用户名: 密码: 验证码:
类软土滑坡工程特性及钢管压力注浆型抗滑挡墙的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在我国山区铁路、公路建设中,常遇到一种分布在斜坡上的软弱土,它与海相、湖相等沉积的软土的物理力学指标类似,但在形成原因、分布范围、物质组成及其它特性上又有所区别,为此称其为“类软土”,它是指炭质页岩、炭质灰岩、炭质泥岩等一套含炭的黑色软质岩及其风化产物,在特殊的工程地质条件和气象、水文地质条件下形成的饱水层,受长期浸泡软化或间有微生物作用而形成的坡残积、坡崩积和坡洪积“软土”。
     本文以北京—珠海高速公路粤境南段K108类软土滑坡为例,通过现场试验、室内试验、现场监测、理论研究及数值模拟等方法,对类软土的工程特性进行了较为系统地研究,并对与类软土滑坡相适应的新的支挡结构——钢管压力注浆型抗滑挡墙从设计计算理论、施工工艺等方面进行了研究,取得了以下主要结论和成果:
     (1) 系统地总结了类软土滑坡典型的工程特性。对K108类软土滑坡的地层岩性、构造特征、水文地质特征及滑坡产生原因、过程进行了分析。
     (2) 通过室内试验,研究了类软土的物理力学性质,给出了各项指标的典型值;得出了确定类软土的指标界限值,其天然含水量、孔隙比、压缩系数、天然快剪强度等指标与一般沉积软土类似,仅含水量略小于液限:研究得出类软土具有弱—中的膨胀性;同时,研究了类软土的触变性,得出其触变试验曲线。
     (3) 通过对多个类软土试样进行详细的扫描电镜(SEM)观察,得出类软土具有以下四种主要的微观结构:絮凝结构、定向排列(层流)结构、紊流结构及复合式结构。
     (4) 通过室内单轴剪切蠕变试验,研究了类软土的蠕变特性。得出类软土在不同正应力条件下不同含水量的剪应力—应变—时间关系,应用Burgers体模型方程对蠕变试验结果进行拟合,得出了不同正应力下的流变力学参数;同时,得出类软土原样与重塑样在三种不同含水量条件下的类软土的长期强度。
     (5) 应用化学热力学理论,对类软土的成因及成土化作用进行了分析。讨论了类软土中黏土矿物的形成与演化;提出了类软土的成因模式。
     (6) 对K108类软土边坡稳定性进行了有限元分析。首先,介绍了有限元强度折减法技术的原理,定义了边坡的破坏标准及土体的本构关系、屈服准则;其次,应用有限元强度折减技术对K108类软土路堑边坡进行了模
Recent years have seen one sort of slopes consisting of special soft soil during montanic railway and highway construction in China. This special soft soil is significantly different from sedimentary soft soil in its formation, distribution, physical components, but remains similar properties of mechanics. Therefore it is called "similar soft soil". Similar soft soil means the special eluvial-declivous, colluvial-declivous and diluvial-declivous soft soil which comes from the series of carbonaceous soft rock such as carbonaceous shale, carbonaceous limestone, carbonaceous mudstone and its weathering products under specific conditions determined by engineering geology, meteorology, hydrogeology, long-term saturation and microbial reactions etc.Taking the case of similar soft clay landslide located in south K108 of Guangdong segment of Beijing-Zhuhai highway, engineering characteristic of similar soft soil is systematically investigated by field monitoring, indoor test, theoretical calculation and numerical simulation. Some work is also done for the designingtheory and constructing technics of new pattern retaining structure------steel-tubebored grouting anti-sliding retaining wall. Main results and conclusions achieved are presented as follows.1. Important engineering characteristics of similar soft soil landslide are systematically summarized. Analysis is given to the strata lithology, geologic structure, hydrogeologic properties, the cause and process of the K108 landslide.2. Physical and mechanics properties of similar soft soil are studied by indoor test. The parameters of physics and mechanics and their range are obtained, among which natural water content, void ratio, coefficient of compressibility and natural shear strength are almost the same as those of the sedimentary soft soil, just water content a little less than liquid limit. The thixotropy and