用户名: 密码: 验证码:
自然崩落法矿岩工程质量数字化评价及模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来资源不足已成为制约我国经济发展的重要因素之一,随着经济的发展,对矿物原料的需求日益增长,对贫矿的开采也开始提到日程上来,自然崩落法作为当前唯一能与露天开采经济效益相媲美的采矿方法,备受各国采矿工作者青睐。本文根据普朗铜矿首采区的工程地质情况,研究解决了自然崩落采矿法中可崩性评价和块度预测涉及的关键理论和技术问题,结合“特大型矿床井下高强度开采关键技术研究”项目展开理论与应用技术研究,主要研究内容和结论如下:
     (1)提出用于自然崩落法矿岩工程质量数字化评价的指标体系,在此基础上,建立了一整套数据采集及处理方法,研究了指标量化方法。
     (2)基于区域化变量的估值理论和三维可视化评价模型构建技术,提出了对矿岩可崩性进行区域化评价的方法,实现了基于VTK开发平台的评价区域三维可视化建模和基于八叉树的复杂地质体块段模型建模方法。
     (3)提出了以构造面的空间展布规律为基础,采用Monte Carlo技术模拟节理系统,采用三维实体切割技术建立块体三维截取模型的矿岩块度预测新模型,该模型在综合考虑节理持续性和岩体的力学性质的基础上,按照统计学原理模拟构造面的空间展布,在指定的工程区域内,采用构造面对模型原型进行切割,最终形成由切割块体构成的块体集合,来预测矿岩块度,并根据一种新的块体形状分类方法,统计实体内部由构造面切割出的岩块大小和形状分布组成。
     (4)在理论研究和矿岩块度预测系统需求分析的基础上,构建了矿岩块度预测系统体系,开发了相应的软件系统,并以此为基础,研究了节理间距分布形式、节理间距大小和完整岩石及弱面力学性质对块度分布的影响。
     (5)应用开发出的矿岩块度预测系统,研究了岩块的实际体积V和切割面积A、三维形状指标ε、K和二维形状指标φ、三维筛分尺寸S3d和二维等同圆直径S2d之间的关系,推导出一系列应用二维特征参数估算三维特征参数的公式。
     (6)对普朗铜矿首采区矿岩可崩性进行多角度、多方位、深层次评价研究表明,矿岩可崩性可分为Ⅱ-Ⅴ四个等级,总体上首采区属于Ⅲ类可崩性岩体,可崩性较好,采用自然崩落法是可行的,应用Laubscher崩落图法和Mathews稳定图法预测得到的矿岩持续崩落水力半径为22-26.24m。
     (7)对普朗铜矿首采区3170水平以上矿岩原始块度预测结果表明,如按照5×5m2设计出矿口和出矿巷道,大块按等效尺寸大于1.26m计,原始块度大于1.26m的块体筛上累积百分比为59.85%,放矿口堵塞几率不大,块体形状以细长体、细长-扁平体和扁平-立方体为主。
     本文的研究成果为发展新的自然崩落法矿岩工程质量数字化评价及模拟技术具有非常重要的意义,为普朗铜矿首采区进行自然崩落法采矿设计提供了有益的指导和参考依据。
In recent years, the lack of resources has become an important factor constraining China's economic development. With economic development, there is growing demand for raw mineral materials, and lean ore mining is being put on the agenda. Block caving method, as currently the only cost-effective method compared with open-pit mining methods has been favored by international mining enginners. In this paper, according to engineering geological conditions of first mining region of Pulang copper mine, combining "the key technology research on large underground deposits in high-intensity mining" project, some key theoretical and technical issues of cavability assessment and fragmentation prediction in block caving method are studied. The main research contents and conclusions are as follows:
     (1) Digital evaluation index system for block caving method rock mass engineering quality is proposed. On this basis, data collection and processing system of these indexes are established, and the quantitative method of indicators is studied.
     (2)The rock mass compartmentation cavability estimation method based on evaluation theory of regionalized variables and three-dimensional visualization evaluation model construction technology is proposed. Three-dimensional visualization evaluation model construction method based on VTK, and octree-based block model of complex geological bodies are achieved.
     (3)Based on the law of the spatial distribution, using Monte Carlo technology to simulate joint system, and using three-dimensional solid cutting techniques to build a new rock mass fragmentation prediction model of block three-dimensional interception model. Based on consideration in the joint continuity and the mechanical properties of rock mass, the model simulated the spatial distribution of structure planes according to statistical principles, and predicted rock mass fragmentation using structure planes to cut model prototype and ultimately formed a block muster consisting cutting blocks. Then, according to a new method of the block shape classification, the distribution statistic rule of internal entities rock block, which are cut out by the structure planes, size and shape are studied.
     (4)Based on the theoretical study and demand analysis, the rock mass fragmentation prediction system is constructed and relavent software system has been developed. And by the application of this system, the form of joint spacing distribution, joint spacing distance, and the impact of mechanical properties of integrity rock and weak surface on fragmentation distribution are studied.
