm layers, including soil water availability, structural stability, permeability, collapsibility, organic matter and acidity,analyzed soil erosion law,overland flow characteristics and scour resistance with six EN-1 contents and five EN-1 depths,and selected the appropriate EN-1 content and depth. By stepwise regression analysis to establish wash erosion prediction models, and explained the reinforcement mechanism of EN-1 plasma soil stabilizer to the slope soil. Main results are as follows:
     1. EN-1 reduces the effectiveness of soil moisture, the higher the content, the greater the effect was, the impact on tier soil was slightly larger than that in the loessal soil and on the upper soil (0-30 cm layer) was significantly higher than that in the subsoil (30-100 cm layer). For the tier soil and loessal soil in the 0-30 cm, it was greater benefit to improve soil structural performance since the content was greater than 0.15%, and the 0.20% content was most excellent; it was greater benefit to improve soil structural stability since the content was greater than 0.01%, and the 0.15% content was most excellent. For the loessal soil in the 30-100 cm, they were useful to improve soil structure and stability by using EN-1, and the best soil structure was at 0.01% content, the optimal structural stability was at 0.20% content.
     2. When the EN-1 contents were from 0.10% to 0.15%, the soil permeability was the largest. The soil resistance to collapse was significantly improved by using EN-1, when the EN-1 contents were more than 0.15% for tier soil, the soil resistance to collapse was more significantly increased; when the EN-1 contents were 0.10% for loessal soil, the soil resistance to collapse was more significantly increased. The higher the content, the higher the soil organic matter content and the lower pH value were.
     3. Adding EN-1 soil stabilizer into the subgrade slope soil, the mean runoff velocity was increased, and the erosion power was decreased, besides, the runoff morphology was laminar and rapid flow, the impact on the loessal soil slope runoff mean velocity was larger than that in tier soil, EN-1 had a great effect on runoff morphology on tier soil slope and little effect on loessal soil slope. Runoff and sediment yield on the slope were reduced by adding EN-1 into the subgrade slope soil, they were the lowest at the 0.10% content. EN-1 contents had a greater effect on runoff and sediment yield on the tier soil slope than that on the loessal soil slope, the impact on the upper soil (0-30 cm layer)slope runoff was significantly higher than that in the subsoil (30-100 cm layer) and the sediment yield was opposite .
     4. The maximum mean runoff velocity was got when EN-1 applied depth was 15 cm, while it was the minimum at 20 cm in the tier soil. The maximum mean runoff velocity was got when EN-1 applied depth was 20 cm, while it was the minimum at 10 cm in the loessal soil. The runoff morphology was laminar and rapid flow at different applied depth. The largest Re and f and the smallest Fr were got when the EN-1 applied depth was 10 cm; while the smallest Re and f and the largest Fr were got when the EN-1 applied depth was 20 cm. The deeper of the EN-1 applied, the smaller runoff was in the tier soil slope, while the larger of the runoff in the loessal, the lowest sediment yield was and the slope was the most stabilization.
     5. Through the stepwise multiple linear regression analysis, the models and indicators for assessing the soil erodibility from these properties was constructed, and they explained reinforce mechanisms of EN-1 to the loess slope with different soil types by. In the 0-30cm layers of tier soil, the slope was reinforced through the increasing of soil saturated hydraulic conductivity and the water-stable aggregates and the decreasing of soil collapse velocity; In the 30-100 cm layers of tier soil, the slope was reinforced through the increasing of organic matter content and the decreasing of saturation moisture content; In the 0-30 cm layers of loessal soil, the slope was reinforced through the decreasing of soil collapse velocity and PH; In the 30-100 cm layers of loessal soil, the slope was reinforced through the increasing of dry aggregates and the decreasing of soil collapse velocity and saturation moisture content.
     Comprehensive consideration on EN-1 soil stabilizer contents affection on soil water availability, structural stability, permeability, collapsibility, organic matter, acidity and scour resistance, the paper suggests that EN-1 soil stabilizer can be used in protection engineering of highway subgrade slope for loess region, and the optimum content is around 0.10% and depth is 20cm can increase the ability of soil resistance runoff scour of slope significantly, and it can prevent slope instability caused by slope erosion damage.
引文
[1]中华人民共和国水利部.全国水土流失公告[R].中国水土保持,2002,23(2): 48.