dilatability of similar soft soil are studied and the thixotropy-testing curve is drawn.3. By SEM observation of the dominant mineral component, lamellar kaolinite, and landslide thrust, the micro-structure of similar soft soil are categorized into four types: flocculent structure, turbulence structure, direction-array structure and complex structure.4. Creep properties are studied on basis of simple-shear creep test. The curves of shear stress-strain-time are drawn with different water content. The creep behavior of similar soft soil is described based on the Burgers visco-elastic model. The shear rheological parameters and long-term strength of natural and recomposed samples of
    similar soft soil are obtained. It's shown that the long-term strength drops rapidly with water content increasing.5. The chemical thermodynamics theory applies to analyze the cause of formation and soil-forming action of similar soft soil. Formation and evolvement of clay minerals in similar soft soil are discussed. Soil-forming mode of similar soft soil is that mother rock goes through the procedure of weathering, grain-grouping and soil-forming.6. The strength reduction technique of FEM applies to the stability of K108 similar soft soil landslide. A brief introduction of this technique is given and slope failure, constitutive model and yield criterion of soil are defined. The numerical simulation of K108 similar soft soil roadcut slope is conducted, which proves to be consistent with limit equilibrium analysis. Also the stability of K108 similar soft soil landslide is analyzed by soft soil creep model. The factor of safety drops 20% due to creep properties. In addition, the process of excavation is simulated which keeps consistent with creep situations in practice.7. Theoretical investigation of the new pattern of retaining structure, steel-tube bored grouting anti-sliding retaining wall, is conducted. Its properties and advantages are introduced and the designing methods are proposed. From the perspective of single pile, FEM applies to steel-tube bored grouting micropiles based on Winkler foundation model. Also the stability of slope reinforced by steel-tube bored grouting micropiles is analyzed and the design method is presented. The equivalent bending-resistant stiffness method is taken to explore the situation of decomposition of mechanics between micropiles row. Internal forces of the retaining structure are passed on to micropiles row through cross-section area or lateral bending-resistant stiffness. FEM is used to simulate the soil arching effect between micropiles. The influence of different micropiles array on soil arching and load assignment between micropiles row is studied.The steel-tube bored grouting anti-sliding retaining wall composed of one or several rows of steel-tube bored grouting micropiles is considered as underground continuous wall. Internal forces of retaining wall are calculated