     (5) By the application of the rock mass fragmentation prediction system, the relationship between actual block volume V and the cutting area A, between three-dimensional shape indexε,κand two-dimensional shape index, between three-dimensional sieve size S3d and two-dimensional equivalent diameter S2d are studied to derive a series of formula for estimating three-dimensional geometric parameter from two-dimensional characteristic parameters.
     (6) The results of multi-angle, multi-directional and in-depth evaluation of Pulang first mining region show that cavability of rock can be classified into four levels fromⅡtoⅤ. In general, the rock mass cavability of the first mining area is quite satisfactory and falls into ClassⅢ, which shows that block caving method is feasible in the first mining area. The sustained caving hydraulic radius has been calculated by Laubscher's caving chart and Mathews stability graph with values of 22-26.24m.
     (7) The original fragment size prediction of rock mass above 3170m level of Pulang first mining region shows that, suppose we design a mine mouth and mine roadway to 5×5m2 and chunks are calculated according to the equivalent size of larger than 1.26m, the sieve cumulative percentage for blocks sized larger than 1.26m is 59.85 percent, and there will be little chance of blocking in ore drawing point, and the blocks in this region are mainly elongated, elongated-platy and platy-cubic in shape.
     This research is of important significance for the development of new rock mass engineering quality digital assessment and simulation technology of block caving, and will provide useful guidance and reference to caving mining design of Pulang first mining region.
引文
[1]崔少东,李富平,孙永强.唐钢石人沟铁矿岩体力学参数确定方法探讨[J].矿业快报,2006(02):9-10.
    [2]王亮清,唐辉明,刘佑荣等.VJC-RMR法在岩体变形模量确定中的应用[J].岩土力学,2004,25(05):811-813.
    [3]Wang.L.G., Sugimoto.F,Yamashita.S. Estimation of cavability by using a block model and fuzzy set[J]. J. Min. Mater.Process. Inst,2002,118(7):481-489.
    [4]冯兴隆,王李管,毕林.矿体可崩性区域化评价模型研究[J].岩土工程学报,2009,31(04):584-588.
    [5]李立明.矿体可崩性综合评价的研究[D].长沙:中南大学,1989.
    [6]朱建新.自然崩落矿体可崩性分级研究[J].南方冶金学院学报,1995,16(4):1-7.
    [7]邓顺华.铜矿峪矿自然崩落法崩落规律的三维有限元数值分析[D].长沙:中南大学,1988.
    [8]N. E. Yasitli,B. Unver.3D numerical modeling of longwall mining with top-coal caving[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2): 219-235.
    [9]S. Zhang,G. Tong. Influence of irregular boundary weakening on the block caving process [J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts,1995,32(2):135-142.
    [10]高文德,王文星.丰山铜矿自然崩落法的试验研究[J].矿业研究与开发,2003,23(01):9-11.
    [11]吴少华,雷平喜.国内自然崩落法的应用和评价[J].化工矿物与加工,1996,25(01):12-15.
    [12]陈清运,蔡嗣经,明世祥等.国内自然崩落法可崩性研究与应用现状[J].矿业快报,2005(01):1-4.
    [13]王文星,潘长良.矿体可崩性研究及其在自然崩落法采矿中的应用[J].矿冶工程,1996,16(03):16-18.
    [14]何昌盛.自然崩落法矿岩可崩性评价及分级分区研究[D].长沙:中南大学,2006.
    [15]王连庆.金川三矿区自然崩落法可崩性的研究[D].北京:北京科技大学,2006.
    [16]雷学文.灰色关联分析法在矿体可崩性评价中的应用[J].化工矿物与加工,1995,24(01):23-26.
    [17]陈清运,蔡嗣经,明世祥等.聚类分级和BP神经网络在自然崩落法矿岩可崩性分级中的应用[J].化工矿产地质,2004,26(02):112-116.
    [18]张峰.矿体的可崩性评价方法及实践[J].中国矿业,1997,6(06):27-30.
    [19]李立明,潘长良.矿体可崩性评价的信息累积法[J].中南工业大学学报(自然科学
    版),1998,29(04):323-325.
    [20]雷学文,肖金发.矿岩可崩性分级的人工神经网络识别[J].金属矿山,2003(02):32-33.
    [21]周传波.岩体可崩性分类方法的模糊综合评判[J].矿冶工程,2003,23(06):17-19.
    [22]袁海平,曹平.我国自然崩落法发展现状与应用展望[J].金属矿山,2004(08):25-28.
    [23]朱建新.自然崩落法矿体可崩性分级研究[D].长沙:中南大学,1995.
    [24]宋卫东.小官庄铁矿采场矿岩可崩性研究及其应用[J].金属矿山,2001(10):26-28.
    [25]吴庆宏.可崩性制约下的拉底方式是自然崩落法生产衔接管理的主导因素[J].新疆有色金属,1997(03):10-15.