    [2]马海天,廖心北.边坡生物防护研究现状初探[J].四川草原,2003,3: 16-17.
    [3]王金发,王晓明.高速公路边坡绿化防护[J].黑龙江交通科技,2003,5: 39-40.
    [4]李小华.高速公路边坡绿化方式的研究[J].内蒙古林业科技,2003,1: 47-50.
    [5]卓慕宁,李定强,贺新良,等.论高速公路建设中的水土保持生态恢复[J].水土保持研究,2003,10 (4) : 209-211.
    [6]卓慕宁,李定强,贺新良.高速公路边坡快速绿化技术的应用与水土保持效果[J].水土保持研究,2004,11(3): 79-80.
    [7]曹家仁,李忠利.浅谈高速公路绿化与生态保护[J].东北公路,2001,24(1): 12-13.
    [8]成堂春.高速公路边坡绿化[J].湖南交通科技,2003,29(3): 51-53.
    [9]江玉林,杜娟.高等级公路生态环境保护问题与对策[J].公路,2000,8: 68-72.
    [10]刘崇理,刘元和,高鹏.高速公路建设中的水土流失与防治对策[J].山西水土保持科技,2000, 4: 44-45.
    [11]张昌松,谭必乔,熊家方.山区公路建设水土流失的原因及防护[J].湖北民族学院学报(自然科学版),2003,2: 97-99.
    [12]汪益敏,陈辉,贾娟.广东省公路路基边坡防护现状及其发展[J].中外公路,2001,6: 7-10.
    [13]杨航宇,颜志平,朱赞凌,等.公路边坡防护与治理[M].北京:冶金出版社,2002.
    [14]长安大学,交通部科学研究院,华南理工大学,等.路基边坡防护设计与施工技术研究科研报告[R]. 2002.
    [15] Hengchaovanich. A Bioengineering and Phytoremediation Option for the New Millennium [J]. IVC2 Plenary papers,2002,1: 1-5.
    [16] Martin Donat. Bioengineering Techniques for Streambank Restoration: A Review of Central European Practices [J]. Watershed Restoration Project Report, 1995,2: 4-9.
    [17] Finn Krogstad. A Physiology and Ecology Based Model of Lateral Root Reinforcement of Unstable Hillslopes [D]. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, University of Washington, 1995.
    [18] Robert R. Ziemer. Roots and the Stability of Forested Slopes. Erosion and Sediment Transport in Rim Steep lands [J]. I. A. H. S. Pub l. No.132. Christchurch.1981: 343-361.
    [19] Robert R. Ziemer. The Role of Vegetation in the Stability of Forested Slopes [J]. In IUFRO Proceed -ings- Referate-Exposes, Division 1. Japan, 1981:2-10.
    [20] O'Loughlin C L, Ziemer R.R. The Importance of Root Strength and Deterioration Rates Upon Edaphic Stability in Steep land Forests [J]. Oregon State University. Corvallis. Oregon. USA, 1982: 70-78.
    [21] Kazutoki A.B.E, Robert R. Ziemer. Effect of Tree Roots on a Shear Zone: Modeling Reinforced Shear Stress [J]. Canadian Journal of Forest Research, 1991,21: 1012-1019.
    [22] Kazutoki A.B.E,Robert R. Ziemer. Effect of Tree Roots on Shallow-Seated Landslides [J]. USDA Forest Service, General Technical Report PSW-GTR-130, 1991: 12-19.
    [23] Piers, Villaggio. The Roots of Trees [J]. Spring-Verlag, 1997,10: 233-240.
    [24] Nilaweera N.S,Nutalaya P. Role of tree roots in slope stabilization [J].Bulletin of Engineering Geology and the Environment,1999,57: 337-342.
    [25] Donald H. Gray, Robbin B. Sotir. Biotechnical Stabilization of Steepened Slopes. Transportation Research Board [J]. National Academy Press, National Research Council, 1995: 8-16.
    [26] Donald H. Gray, Robbin B. Sotir. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control [J]. New York Wiley Interscience Publication, 1996: 55 -99.
    [27]仓田益二郎.绿化工程技术[M].成都:四川科学技术出版社,1989: 25-28.