by foundation counterforce method ("m" method). The design method, strength check and calculation of overturn and sliding instability of retaining wall are presented.8. Taking the example of K108 similar soft clay landslide in Beijing-Zhuhai highway, the whole technics of construction of steel-tube bored grouting anti-sliding retaining wall is proposed by the way of flow chart.9. The effect of steel-tube bored grouting anti-sliding retaining wall applied to reinforce similar soil slopes is checked by means of field excavation, indoor test, dynamic probe, permeability test, PS wave test and pressuremeter test. The K108
引文
[1] 《工程地质手册》编写委员会.工程地质手册(第三版).北京:中国建筑工业出版社.1992:167~174,475
    [2] 徐邦栋.滑坡分析与防治.北京:中国铁道出版社,2001
    [3] 潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980
    [4] Ausilio E, Conte E, Dente G.Stability analysis of slopes reinforced with piles. Computers and Geotechnics, 2001, 28: 591~611
    [5] 励国良.锚索抗滑桩与滑坡相互作用的计算.滑坡文集(第十三集).北京:中国铁道出版社,1998
    [6] 王文灿,李传珠.论抗滑桩的受力状态.滑坡文集(第十四集).北京:中国铁道出版社,2000
    [7] 铁道部第二勘测设计院.抗滑桩设计与计算.北京:中国铁道出版社,1983
    [8] 周德培,王建松.预应力锚索抗滑桩内力的一种计算方法.岩石力学与工程学报,2002,21(2):247~250
    [9] 朱宝龙,杨明,胡厚田,等.类土质边坡锚固特性的试验研究.岩土力学,2004,25(12):1923~1927
    [10] 李德芳,张友良.边坡加固中预应力锚索地梁内力计算.岩土力学,2000,21(2):170~172
    [11] 杨明,胡厚田,卢才金,等.路堑土质边坡加固中预应力锚索框架的内力计算.岩石力学与工程学报,2002,21(9):1383~1386
    [12] 朱宝龙,杨明,胡厚田,等.土质边坡加固中预应力锚索框架内力分布的试验研究.岩石力学与工程学报,2005,24(4):697~702
    [13] 刘小丽.新型桩锚结构设计计算理论研究.成都:西南交通大学博士学位论文,2003
    [14] 谭罗荣 粘性土微观结构定向的X射线衍射研究.科学通报,1981,26(4):236~239
    [15] 高国瑞.黄土显微结构的分析及其在工程地质勘察中的应用.工程勘察,1980,(6):25~28
    [16] 雷祥义.中国黄土的孔隙类型与湿陷性.中国科学(B辑),1987,(12):309~318
    [17] 吴义祥.工程粘性土微观结构的定量评价.中国地质科学院报,1991,23(2):143~150
    [18] 李生林.中国膨胀土工程地质研究.南京:江苏科学技术出版社,1992
    [19] 曲永新.固结条件下上海软土孔径分布的变化及其在地面沉降中的意义.见:第四届全国工程地质大会论文集.北京:海洋出版社,1992,885~889
    [20] 施斌.粘性土微观结构S E M图像的定量研究.中国科学,1995,25(6):666~672
    [21] 薄遵昭,牛作民.太平洋中部多金属结核分布区洋底表层沉积物的微结构特征.见:第 四届全国工程地质大会论文集.北京:海洋出版社,1992,842~853
    [22] 王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用.成都理工学院学报,2001,28(2):148~153
    [23] 王清,唐大雄,李洪玉.微观结构理论认识及发展.水文地质与工程地质,1991,18(4):45~47
    [24] 胡瑞林,官国林,李向全.黄土湿陷性的微观结构效应.工程地质学报,1999,(2):161~167
    [25] 奥西波夫.粘土类土和岩石强度与变形本质.李生林,张之一译.北京:地质出版社,1985
    [26] Kuhn M R, Mithchell J K.New perspectives on soil creep. Journal of Geotechnical Engineering, 1993, 119(3): 507~524
    [27] Mitchell J K. Fundamental soft soil behavior. John Wiley Besons, Inc, 1976
    [28] Sergeyev Y M, Grabowska-Olszewska B, Osipov V I, etc. The classification of microstructures of clay soils. Journal of Microscopy, 1980, 120 (12): 237~260
    [29] 沈珠江.土力学理论研究中的两个问题.岩土工程学报,1992,14(3):99~100
    [30] 沈珠江.土体结构性的数学模型.岩土工程学报,1996,18(1):95~97
    [31] Bell F G. Cement stabilization and clay soils with examples. Environmental and Engineering Geoscience, 1995, (2): 139~151
    [32] 魏汝龙.软粘土的强度利变形.北京:人民交通出版社,1987
    [33] Peralt R F. Microrheology of clay-polymer systems, Ⅸ Intl. Congress on Rheology, 1984, 255~263