    [26]魏建伟.金川Ⅲ矿区自然崩落法矿岩块度预测技术研究[D].长沙:中南大学,2006.
    [27]沈刚,龚浩源.崩落采矿法在铜山铜矿的应用[J].采矿技术,2005,5(01):67.
    [28]陶星虎.自然崩落法采场底部结构应力监测与应用[J].世界有色金属,2000(12):3436.
    [29]朱志根.自然崩落法放矿过程中矿岩散体流动规律研究[D].长沙:中南大学,2006.
    [30]代碧波.矿床开采环境数字化评价技术研究[D].长沙:中南大学,2007.
    [31]张力岩.数字矿山中三维地质模拟与体视化研究[D].北京:中国科学院遥感应用研究所,2004.
    [32]毕思文.数字地球—地球系统数字[M].北京:地质出版社,2001,10.
    [33]毕思文,殷作如,何晓群等.数字矿山的概念、框架、内涵及应用示范[J].科技导报,2004(06):39-63.
    [34]李仲学,李翠平.矿床仿真及体视化技术[J].计算机仿真,2000(05):6-8.
    [35]李翠平,李仲学,胡乃联.矿床体视化的一种空间规则体数据生成方法[J].北京科技大学学报,2002(06):589-592.
    [36]李翠平,李仲学,赵文广.矿床的体视化及仿真系统框架[J].金属矿山,2001(10):44-48.
    [37]龚元翔.铜厂铜矿三维可视化建模及露天境界优化技术研究.长沙:中南大学,2008.
    [38]田雪,聂独.基于Geotools开发的GIS平台智能报装系统设计与实现[J].江西电力,2006,30(02):12-15.
    [39]徐立明,牛新生.地质体三维可视化模拟的现状与展望[J].西南民族大学学报(自然科学版),2006(01):151-154.
    [40]文百红,杨辉,张研.中国石油非地震勘探技术应用现状及发展趋势[J].石油勘探与开发,2005,32(02):68-71.
    [4l]姜在炳.煤层动态建模技术及应用[J].煤炭学报,2006,31(01):40-44.
    [42]方淑芬,杜新锋.煤矿地测信息系统的研制和开发[J].矿山测量,2006(01):36-39.
    [43]张守祥,张良,李首滨.矿山综合地理信息系统研究[J].地质与勘探,2001,37(05):49-53.
    [44]萨贤春,姜在炳,李必慧等.地测信息系统及其应用[J].煤田地质与勘探,1999,27(06):21-26.
    [45]邢继红.鞍钢厂区三维可视化设计与应用[J].北京测绘,2006(03):50-53.
    [46]王华玉,于喜东.MapGIS在数字矿山中的应用[J].煤炭科技,2001(02):10-12.
    [47]王立磊,王李管.依托DIMINE软件实现中国矿山的数字化[J].现代矿业,2009(03):23-27.
    [48]房智恒,王李管,冯兴隆等.基于DIMINE软件的采矿方法真三维设计研究与实现[J].中国钼业,2008,32(06):28-31.
    [49]房智恒,王李管,冯兴隆等.基于地质统计学的矿山储量估算[J].矿业快报,2008(10):28-31.
    [50]曾庆田.复杂多金属矿床可视化模拟及其三维采矿设计技术研究[D].长沙:中南大学,2007.
    [51]李梅,董平,毛善君等.地质矿山三维建模技术研究[J].煤炭科学技术,2005,33(04):46-49.
    [52]张世雄.铜矿峪5号矿体崩落性与崩落机理的研究[D].北京:北京科技大学,1987.
    [53]王月明.两种岩体分类指标RMR与Q间的关系[J].绵阳经济技术高等专科学校学报,2001,18(03):17-18.
    [54]韩爱果,聂德新.某电站地下厂房围岩质量综合分级[J].地质灾害与环境保护,2002,13(02):75-79.
    [55]Netra Gurung, Yushiro Iwao,石中平等.泰国Lam Ta Khong隧洞的变形及工程地质测试[J].地下空间,2000,20(04):299-306.
    [56]张晓晖,王辉,黄鼎成.补充RQD值的几类岩体质量评价图[J].地质科技情报,1999,18(01):109-112.
    [57]王国欣,肖树芳,陈剑平.不连续面三维网络在RQD中的应用研究[J].岩石力学与工程学报,2002,21(12):1761-1764.
    [58]杜时贵,王思敬.岩石质量指标(RQD)的各向异性分析[J].工程地质学报,1996,4(04):48-52.
    [59]陈伊清.岩石质量指标RQD的应用问题[J].水利科技,2002(01):18-49.
    [60]A.R.BYE,F.G.BELL. Geotechnical application in open pit mining[J]. Geotechnical and Geological Engineering,2001(19):97-117.
    [61]王国欣,王旭东,肖树芳.广义RQD在岩体各向异性中的应用研究[J].吉林大学学报(地球科学版),2002,32(03):258-260.