    [28]安保昭.坡面绿化施工法[M].北京:人民交通出版社,1988: 10-31.
    [29]李任敏,常建国,吕白交.太行山主要植被类型根系分布及对土壤结构的影响[J].山西林业科技,1998,3: 17-19.
    [30]李勇,徐晓琴,朱显谟,等.草类根系对土壤抗冲性的强化效应[J].土壤学报,1992,29(3): 302-309.
    [31]李鹏,李占斌,郝明德,等.黄土高原天然草地根系主要参数的分布特征[J].水土保持研究,2003,10(1): 144-145, 149.
    [32]李勇,吴饮孝,朱显漠,等.黄土高原物根系提高土壤抗冲击性能的研究—I.油松人工林根系对土壤冲性的增强效应[J].水土保持学报,1990,4(1): 1-10.
    [33]刘国彬,蒋定生,朱显漠.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3): 21-27.
    [34]史敏华,王棣,李任敏.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报[J].山西林业科技,1994,1: 17-19.
    [35]肖东升.植被增加边坡抗剪强度的量化理论[J].地基基础,2004, 1(2): 63-65.
    [36]程洪,颜传盛,李建庆,等.草本植物根系网的固土机制模式与力学试验研究[J].水土保持研究,2006,13(1): 62-65.
    [37]陈昌富,刘怀星,李亚平.草根加筋土的护坡机理及强度准则试验研究[J].中南公路工程,2006,31(2): 14-17.
    [38]封金财,王建华.乔木根系固坡作用机理的研究进展[J].铁道建筑,2004,3: 29-31.
    [39]杨亚川,莫永京,王芝芳,等.土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996,1(2): 31-38.
    [40]郝彤琦,谢小研,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4): 78-80.
    [41]徐中华,钭逢光,陈锦剑,等.活树桩固坡对边坡稳定性影响的数值分析[J].岩土力学,2004,25(2): 275-279.
    [42]周锡九,赵晓锋.坡面植草防护的浅层加固作用[J].北方交通大学学报,1995,19(2): 143-146.
    [43]李绍才,孙海龙,杨志法,等.坡面岩体-基质-根系互作的力学特性[J].岩石力学与工程学报,2005,24 (8): 1407-1410.
    [44]姜志强,孙树林,程龙飞.根系固土作用及植物护坡稳定性分析[J].勘察科学技术, 2005,4: 12-14.
    [45]王库.植物根系对土壤抗侵蚀能力的影响[J].土壤与环境,2001,10(3): 250-252.
    [46]吴彦,刘世全,王金锡.植物根系对土壤侵蚀能力的影响[J].应用与环境生物学报,1997,3(2): 119-124.
    [47]吴淑安,蔡强国.土壤表土中植物根系影响及其抗蚀性的模拟降雨试验研究—以张家口试验区为例[J].干旱区资源与环境,1999,13(3): 35-40.
    [48]吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究—II草木杭物根系提高表层土壤抗冲刷力的试验分析[J].水土保持学报,1990,4(1): 11-16.
    [49]李勇.黄土高原植物根系与土壤抗冲性[M].北京:科学出版社,1995: 24-54.
    [50]解明曙.林木根系固坡土力学机制研究[J].水土保持学报,1990,4 (3): 7-14.
    [51]查轩,唐克丽,张科利,等.植被对土壤特性及土壤侵蚀的影响研究[J].水土保持学报,1992,6(2): 52-58.
    [52]蔡强国,黎四龙.植物篱笆减少侵蚀的原因分析[J].土壤侵蚀与水土保持学报,1998,4(2): 54-60.
    [53]代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].中国水土保持,1998,12: 36-38.
    [54]张金池,康立新,卢义山.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2): 43-47.
    [55]汪有科,吴钦孝,赵鸿雁.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(1): 75-80.
    [56]刘国彬,梁一民.黄土高原草地植被恢复与土壤抗冲性形成过程—I[J].水土保持研究,1997,12: 102-110.
    [57]刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程—II,III[J].水土保持研究,1997,12:110-128.
    [58]潘成忠,上官周平.牧草对坡面侵蚀动力参数的影响[J].水利学报,2005,36(3): 1-8.
    [59]李毅,邵明安.草地覆盖坡面流水动力参数的室内降雨试验[J].农业工程学报,2008,24(10) : 1-5.