    [34] 高国瑞.近代土质学.南京:东南大学出版社,1990
    [35] Pindera J T. Rheologycal factors in theory of isodyen methods for determination of stress/strain state in composite material sand structures, Ⅸ Intl. Congress on Rheology, 1984. 741~746
    [36] 维亚洛大C C.土力学的流变原理.杜余培译.北京:科学出版社,1987
    [37] 张诚厚.结构性粘土对湛江一区码头变形的影响.南京水利科学研究,1985,(3):123~131
    [38] 李广信.关于土力学理论发展的一些看法.岩土工程学报,1991,13(5):92~98
    [39] 郦能惠.土的基本性质和测试技术.见:第八届土力学及岩土工程学术会议论文集.北京:万国学术出版社,1999,3~11
    [40] 赵维炳.地基处理技术发展简述.见:第八届土力学及岩土工程学术会议论文集.北京:万国学术出版社,1999,33~43
    [41] Singh A, Mitchell J K. General stress-strain-time function for soils. Soil Mech. Found. Div.ASCE, 1968, 94(1): 21~46
    [42] Kondner R L. Hyperbolic stress-strain-time function for soils. Soil Mech. Found. Div.ASCE, 1963, 89(1): 115~143
    [43] Mesri G, Febres C E, Shields D R, etc. Shear stress-strain-time behaiour of clays. Geotechnique, 1981, 31(4): 537~552
    [44] 孙均.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999
    [45] 黄文熙.土的工程性质.北京:水利电力出版社,1983
    [46] 赵维炳,施建勇.软土固结与流变.南京:河海大学出版社,1996
    [47] 袁静,龚晓南,益德清.岩土流变模型的比较研究.岩石力学与工程学报,2001,20(6):772~779
    [48] 张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用.岩石力学与工程学报,2004,23(10):1635~1639
    [49] 王琛,胡德金,刘浩吾,等.三峡泄滩滑坡体滑动带土的蠕变试验研究.岩土力学,2003,24(6):1007~1010
    [50] 韩爱果,聂德新,任光明,等.大型滑坡滑带土剪切流变特性研究.工程地质学报,2001,9(4):345~348
    [51] 詹美礼,钱家欢,陈绪禄.软土流变试验及流变模型.岩土工程学报,1993,15(3):54~62
    [52] 舒芝琴,周宏文.上海浅层土的单剪流变特性.岩土力学,1982,3(1):55~64
    [53] 李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型.土木工程学报,2001,34(6):74~79
    [54] 王常明,王清,张淑华.滨海软土蠕变特性及蠕变模型.岩石力学与工程学报,2004,23(2):227~230
    [55] 谢和平.分形几何及其在岩土力学中的应用.岩土工程学报,1992,14(1):14~24
    [56] 仪垂祥.非线性科学及其在地学中的应用.北京:气象出版社,1995
    [57] 张奠宙.不连续线索的数学模型——托姆的突变理论.自然杂志.1981,3(10):728~732
    [58] Mckean J A, etc. Quantification of soil production and downslope creep rates from cos mogeic (10) Be accumulations on a hillslope profile. Geology(Boulder), 1995, 21(4): 343~346
    [59] 漆宝瑞.斜坡软土特性及工程措施研究.成都:西南交通大学硕士学位论文,2003
    [60] 尤昌龙,赵成刚,张焕成,等.高原斜坡软土地基处理实践.岩石力学与工程学报,2003,22(1):126~130
    [61] 尤昌龙,赵成刚,张焕成,等.高原斜坡软土路基施工试验研究.岩土工程学报,2002,24(4):503~508
    [62] 魏永幸.内昆铁路李子沟斜坡软土特性及路基工程对策.地质灾害与环境保护,2000,11(2):104~106
    [63] 千木良雅弘.泥岩化学的风化.地质学杂志,1988,94(6):419~431
    [64] 木宫一邦.花岩类物理的风化指标引张强度.地质学杂志,1975,81(6): 349~364
    [65] Walderhaug O. Chemical weathering at rock art sites in Western Norway: which mechanisms are active and how can they be retarded. Journal of Archaeological Science, 1998, 25: 789~800
    [66] Mireille B, Serge J.chemical weathering studies in relation to geomorphological research in southeastern Canada. Geomorphology, 2000, 32: 213~238
    [67] Takashi N, Hiromu K.Application of a fluorescent technique to the study of the weathering process. Engineering Geology, 1996, 43: 247~253
    [68] 唐辉明.岩石风化壳工程垂直分带的最优分割.工程勘察,1988,(1):15~18
    [69] 聂德新,韩爱果,巨广宏.岩体风化的综合分带研究.工程地质学报,2002,10(1):20~25
    [70] 左权,王清,唐大雄.华南湘赣粤地区红层残积红土的工程地质研究.长春地质学院学报,1994,24(1):70~76