    [62]陈剑平,王清,赵红亮.窗口测线法获取岩体RQD[J].岩石力学与工程学报,2004,23(09):1491-1495.
    [63]罗长保,郑文晓.浅议岩石质量指标(RQD)的统计方法[J].江西水利科技,2004,增刊(S1):21-23.
    [64]吴光,李隽蓬,蒋爵光等.铁路岩质边坡的RQD研究[J].地质灾害与环境保护,1998,9(03):25-33.
    [65]刘丰收,侯清波,李松海.小浪底工程岩体力学参数研究[J].水文地质工程地质,2003,增刊(S1):34-37.
    [66]王经明,邓西清,王厚怀等.岩溶型煤矿底板岩体质量分级及其在突水评价上的应用[J].中国岩溶,2000,19(03):239-245.
    [67]魏继红,吴继敏,孙少锐.岩体分类实例分析与研究[J].工程地质学报,2002,10(01):51-54.
    [68]何哲祥,王宁,谢长江.充填采矿法开采对地表河床影响的数值分析[J].金属矿山,2000(03):20-22.
    [69]W.K.穆塔盖巴,N.G.特伦佐保罗斯,吕向东.基于知识的采矿方法选择系统[J].国外金属矿山,1996(12):62-67.
    [70]D.斯蒂凡诺夫,G.米哈伊诺夫,黄荣等.切诺佩奇金铜铁矿采矿新技术[J].世界采矿快报,1999,15(05):28-33.
    [71]包太,刘新荣,朱可善等.GSI与断裂韧度K之间的关系研究[J].岩石力学与工程学报,2005,24(11):1992-1995.
    [72]张进.GSI在糯扎渡电站边坡岩体强度评价中初步应用[J].云南水力发电,2004,20(01):32-35.
    [73]赵学龙,祝玉学,鲁兆明.采用广义Hoek-Brown准则反算滑坡岩体强度[J].金属矿山,2001(03):19-21.
    [74]阳军生,张军,张起森等.溶洞上方圆形基础地基极限承载力有限元分析[J].岩石力学与工程学报,2005,24(02):296-301.
    [75]吕天启,刘光廷.砂砾软岩的极限承载力分析[J].岩石力学与工程学报,2005,24(11):1942-1946.
    [76]咎月稳,俞茂宏,王思敬.岩石的非线性统一强度准则[J].岩石力学与工程学报,2002,21(10):1435-1441.
    [77]谭文辉,周汝弟,王鹏等.岩体宏观力学参数取值的GSI和广义Hoek-Brown法[J].有色金属(矿山部分),2002,54(04):16-18.
    [78]John A Hudson,John P Harrison. Engineering Rock Mechanics:Introduction to the Principle[M]. London:Imperial College of Science, Technology and Medicine university of London, UK,1997.
    [79]John P. Harrison,John A. Hudson. Engineering Rock Mechanics:Illustrative Worked Examples[M]. London:Imperial College of Science, Technology and Medicine university of London, UK,2000.
    [80]杨继胜.矿岩自然崩落的空间效应问题研究[D].北京:北京科技大学,2005.
    [81]邹雪琴.岩体可崩性灰色模型评价[J].鞍山钢铁学院学报,1992,15(4):15-18.
    [82]董卫军,孙忠铭,王家臣等.矿体自然崩落相似材料模拟试验研究[J].采矿技术,2001(03):13-151.
    [83]王宁,思涵.矿块崩落法的数值模拟和物理模拟的对比分析[J].世界采矿快报,1998(12):16-191.
    [84]张世雄,童光煦.阶段自然崩落法的几个岩体力学问题[J].北京科技大学学报,1987,专辑(S2):1-7.
    [85]张志文.阶段崩落法中的矿体崩落规律[J].金属矿山,1996(11):12-14.
    [86]罗声运.矿块崩落法矿体崩落规律的相似模拟研究[J].矿业研究与开发,1994,14(03):1-6.
    [87]徐腊明.自然崩落法拉底上部矿体应力分布有限元分析[J].金属矿山,1996(02):11-15.
    [88]王宁,韩志型.金川贫矿区自然崩落法采场底部结构的稳定性[J].有色金属,2004,56(03):78-82.
    [89]张世雄,连岳泉,徐腊明.岩体崩落机理的数值模拟研究[J].金属矿山,1997(09):13-18.
    [90]李爱兵,李庶林,陈际经等.柿竹园多金属矿床开采方案确定的数值模拟研究[J].岩土力学,2004,25(S2):463-467.
    [91]Shixiong Zhang,Guangxu Tong. Influence of block boundary weakening on the caving process[J]. Mining Science and Technology,1991,13(2):157-166.
    [92]姜增国,杨保仓.基于DDEM的自然崩落采矿法崩落规律的数值模拟[J].岩土力学,2005,26(02):239-242.
    [93]钱志军,徐长佑.自然崩落法矿体崩落过程的数值模拟[J].化工矿物与加工,1993(01):21-25.