    [60]李勉,姚文艺,陈江南,等.草被覆盖下坡面-沟坡系统坡面流阻力变化特征试验研究[J].水利学报,2007,38(1) : 112-119.
    [61] Zhou Y. Effects of the Yunnan Pine on Soil Erosion Control and Soil reinforcement in the Hutiaoxia Gorge. South West China [M]. PhD Thesis, University of Hull, 1997,3: 50-57.
    [62]周越.坡面生态工程及现状[J].生态学杂志,1999,18(5): 71-75.
    [63] Zhou Y. The tractione effect of lateral roots of Pinus Yunnan ensis on soil reinforcement: A Direct in Situ Test [J].Plant and Soil, 1997,190: 77-86.
    [64] Gray. D .H .Influence of vegetation on the stability of slope. International, Conference on Vegetation and Slope [J], University Museum, Oxford, England, 1994: 1-23.
    [65] Resterberg. M. M. Anchoring of thin Colluviums by roots of sugar maple and white ash on hill slope in the Cincinnati [J]. U. S. Geological Survey Bulletin, 1994: 20-26.
    [66] Donald H. Gray and Robbin B. Sotir. Biotechnical and Soil Bioengineering [J]. Slope stabilization, 1996,2: 25-29.
    [67]邓辅唐,吕小玲,邓辅商.高速公路边坡生态恢复研究进展[J].中国水土保持,2005,11: 48-50.
    [68] NORRDIN A R. Bioengineering to ecoengineering, Partone: the many name [J]. International Group of Bioengineers news letter, 1993,3: 15-18.
    [69]张俊云,周德培,李绍才.高速公路岩石边坡绿化方法探讨[J].岩石力学与工程学报,2002,9:1400-1403.
    [70]山寺喜成,安保昭.恢复自然环境绿化工程概论—坡面绿化基础与模式设计[M].北京:中国科学技术出版社,1997.
    [71]李旭光,毛文碧,徐福有.日本的公路边坡绿化与防护[J].公路交通科技,1995,12(2): 59-64.
    [72]张伟雄,曹志强,黄小清,等.高速公路边坡生态防护技术探讨[J].公路,2003,8: 123-126.
    [73]石东扬,熊忠臣,金代钧,等.高速公路边坡绿化的研究[J].中国园林,2001,3: 10-12.
    [74]蔡志洲,刘憬,张淑娥.公路边坡灌木生态绿化研究[J].交通环保,2002,23 (3): 25-26.
    [75]李绍才,孙海龙.中国岩石边坡植被护坡技术现状及发展趋势[J].资源科学,2004,26: 61-63.
    [76]许文年,王铁桥,叶建军.岩石边坡护坡绿化技术应用研究[J].水利水电技术,2002,7: 35-40.
    [77]张俊云.岩质边坡植物护坡技术—植物护坡简介[J].路基工程,2000,92(5): 28-31.
    [78]杜娟.客土喷播施工法在日本的应用与发展[J].公路,2000,7: 72-73.
    [79]邹胜文,饶黄裳,江玉林,等.高等级公路边坡生物防护方式浅析[J].公路,2000,4: 50-52.
    [80]章恒江,章梦涛.岩质坡面喷混快速绿化新技术[J].国外公路,2000,20(5): 30-32.
    [81]舒翔,曹映泓,廖晓瑾,等.岩石边坡喷混植生设计与施工[J].中外公路,2001,21(4): 45-48.
    [82]周颖,曹映泓.高速公路路基边坡环境综合治理[J]. 2001,22(4): 455-458.
    [83] Wischmeier W. H,Mannering J V. Relation of soil properties to its erodibility [J]. Soil Society of American Proceeding, 1969, 33 (1): 131-137.
    [84] Peel T. C. The relation of certain physical characteristics to the erodibility of soils [J]. Soil Science Society Proceedings, 1937,2: 79-84.
    [85]于东升,史学正.低丘红壤早地土戮渗透性与可蚀性定量关系的研究[J].土壤学报,2000,37 (3): 316-322.
    [86] Seybold C. A,Herrick J E. Aggregate stability kit for soil quality assessments [J]. Catena, 2001, 44: 37-45.