    [71] 冯启言,韩宝平,曹丁涛,等.红层的微观结构与工程地质特性研究.水文地质工程地质,1994,(5):15~16,21
    [72] 王磊,李萼雄.红层边坡风化过程的化学分析.成都科技大学学报,1996,(6):61~66
    [73] 陈泳周,黄绍派,周东,等.广东花岗岩类岩石风化土的工程地质特征.桂林工学院学报,2002,22(3):263~268
    [74] 韩宝平,张井.碳酸盐岩风化过程中空隙结构的变化.中国岩溶,1994,13(4):375~382
    [75] 巫锡勇.黑色岩石的风化过程及其热力学分析.成都:西南交通大学博士学位论文,1998
    [76] Singer A. Weathering patterns in representative soils of Guanxi Province, South-East China, as indicated by detailed clay Mineralogy. Journal of Soil Science, 1993, 44: 173~188
    [77] Schulze D G, Dixon J B.High gradient magnetic separation of iron oxides and other magnetic minerals from soil clays. Soil Sci. Soc. Am. J., 1979, 43: 793~799
    [78] Colman S M, Dethier D P.Rates of chemical weathering of rocks and minerals. New York: Academic Press. INC. 1986: 1~20
    [79] 李景阳,王朝富,樊廷章.残积红粘土成因探讨.见:第二届全国红土工程地质研讨会论文集.贵阳:贵州科技出版社,1991,21~29
    [80] 李景阳,王朝富.关于喀斯特成土作用的新认识.工程地质信息,1989,(3):2~5
    [81] 顾新运,许冀泉.滇桂地区石灰岩发育的三种土壤的粘土矿物组成和演变.土壤学报,1963,11(4):411~416
    [82] 朱立军,傅平秋,李景阳.贵州碳酸盐岩红土中的粘土矿物及其形成机理.矿物学报,1996,16(3):290~297
    [83] 黄英,符必昌.红土化作用及红土的工程地质特性研究.岩土工程学报,1998,20(3):40~44
    [84] Fellenius W. Calculation of the stability of earth dams. In: Proceedings of the Second Congress of Large Dams. Washington D C, 1936, (4): 445~463
    [85] Bishop W. The use of the slip circle in the stability analysis of slopes. Geotechnique, 1955, 5(1): 7~17
    [86] Janbu N. Slope stability computations, Embankment Dam Engineering. New York: John Wiley and Sons, 1973, 47~86
    [87] Janbu N. Earth pressure and bearing capacity calculations by generalized procedure of slice. 4th Int. Conf. Soil Mech. and Found. Eng. London, 1957, 207~212
    [88] Spencer E. A method of analysis of the stability of embankments using parallel interslice forces. Geotechnique, 1967, 17(1): 11~22
    [89] Morgenstern N R, Price V E. The analysis of the stability of general slip circles. Geotechnique, 1965, 15(1): 79~93
    [90] Chen Z Y, Morgenstern N R. Extensions to the generalized method of slices for stability analysis, Canadian Geotechnical Journal, 1983, 20(1): 104~119
    [91] Chen Z Y. Recent developments in slope stability analysis. Proceedings 8th International Congress on Rock Mechanics, Keynote Lecture. 1995, (3): 1041~1048
    [92] 陈祖煜.土坡稳定性分析通用条分法及其改进.岩土工程学报,1983,5(4):11~27
    [93] Sarma S K. Stability analysis of embankments and slopes. Geotechnique, 1973, 23(3): 423~433
    [94] 陈祖煜.土质边坡稳定分析——原理·方法·程序.北京:中国水利水电出版社,2003
    [95] 钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996
    [96] 张孟喜,陈炽昭.土坡稳定分析的有限元追踪法.岩土工程学报,1991,13(6):35~41
    [97] 张雄.边坡稳定性的刚性有限元评价.成都科技大学学报,1994(6):47~52
    [98] 史恒通,王成华.土坡有限元稳定分析若干问题探讨.岩土力学,2000,21(2):152~155
    [99] Duncan J M. State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering, 1996, 122(7): 577~595
    [100] Chowdhury R N, Tang W H, Sidi I. Reliability model of progressive slope failure. Geotechnique, 1987, 37(4): 467~481