    [94]戴庆,童光煦.自然崩落法放矿过程中底部结构的受力分析——离散元法和cad 的应用[J].非金属矿,1988(02):9-15.
    [95]M. E Pierce. PFC3D Modeling of Inter-Particle Percolation in Caved Rock Under Draw, in Numerical Modeling in Micromechanics Via Particle Methods-2004[C]. in Proceedings of the 2nd International PFC Symposium. October,2004. Kyoto, Japan.
    [96]王永光,宋晓天.矿块崩落法拉底过程中底部结构应力分布及其参数优化[J].有色金属,1986,38(04):1-10.
    [97]潘长良,李立明,曹平等.自然崩落法矿岩崩落特性及崩落规律[J].中南工业大学学报(自然科学版),1994,25(04):441-445.
    [98]R. A Dick, L. A. Fletcher,et al. A Study of Fragmentation From Bench Blasting at Reduced Scale[C]. in USBM Report 7704.1973.
    [99]Grant.J.R,Dutton.A.J. Development of Fragmentation Monitoring System for evaluating Open Slope Blast Performance at Mount Tsa Mines[C]. in Proc.1st Int.
    Symp. Rock Fragmentation by Blasting.1983. Lulea, Sweden.
    [100]Deere.D. U. Technical description of rock cores for engineering purposes[J]. Rock Mech. Eng.,1964, Geol(1):16-22.
    [101]Kazi.A,Sen.Z. Volumetric RQD:an index of rock quality. In:Stephansson,O. (ed.)[C]. in Fundamentals of rock joints.1985. Sweden:Centek Pub.
    [102]Franklin J A,Dusseault M B. Rock engineering[M]. New York:McGrawHill,1989.
    [103]ISRM. Suggested methods for description of discontinuities in rock mass[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics 1978.
    [104]P.Lu,J.P.Latham. Developments in the Assessment of In-situ Block Size Distributions of Rock Masses[J]. Rock Mechanics and Rock Engineering,1999,32(1):29-49.
    [105]Z. Sen,E. A. Eissa. Rock quality charts for log-normally distributed block sizes[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1992,29(1):1-12.
    [106]Barton. N, Lien. R,Lunde. J. Engineering classification of rock masses for the design of tunnel support[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1975,12(5-6):77-77.
    [107]Barton.N. A Review of the Shear Strength of Filled Norwegian Discontinuities[J]. Geotechnical Institute,,1974(105):1-30.
    [108]Barton.N. Application of Q-System and Index Tests to Estimate Shear Strength and Deformability of Rock Masses, Proceedings[R]. Lisbon, Portugal:International Symposium on Engineering Geology and Underground Construction, Laboratorio Nacional de Engenharia Civil,1983:51-70.
    [109]王文星.岩体力学[M].长沙:中南大学出版社,2004.
    [110]D.R.Stewart,张小并译,陈仁宪校.预测矿块崩落矿体岩石自然块度特性的综述[J].有色矿山,1986(6):20-27.
    [111]Bieniawski ZT. Engineering Classification of Jointed Rock Masses [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1974, 11(5):98-98.
    [112]Z. T. Bieniawski. Determining rock mass deformability:experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1978,15(5):237-247.
    [113]Z.T.比尼奥斯基著,吴立新等译.工程岩体分类[M].徐州:中国矿业大学出版社,1993.
    [114]冯兴隆,王李管,毕林等.基于Mathews稳定图的矿体可崩性研究[J].岩土工程学报,2008,30(04):600-604.
    [115]Maerz.N.H. Reconstructing 3-D block size distributions from 2-D measurements on
    sections[C]. in Proceedings of the FRAGBLAST 5 Workshop on Measurement of Blast Fragmentation.1996. Montreal, Quebec, Canada.
    [116]Farmer.I W, Kemeny.J M,McDoniel. Analysis of rock fragmentation in bench blasting using digital image processing[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1993,30(4):A241-A241.
    [117]Hardy.A.J, Ryan.T.M,Kemeny.J.M. Block size distribution of in situ masses using digital image processing of drill core[J]. Int.J.Rock Mech.Min.Sci,1997(34):303-307.
    [118]Wang.W.X, Bergholm.F,Stephonsson.O. Image analysis of fragment size and shape[J]. 5th Int. Symp. Rock Frag. Blasting, Balkema,1996:233-243.
    [119]Liguan Wang. Methodology in the assessment of field characteristics of fractured rock mass[D]. Japan:Akita University,2002.
    [120]林大泽.爆堆块度评价方法研究的进展[J].中国安全科学学报,2003,13(09).
    [121]王争华.爆堆矿岩块度图像处理分析系统的实现[D].北京:北京科技大学,2003.
    [122]题正义.爆堆块度分布的自动与分形测试系统研究[D].沈阳:辽宁工程技术大学,2002.