    [87] Skidmore E. L,Powers D H. Dry soil-aggregate stability: energy- based index [J]. Soil Science Society of America Journal, 1982(46): 1274-1279.
    [88] Shaviv A,Ravina I,Zaslavsky D. Application of soil conditioner solutions to soil columns to increase water stability of aggregates [J]. Soil Science Society of America Journal, 1987, 51(2): 431-436.
    [89] Gu B, Doner H. E. Dispersion and aggregation of soil as influenced by organic and inorganic polymers [J]. Soil Science Society of America Journal, 1993, 57(3): 709-716.
    [90] Nadler A,Perfect E,Kay B. D. Effect of polyacrylamide application on the stability of dry and wet aggregates [J].Soil Science Society of America Journal, 1996, 60(2): 555-561.
    [91] Trout T. J,Sojka R. E, Lentz R. D. Polyacrylamide effect on furrow erosion and infiltration [J].Trans ASAE, 1995, 38: 761–765.
    [92] García-Orenes, Guerrero F, Mataix-Soler C. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids [J]. Soil and Tillage Research, 2005, 82: 65-76.
    [93] Kukal S.S, Manmeet Kaur, Bawa S.S, et al. Water-drop stability of PVA-treated natural soil aggregates fromdifferent land uses [J]. Catena, 2007, 70: 475-479.
    [94] Ekwue E. I. Effect of organic and fertilizer treatments on soil physical properties and erodibility [J]. Soil and Tillage Research, 1992, 22 (3-4):199-209.
    [95] Lentz R. D, Shainberg I, et al. Preventing irrigation furrow erosion with small application,Soil Science Society of America Journal, 1992, 56: 1926-1932.
    [96]雷廷武,唐泽军,张晴雯.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究Ⅱ—侵蚀[J].土壤学报,2003,3: 178-185.
    [97]刘纪根,雷廷武,夏卫生,等.施加PAM的坡地降雨入渗过程及其模型研究[J].水土保持学报,2001,15(3): 51-54.
    [98]唐泽军,雷廷武,张晴文,等.降雨及聚丙烯酰胺(PAM)作用下土壤的封闭过程和结皮的形成[J].生态学报,2002,22(5):674-681.
    [99]夏海江,杜尧东,孟维忠.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验[J].水土保持学报,2000, 14(3): 14-17,83.
    [100]肇普兴,夏海江,何建明.聚丙烯酰胺防治田间水土流失剂型和浓度的优选试验[J].水土保持研究,1997, 4(4): 89-98.
    [101]冯浩,吴普特,黄占斌.聚丙烯酰胺(PAM)对黄土坡地降雨产流产沙过程的影响[J].农业工程学报,2001,5: 48-51.
    [102]熊克志,李勇,孟维忠.聚丙烯酰胺防治水土流失的效果[J].生态学杂志,2001,1: 70-72.
    [103]张淑芬.坡耕地施用聚丙烯酰胺防治水土流失试验研究[J].水土保持科技情报,2001,2: 18-19.
    [104]员学锋,吴普特,冯浩.聚丙烯酰胺(PAM)的改土及增产效应[J].水土保持研究,2002,9(2): 55-58.
    [105]孟维忠,杜尧东,夏海江.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验[J].水土保持学报,2000,14 (3): 14-17.
    [106]曹丽花,赵世伟,梁向锋,等. PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究[J].农业工程学报,2008,24(1) : 45-49.
    [107]胡维冀,刘鸿洲.高吸水树脂对侵蚀性土壤物理性状的影响[J].福建农林大学学报(自然科学版),2002(2): 259-261.
    [108]吴增芳.土壤结构改良剂[M].北京:科学出版社,1976,86-94.
    [109]吴淑芳,吴普特,冯浩,等.高分子聚合物防治坡地土壤侵蚀模拟试验研究[J].农业工程学报,2004(2): 20-23.
    [110]张登良.加固土原理[M].北京:人民交通出版社,1990.
    [111]许永明.粉煤灰应用于道路工程的试验研究[J].西安公路学院学报,1983.
    [112]郑南翔.半刚性材料抗裂性能研究[D].陕西:西安公路学院,1988.
    [113]沙爱民.半刚性路面材料结构与性能[M].北京:人民交通出版社,1998.
    [114]吴任.地基土加固原理的探讨[J].秦皇岛:第三届全国地基处理学术讨论会论文,1992.