    [101] Zienkiewice O C, Humpheson C, Lewis R W. Associated and nonassociated visco-plasticity and plasticity in soil mechanics. Geotechnique, 1975, 25(4): 671~689
    [102] Wong F S. uncertainties in FE modeling of slope stability. Computer & Structures, 1984, 19: 777~791
    [103] Ugai K. A method of calculation of total factor of safety of slopes by elaso-plastic FEM. Soils and Foundations, 1989, 29(2): 190~195
    [104] Matsui T, San K C. Finite element slope stability analysis by shear strength reduction technique. Soils and Foundations, 1992, 32(1): 59~70
    [105] Ugai K, ieshchinsky D. Three-dimensional limit equilibrium and finite element analysis comparison of results. Soils and Foundations, 1995, 35(4): 1~7
    [106] Griffiths D V, Lane P A. Slope stability analysis by finite elements. Geotechnique, 1999, 49(3): 387~403
    [107] Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction. Geotechnique, 1999, 49(6): 835~840
    [108] Manzari M T, Nour M A. Significance of soil dilatancy in slope stability analysis. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(1): 75~80
    [109] 宋二祥.土工结构安全系数的有限元计算.岩土工程学报,1991,19(2):1~7
    [110] 郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析.中国工程科学,2002,4(10):57~61
    [111] 郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用.岩石力学与工程学报,2004,23(19):3381~3388
    [112] 连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性.岩土工程学报,2001,23(4):407~411
    [113] 迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性.岩土工程学报,2004,26(1):42~46
    [114] Boutrup A W, Lovell C W. Search technique in slope stability analysis. Engineering Geology, 1980, 16: 51~61
    [115] 张天宝.土坡稳定分析和土工建筑物的边坡设计.成都:成都科技大学出版社,1987:67~77
    [116] 阎中华.均质土坝与非均质土坝稳定安全系数极值分布规律及电算程序简介.水利水电技术,1983,(7)
    [117] 周文通.最优化方法在土坝稳定分析中的应用.土石坝工程.1984,(2)
    [118] 孙君实.条分法的提法及其数值计算的最优化方法.水力发电学报.1983,(1)
    [119] 陈祖煜,邵长明.最优化方法在确定边坡最小安全系数方面的应用.岩土工程学报.1988,10(4):1~14
    [120] 陈庆中,张弥,朱利平.土坡稳定分析最优控制法.北方交通大学学报,2000,24(1):64~66
    [121] 朱大勇.边坡临界滑动场及其数值模拟.岩土工程学报,1997,19(1):63~69
    [122] 朱大勇,钱七虎,周早生等.岩体边坡临界滑动场计算方法及其在露天矿边坡设计 中的应用.岩石力学与工程学报,1999,18(5):567~572
    [123] 王恭先.抗滑支挡建筑物的发展动向.滑坡文集(第十三集).北京:中国铁道出版社,1998:60~64
    [124] 杜嘉鸿,张崇瑞,何修仁,等.地下建筑注浆工程简明手册.科学出版社,1992
    [125] 程鉴基.灌浆技术在软土地基处理中的综合应用.岩土工程学报,1994,16(5):89~93
    [126] 程鉴基,邝健政.软弱地基中水泥类化学灌浆机理的初探.岩土工程学报,1993,15(3):81~87
    [127] 《岩土注浆理论与工程实例》协作组.岩土注浆理论与工程实例.北京:科学出版社,2001
    [128] 熊厚金,林天健,李宁.岩土工程化学.科学出版社,2001
    [129] 龚晓南,俞建霖.地基处理理论与实践.北京:中国水利水电出版社,知识产权出版社,2002
    [130] 殷宗泽,龚晓南.地基处理工程实录.北京:中国水利水电出版社,2000
    [131] Kikuchi K, Igari T, Mito Y, etc. In situ experimental studies on improvement of rock masses by grouting treatment. Int.J.Rock Mech.Min.Sci, 1997, 34(3,4): 594~605
    [132] Lee J S, Bang C S, Mok Y J, etc. Numerical and experimental analysis of penetration grouting in jointed rock masses. International journal of Rock Mechanics & mining Sciences, 2000, 37: 1027~1037
    [133] 郭光礼,邓喀中,何国消,等.采动破裂岩体地基注浆加固及其检测技术.中国矿业大学学报,2000,29(3):293~296