    [123]题正义,孙臣良,杨艳国.爆堆块度分布的自动与分形测试系统的应用[J].辽宁工程技术大学学报,2002,21(04):405-407.
    [124]丁涛.爆堆岩石块度分布的分形模型研究[D].沈阳:辽宁工程技术大学,2000.
    [125]栾丽华,郭连军.矿岩破碎粒度的智能识别与测量[J].矿业研究与开发,2007,27(04):59-63.
    [126]栾丽华,郭连军,张美玲.矿岩块度分布图像处理的边缘检测算法[J].东北大学学报(自然科学版),2004,25(S2):61-63.
    [127]Girdner.K, Kemeny.J, Srikant.A, et al. The Split System for Analyzing the Size Distribution of Fragmented Rock[C]. in "The Split System for Analyzing the Size Distribution of Fragmented Rock", Proceedings of the FRAGBLAST-5 Workshop on Measurement of Blast Fragmentation, ed.1996. Montreal, Quebec, Canada.
    [128]L.G.Wang, S.Yamashita, F.Sugimoto, et al. A methodology for predicting the in situ size and shape distribution of rock blocks[J]. Rock Mechanics and Rock Engineering, 2003(36):2.
    [129]王李管.矿块崩落法崩落矿石块度预测技术研究[D].长沙:中南工业大学,1988.
    [130]赖森华,童光煦.节理岩体计算单元生成与崩落块度预测[J].有色金属(矿山部分),1988(03):17-22.
    [131]潘别桐,井兰如,熊秉仁.三斗坪坝基和船闸岩体结构概率模型模拟研究[R].武汉:武汉地质学院水文地质与工程地质系,1987.
    [132]邬爱清,周火明.3-D岩体结构模拟分析系统及三峡船闸高边坡岩体结构概化模型研究[R].武汉:长江科学院,1998.
    [133]杜景灿.基于结构面三维网络模拟确定岩体综合抗剪强度和连通率[D].北京:清
    华大学水利系,2002.
    [134]梅涛.岩体节理三维网络模拟优化及在甘肃北山芨芨槽岩块的应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [135]张继春,钮强,徐小荷.岩体节理间距分布的分形模型研究[J].金属矿山,1994(02):19-23.
    [136]陈征宙,胡伏生,方磊.岩体节理网络模拟技术研究[J].岩土工程学报,1998,20(01):22-25.
    [137]孙靖,刘晓明.负指数分布排错时间的软件可靠性模型[J].电子科技大学学报,2005,34(01):53-56.
    [138]李文权,王炜.无信号交叉口主车流服从移位负指数分布下支路多车型混合车流的通行能力[J].系统工程理论与实践,2001(02):122-128.
    [139]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1987.
    [140]淳梅,同继彬.节理等密图的计算机化[J].世界地质,2002,21(1):9-11.
    [141]璩继立,顾英俊.极点图绘制的计算机化[J].桂林工学院学报,1998,18(2):201-203.
    [142]Krumm S. The Erlangen Geological and Mineralogical Software Collection[J]. Computers and Geosciences,1999,25(4):489-499.
    [143]夏才初,孙宗颀.节理表面形貌的室内和现场量测及其应用[J].勘察科学技术,1994(04):27-31.
    [144]谢和平.岩石节理的分形描述[J].岩土工程学报,1995,17(01):18-22.
    [145]徐明放.岩石节理表面形貌、粗糙度及力学性质的研究[D].长沙:中南大学,1999.
    [146]夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002.
    [147]夏才初,孙宗颀,潘长良.岩体不连续表面形貌特征的数值模拟研究[J].中南工业大学学报(自然科学版),1994(05):565-569.
    [148]The Visualization Toolkit. Kitware Corp. http://www.kitware.org.
    [149]The VTK User's Guide. Kitware Corp. http://www.kitware.org.
    [150]Virendra K,Peter M F. Constructive solid geometry approach to three2dimensional structural shape optimization[J]. AIAA Journal,1992,30(5):1408-1415.
    [151]Damian Conway. Constructive solid geometry using the isoluminance contour model[J]. Computers& Graphics,1991,15(3):341-347.
    [152]毕林,王李管,陈建宏等.基于VTK的矿体三维可视化研究与实现[J].计算机工程与应用,2008,44(10):78-81.
    [153]M Levoy. Disp lay of Surfaces from Volume Data[J]. IEEE CG&A,1988,8(3): 29237.
    [154]毕林,王李管,陈建宏等.基于八叉树的复杂地质体块段模型建模技术[J].中国矿业大学学报,2008,37(04):532-537.
    [155]吴江斌,朱合华.基于Delaunay构网的地层3D TEN模型及建模[J].岩石力学与工程学报,2005,24(24):4581-4587.
    [156]吴立新,史文中,Christopher Gold.3DGIS与3DGMS中的空间构模技术[J].地理与地理信息科学,2003,19(01):5-11.
    [157]王李管,何昌盛,贾明涛.三维地质体实体建模技术及其在工程中的应用[J].金属矿山,2006(02):58-62.