    [115] Zalihe N, Emin G. Improvement of calcareous expansive soils in semi-arid environments [J]. Journal of Arid Environments, 2001, 47(4):453-463.
    [116] Shirazi Record. H. Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course [J].Transportation Research Record, 1999,1652: 270-275.
    [117] Heikki Kukko. Stabilization of Clay with Inorganic By-products [J]. Journal of Materials in Civil Engi–neering, 2000, 12 (4): 307-309.
    [118] Attom M F,Munjed M A. Soil stabilization with burned olive waste [J]. Applied Clay Science, 1998, 13(3): 219-230.
    [119] J. K. Mitchell, R. K. Katti. Soil improvement-general report proc [J]. Tenth ICSM F E. 2003,4: 238-246.
    [120] Katz L. E, Rauch A. F, Liljestrand H. M, Harmon J.S, et al. Mechanisms of soil stabilization with liquid ionic stabilizer [R]. Geometricals 2001 Transportation Research Record, 2001, 1757: 50-57.
    [121] Thecan C. C. Soil binding properties of mucilage produced by a basidiomycete fungus in a model system [J]. Mycological Research, 2002, 106(8): 930-937.
    [122] Bell F. G. Assessment of cement-PFA used to stabilize clay-size materials [J]. Bulletin of the International Association of Engineering Geology, 1994, 49: 25-32.
    [123] Miller G. A, Zaman M. Field and laboratory evaluation of cement kiln dust as a soil stabilizer [J]. Transportation Research Record, 2000, 1714: 25-32.
    [124] Saboundjian S. Subbase treatment using EMC2 soil stabilizer-Final report 1997-2001[R]. Juneau: Alaska Dept of Transportation and Public Facilities,Research and Technology Transfer, 2002: 1-26.
    [125] Medina J, Guida H N. Stabilization of lateritic soils with phosphoric acid [J]. Geotechnical and Geological Engineering, 1995, 13(4): 199-216.
    [126] Tomohisa S, Sawa K, Naitoh N. Hedoro hardening treatment by industrial wastes [J]. Journal of theSociety of Materials Science, 1995, 44(503): 1023-1026.
    [127] Zalihe N, Emin G. Improvement of calcareous expansive soils in semi-arid environments [J]. Journal of Arid Environments, 2001, 47 (4): 453-463.
    [128] Shirazi H. Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course [J]. Transportation Research Record, 1999, 1652: 270-275.
    [129] Osula D.O.A. A comparative evaluation of cement and lime modification of laterite [J]. Engineering Geology, 1996, 42: 71-81.
    [130] Omar Saeed Baghabra Al-Amoudi. Characterization and Chemical Stabilization of Al-Qurayyah Sabkha Soil [J]. Journal of materials in civil engineering, 2002, 14 (6): 478-484.
    [131] Sivapullaiah P. V,Lakshmi Kantha H, Madhu Kiran K. Geotechnical properties of stabilized Indian red earth [J]. Geotechnical and Geological Engineering, 2003, 21: 399-413.
    [132] Seishi Tomohisa, Kohei Sawa, Mari Tachibana, et al. Hardening treatment of muddy soil with coal fly ashes [J]. Journal of Hazardous Materials, 1999(59): 223-231.
    [133] Byung Sik Chun, Jin Chun Kim. A Study on the Soil Improvement Properties of FGC Stabilizing Agent[C]. Melbourne Australia: Proceedings of GeoTech, 2000.
    [134] Hilmi Lav A. Microstructural Development of Stabilized Fly Ash as Pavement Base Material [J]. Journal of Materials in Civil Engineering, 2000, 12 (2): 157-163.
    [135] Rose Wright Fox, James G Macfarlane. Alternative Chemical Soil Stabilizers [M]. Division of New Technology, Materials and Research, Department of Transportation, State of California, 1993.
    [136] Lahalih, Shawqui. M, Ahmed, Neaz. Effect of new soil stabilizers on the compressive strength of dune sand [J]. Construction and Building materials, 1998, 12(6): 321-328.
    [137]姚爱玲,延西利,梁春雨,等. ISS土壤稳定剂路用性能的试验研究[J].西安公路交通大学学报,1998,1.