    [158]杜培军,郭达志,田艳凤.顾及矿山特性的三维GIS数据结构与可视化[J].中国矿业大学学报(自然科学版),2001,30(03):238-243.
    [159]韩国建,郭达志,金学林.矿体信息的八叉树存储和检索技术[J].测绘学报,1992,21(01):13-17.
    [160]Noborio H, Fukuda S,Arimoto S. Conversion algorithm from the boundary representation to the octree and its complexity[J]. Transaction of the Information Processing Society of Japan,1987,28(10):1003-1011.
    [161]Tamminen.M,Samet.H. Efficient octree conversion by connectivity labeling[J]. Computer Graphics,1984,18(3):43-51.
    [162]Gottschalk S, Lin M C,Manocha D. OBBtree:a hierarchical structure for rapid interference detection[C]. in Proceedings of ACM Annual Conference on Computer Graphic.2000. New Orleans, Louisiana.
    [163]Philip J.Schneider,David H.Eberly. Geometric tools for computer graphics[M]. Beijing:Publishing House of Electronics Industry,2004.
    [164]谭文辉,王家臣,周汝弟.岩体强度参数空间变异性分析[J].岩石力学与工程学报,1999,18(05):497-502.
    [165]张征,刘淑春,鞠硕华.岩土参数空间变异性分析原理与最优估计模型[J].岩土工程学报,1996,18(04):40-46.
    [166]贾明涛,王李管.三维变异函数的稳健统计学计算方法及其应用[J].中南大学学报(自然科学版),1998,10(05):422-424.
    [167]贾明涛.金川Ⅲ矿区矿床开采技术条件研究[R].长沙:中南大学,2006,12.
    [168]侯景儒,郭光裕.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1993.
    [169]朱小林.岩土工程参数的评价[J].工程勘察,1989(5):37-41.
    [170]A.G.儒尔奈耳,CH.J.尤日布雷格茨著,黄竞先等译侯景儒.矿业地质统计学[M].北京:冶金工业出版社,1982.
    [171]张征,张人权,徐恒力等.岩溶含水介质渗透性空间结构分析的模型及其应用[J].中国岩溶,1995,14(02):113-121.
    [172]刘淑春,张征,王进杰等.地理信息系统与空间分布变量的地质统计分析[J].河北建筑科技学院学报(自然科学版),1995,12(02):47-52.
    [173]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    [174]Shahrokh Rouhani. Variance Reduction Analysis[J]. Water Resources Research,1985, 21(6):837-846.
    [175]Event Hoek. Practical Rock Engineering[M]. Evert Hoek Consulting Engineer Inc,2007.
    [176]云南迪庆有色金属有限责任公司.云南省迪庆州普朗铜矿区外围勘查地质报告[R].迪庆:云南迪庆有色金属有限责任公司,2008,3.
    [177]陈忠辉熊道慧孙忠铭张民正王家臣.金川镍矿二矿区矿石自然崩落规律研究[J].中国矿业大学学报,2000,29(06):596-600.
    [178]E.T.Brown. Block caving geomechanics[M]. Queensland, Australia:Julius Kruttschnitt Mineral Centre,2003.
    [179]WANG Liguan, Sugimoto F,Yamasita S. Estimation of cavability by using a block model and fuzzy Sets[J]. Journal of the Mining and Materials Processing Institute of Japan,2002,118(7):481-489.
    [180]冯兴隆,王李管,毕林等.基于Laubscher崩落图的矿体可崩性研究[J].煤炭学报,2008,33(03):268-272.
    [181]Laubscher.D H. Caving mining-the state of the art.Underground Mining Methods: Engineering Fundamentals and International Case Histories[M]. Littleton, Colorado: Society for Mining, Metallurgy and Exploration,2001.
    [182]李爱兵.缓倾斜层状矿体崩落步距的Mathews稳定图方法研究[J].中国矿业,2007,16(02):67-69.
    [183]R.特鲁曼.应用Mathews方法进行空场采矿法设计的经验[J].国外金属矿山,2002(01):27-30.
    [184]D. Milne, J. Hadjigeorgiou,R. Pakalnis. Rock mass characterization for underground hard rock mines[J]. Tunnelling and Underground Space Technology,13(4):383-391.
    [185]Mawdesley.R.Trueman,W.J.Whiten. Extending the Mathews stability graph for open-stope design[J]. Mining Technology:IMM Transactions section A,2001,10(1): 27-39.
    [186]Katherine S.Kalenchuk, Mark S.Diederichs,Steve McKinnon. Characterizing block geometry in jointed rockmasses[J]. International Journal of Rock Mechanics& Mining Sciences,2006(43):1212-1225.
    [187]P.Lu. The characterisation and analysis of in-situ and blasted block size distributions and the blastability of rock masses[D]. London:Queen Mary and Westfield College University of London,1997.
    [188]Priest.S. D.,Hudson.J. A. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1981,18(3):183-197.
    [189]Lianyang Zhang,H. H. Einstein. Estimating the intensity of rock discontinuities[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(5):819-837.
    [190]P. H. S. W. Kulatilake,T. H. Wu. The density of discontinuity traces in sampling windows[J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts,1984,21(6):345-347.
    [191]袁绍国,王震.节理测量误差的来源及其分析[J].包头钢铁学院学报,1998,17(04):253-257.
    [192]王贵宾.岩体节理三维模拟及渗透张量分析[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [193]徐钟济.蒙特卡洛方法[M].上海:上海科学技术出版社,1985,6.
    [194]丁万涛.随机裂隙对节理岩体稳定性影响研究及其在海底隧道中的应用[D].济南:山东大学,2008.
    [195]D.H.White,张小并.矿块崩落法矿山设计中岩体性质的分析[J].中国矿山工程,1987(04):11-24.
    [196]Mukherjee.A,Mahtab.A. Size distribution of ore fragments in block caving[C]. in Proc. 13th World Mining Congress.1987. Stockholm, Sweden.
    [197]马小虎,潘志庚,石教英.基于凹凸顶点判定的简单多边形Delaunay三角剖分[J].计算机辅助设计与图形学学报,1999,11(1):1-3.
    [198]毕林,王李管,冯兴隆.多边形区域三角化近似线性时间复杂度算法与实现[J].计算机应用技术,2008,25(10):3030-3033.
    [199]罗广祥,马智民.基于单调性图形综合的面状要素名称注记定位线确定[J].地球科学与环境学报,2004,26(2):75-80.
    [200]J. A Franklin,Dusseault M B. Rock Engineering[M]. New York:McGrawHill,1989.
    [201]Z. Sen,E. A. Eissa. Rock quality charts for log-normally distributed block sizes:Int J Rock Mech Min Sci V29, N1, Jan 1992, P1-12[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1992,29(4):238-238.
    [202]Palmstrom AA. Measurement and characterization of rock mass jointing[M]. In: Sharma VM, Saxena KR, editors.In-situ characterization of rocks. Rotterdam: Balkema,2001.
    [203]璩世杰.矿岩块度图象分析法研究述评[J].金属矿山,1995(11):10-13.
    [204]齐金铎.岩石破碎块度特性及计算方法[J].中国矿业,1995,4(1):34-37.
    [205]赵文广.节理随机概率模型应用于块体理论的研究[D].沈阳:东北工学院,1991.
    [206]Shanley RJ,Mathtab MA. Delineation and analysis of clusters in orientation data[J]. Mat h Geol.,1976,8(3):9-23.
    [207]Priest SD,Hudson J A. Estimation of discontinuity space and trace length using scanline surveys [J]. Inter J Rock Mech Min Sci and Geomech Abstr,1981,18: 183-197.
    [208]Hudson J A,Priest S D. Discontinuity frequency in rock masses[J]. Inter J Rock Mech Min Sci and Geomech Abstr,1983,20(2):73-89.
    [209]Kulatilake, PHSW,et al. Discontinuity network modelling of the rock mass around a tunnel close to the permanent shiplock area of the Three Gorges dam site in China[C]. in Proc 35th US Sym Rock Mech.1995. Baliema, Rot terdam.
    [210]Z. Sen,A. Kazi. Discontinuity spacing and RQD estimates from finite length scanlines [J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1984,21(4):203-212.
    [211]Steffen OKH,et al. Recent developments in the interpretation of data from the joint surveys in rock masses [C]. in Proc 6th Regional Conff or Africa on Soil Mech and Foundation Engineering.1975. Durban, South Africa.
    [212]于润沧.采矿工程师手册[M].北京:冶金工业出版社,2009.
    [213]Maerz.N.H, Palangio.T.C,Franklin.J.A. WipFrag image based granulometry system[C]. in Proceedings of the FRAGBLAST5 Workshop on Measurement of Blast Fragmentation.1996. Montreal, Quebec, Canada.
    [214]I W Farmer, J M Kemeny,McDoniel. Analysis of rock fragmentation in bench blasting using digital image processing[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1993,30(4):A241-A241.
    [215]J. M. R. Fernlund. Image analysis method for determining 3-D shape of coarse aggregate[J]. Cement and Concrete Research,2005,35(8):1629-1637.
    [216]J. Aler, J. Du Mouza,M. Arnould. Measurement of the fragmentation efficiency of rock mass blasting and its mining applications[J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts,1996,33(2):125-139.
    [217]Kemeny. A practical technique for determining the size distribution of blasted benches, waste dumps, and heap-leach site[J]. Min. Eng.,1994,46(11):1281-1284.
    [218]Kushner H.J,P. Dupuis. Numerical methods for stochastic control problems in continuous time,2nd edition, Applications of Mathematics,24,Stochastic Modelling and Applied Probability,[M]. New York:Springer-Verlag,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700