    [138]汪益敏,张丽娟,苏卫国,等. ISS加固土的试验研究[J].公路,2001,7: 42-45.
    [139]陕西省公路局.省道106线二级公路蒲城段路固特稳固土试验路总结报告[R]. 1999.
    [140]张丽娟,汪益敏,苏卫国,等. ISS加固土的CBR试验研究[J].华南理工大学学报,2002,30(7): 79-82.
    [141]戴丽莱,杨世基,潘志华.新型复合固化材料的开发研究[J].中国公路学报,1989,2: 59-61.
    [142]戴丽莱,杨世基,潘志华. NCS固化材料稳定湿粘土的应用[J].中国公路学报,1991,1: 16-27.
    [143]周明凯,沈卫国,童大懋. HS干硬性土壤固化剂的研究[J].武汉工业大学学报,1996,3: 37-40.
    [144]梁文泉,何真,李亚杰,等.土壤固化剂的性能及固化机理的研究[J].武汉水利电力大学报,1995,12: 675-679.
    [145]董邑宁,张俊伟.固化材料在土木工程中的发展及应用[J].青海大学学报,2001,8: 35-39.
    [146]苏嵌森.应用固化土与加筋土技术治理膨胀土渠道滑坡[J].节水灌溉,2004,5: 60-63.
    [147]韩苏建,李元婷,吴小宏.用SR固化土作渠道防渗材料的探讨[J].防渗技术,2000, 6(3): 19-23.
    [148]杜应吉,朱建宏.土壤固化剂对不同土质固化性能影响的试验研究[J].干旱地区农业研究,2004, 22(4): 229-231.
    [149]王生俊,韩文峰,王银梅. LD岩土胶结剂加固黄土试验研究[J].岩石力学与工程学报,2003, 22(增2): 2888-2893.
    [150]冯浩,吴普特,彭洪涛. HEC和AAM添加剂对提高黄土集流效率的试验研究[J].农业工程学报,2001,17(3): 28-31.
    [151]高建恩,吴普特,岳宝蓉.一种固化黄土集流面增流减糙施工方法[P].中国:CN 200310118985. X,2004-11-17.
    [152]樊恒辉,高建恩,吴普特,等.土壤固化剂集流面不同施工工艺比较[J].农业工程学报,2006, 22(10): 73-77.
    [153]樊恒辉,高建恩,吴普特,等. MBER土壤固化剂集流场的施工工艺研究[J].中国水土保持科学, 2005,3(3): 56-59.
    [154]大洋科技开发有限公司. 168全方位固化剂. 2000.
    [155]汪益敏.路基边坡坡面冲刷特性与加固材料性能研究[D].广州:华南理工大学,2003.
    [156]杨世基,王玉泉.公路膨胀土路基的处理技术[J].公路交通科技,1998,15 (2) :1-3.
    [157]罗逸,郑家巢,郭稚弧,等. H24稳定剂对膨胀土的力学性质及其有效稳定期的影响[J].岩土力学,1995,16 (3): 82-88.
    [158]罗逸,李国华,张慧.有机阳离子化合物对改善膨胀土性质的影响[J].岩土工程学报,1996, 18(5) : 36-40.
    [159]广西省交通科学研究所.膨胀土路基稳定性研究科研报告[R]. 1999,12.
    [160]张丽萍.黄土边坡坡面稳定及防护技术研究[D].陕西:西北农林科技大学,2009.
    [161]肖蓉.黄土丘陵区高速公路边坡植被调查及护坡模式优化研究[D].陕西:西北农林科技大学, 2009.
    [162]孙鸿烈,刘光崧.土壤理化分析与剖面描述.北京:中国标准出版社,1996,13.
    [163]刘国彬.黄土高原土壤抗冲性研究及有关问题[J].水土保持研究,1997,4(5) : 91-101.
    [164]唐克丽,史立人,史德明,等.中国水土保持[M].北京:科学出版社,2004.
    [165]王万忠.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996,102-136.
    [166]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [167]杨位洸.地基及基础[M].北京:中国建筑工业出版社,1998.
    [168] Kemper W D, Rosenau R C. Aggregate stability and size distribution [M]. // Klute A. Methods of Soil Analysis, Part I. Madison: American Society of Agronomy,1986,425-442.
    [169]吴淑芳,吴普特,冯浩.高分子聚合物对土壤物理性质的影响研究[J].水土保持通报,2003,23(1) : 42-45.
    [170]黄占斌,张国桢,李秧秧,等.保水剂特性测定及其在农业中的应用[J].农业工程学报,2002,18(1): 22-26.
    [171]肖厚军,刘友云,徐大地.坡地黄壤施用保水剂的效果研究[J].耕作与栽培,2000,1: 51-52.
    [172]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [173] Mandelbrot B B. Form chance and Dimension. San Francisco: Freeman, 1977: 1-234.
    [174] Mandelbrot B B. The fractal geometry of nature. San Francisco: Freeman, 1979: 236-237.
    [175] Burrough P A. The fractal dimension of landscapes and other environmental data [J]. Nature, 1981,294: 240-242.
    [176] Turcotte D L. Fractal fragmentation [J]. Geography Research, 1986, 91(12): 1921-1926.
    [177] Rieu M, Sposito G. Fractal fragmentation, soil porosity and soil water properties: Applications [J]. Soil Science Society of America Journal, 1991, 55: 1231-1238.
    [178] Michel R,Garrison S. Fractal fragmentation,soil porosity and soil water propertiesⅡ:Applications[J]. Soil Science Society of America Journal, 1991, 55: 1239-1244.
    [179] Perfect E, Rasiah V, Kay B D. Fractal dimensions of soil aggregate size distributions calculated by number and mass [J]. Soil Science Society of America Journal, 1992, 56: 1407-1409.
    [180] Rasiah V, Kay B D, Perfect E. New mass based model for estimating fractal dimensions of soil aggre -gates [J]. Soil Science Society of America Journal, 1993, 57: 891-895.
    [181] Scott W T,Stephen W W. Fractal scaling of soil particles size distributions: Analysis and limitation [J]. Soil Science Society of America Journal, 1992, 56: 362-369.
    [182]李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1): 1-10.
    [183]林鸿益,李映雪.分形论:奇异性探索[M].北京:北京理工大学出版社,1992: 43-48.
    [184] Falconer K. J. Hhichester: John wiley and sons. Fractal geometry,1989: 89-159.
    [185] Arya L. M, Paris J. F. A physical empirical model to predict the soil moisture characteristic from particle size distribution and bulk density data [J]. Soil Science Society of America Journal, 1981, 45: 1023 -1031.
    [186]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20): 1896 -1899.
    [187]赵文智,刘志民,程国栋.土地沙质荒漠化过程的土壤分形特征[J].土壤学报,2002,39(6): 877 -881.
    [188]周刚,赵辉,陈国玉,等.花岗岩红壤区不同地类土壤抗蚀性分异规律研究[J].中国水土保持,2008(9): 27-29,45.
    [189]丁文峰,丁登山.黄土高原植被破坏前后土壤团粒结构分型特征[J].地理研究,2002,20(6) : 700 -706.
    [190]周萍,刘国彬,候喜禄.黄土丘陵区不同土地利用方式土壤团粒结构分形特征[J].中国水土保持科学,2008,6(2): 75-82.
    [191]李占斌,秦百顺,亢伟,等.陡坡面发育的细沟水动力学特性室内试验研究[J].农业工程学报,2008,24(6) : 64-68.
    [192] Abrahams A. D, Parsons A. J, Luk S. H. Resistance to overland flow on desert hillslops [J]. Journal of Hydrology, 1986, 88: 343-363.
    [193]李毅,邵明安.草地覆盖坡面流水动力参数的室内降雨试验[J].农业工程学报,2008,24(10) : 1-5.
    [194]吕文舫.水力学[M].上海:同济大学出版社,1995.
    [195] Forster G. R, Meyer L. D. Transport of soil particles by shallow flow [J]. Transactions of the ASAE, 1972, 15 (1): 99-102.
    [196] Bagnold R. A. An approach to the sediment transport problem from general physics [M]. United States Government Printing Office, 1966.
    [197]宋阳,刘连友,严平,等.土壤可蚀性研究述评[J].干旱区地理,2006,29(1) : 124-131.
    [198]文卓立,周飞.缙云山典型植物群落次生演替中土壤抗冲性研究[J].水土保持研究,2008,15(2): 12-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700