    [134] 赵金龙,杜永清,石广余,等.瞬态瑞利波检测注浆地基及对注浆效果的评价.勘察科学技术,1999,(2):61~63
    [135] 张献民.瞬态面波测试及其在土木工程中的应用.河北工业大学学报,2000,29(1):11~16
    [136] 李哲生.瞬态多道瑞利波勘探技术在岩土工程勘察中的应用.工程勘察,1996,(3):66~68
    [137] 董清华,曹俊兴.井间地球物理成像与工程勘察.工程勘察,1999,(4):64~66
    [138] 丘陶兴,王洪涛,陶裕录.电磁波井间CT成像技术及其在岩土工程中的应用.华南地震,1994,14(3):16~23
    [139] Lizzi F. Reticulated root piles to correct landslides, ASCE, Convention and Exposition, Chicago, 1978
    [140] 曾国熙,等.地基处理手册.北京:中国建筑工业出版社,1988
    [141] 王传甲.浅谈复合挡土结构防治滑坡.安徽建筑,1994,(4):80
    [142] 邹越强,李彬.树根桩防治滑坡的研究.合肥工业大学(自然科学版),1994,17(1):120~ 124
    [143] 黄晓华.公路边坡病害治理的轻型支挡结构.重庆交通学院学报,1999,18(3):90~94
    [144] 葛子辉.树根桩锚固技术在滑坡治理工程中的应用.西部探矿工程,2001,(21):87~88
    [145] 姬深堂,乔来军,陈希太,胡向奎.树根桩与土钉墙联合支护在边坡加固中的应用.施工技术,2002,31(1):21~22
    [146] 周红丽.高层建筑深基坑支护施工技术.岩土力学.2003,24(增):248—249
    [147] 孙少锐.树根桩加固边坡的稳定性分析与评价.南京:河海大学硕士学位论文,2001
    [148] 孙少锐,吴继敏,魏继红,等.树根桩加固边坡的稳定性分析与评价.岩土力学,2003,24(5):776~780
    [149] Juran H, Benslimane A. Slope stabilization by micropile reinforcement. Landslides, 1996, 1715~1726
    [150] Cantoni R, Collotta T, Ghionna V N, etc. A design method for reticulated micropiles structure in sliding slopes. Ground Engineering, 1989, 22(1): 41~47
    [151] Ho C L, Coyne A G, Canou J, etc. Model tests of micropile networks applied to slope stabilization. International conference on soil mechanics and foundation engineering, Proceedings of the 14th international conference on soil mechanics and foundation engineering, A A Balkema, V2, 1997, 9: 1223~1226
    [152] 丁光文,王新.微型桩复合结构在滑坡整治中的应用.岩土工程技术,2004,18(1):47~50
    [153] 丁光文.微型桩处理滑坡的设计方法.西部探矿工程,2001,13(4):15~173
    [154] 谢晓华,刘吉福,庞奇思.微型桩在某滑坡处治工程中的应用.西部探矿工程,2001,13(2):100~111
    [155] 程华龙.注浆微型桩加固软土地基的机理与设计计算.地质科技情报,1999,18(增):54~56
    [156] 张玉芳.京珠高速公路108滑坡及防治工程分析.西南交通大学学报,2003,38(6):633~637
    [157] 杨顺安,冯晓腊,张聪辰.软土理论与工程.北京:地质山版社,2000,1~4,23~36
    [158] 周德培,朱本珍,毛坚强.流变力学原理及其在岩土工程中的应用.成都:西南交通大学出版社,1995,30~31,38~40,117~122
    [159] 林宗元.岩土工程试验监测手册.沈阳:辽宁科学技术出版社,1994,56~62
    [160] 刘雄.岩石流变学概论.北京:地质山版社,1994,112~123
    [161] Vaid Y P, Campanella R G.Time-dependent behavior of undisturbed clay. Journal of Geotechnical Engineering Divison, America Society of Civil Engineering, 1977, 103(7): 693~709
    [162] Schofield R K. Effect of PH on electric charges carried by clay particles. J. Soil Sci. 1949, 1(1): 1~8
    [163] Sergeyev Y M et al. Tyes of the microstructures of clayey soils. International Association of Engineering Geology Ⅲ International Conference, section Ⅱ. 1978, 1: 319~327
    [164] Follett E A. The retentiuon of amorphous colloid, ferric hydroxide by kaolinites. J. Soil Sci. 1965, 16(2): 334~341
    [165] Zhu Lijun. The geochemical features and evolution of laterite in karst areas of Guizhou Province. Chinese Journal of Geochemistry, 1996, 15(4): 353~363
    [166] Robert L B, Julia A J. Glossary of geology. American Geological Institute, 1980, 3: 270~276
    [167] Merino E, Nahon D, Wang Y F. Kinetics and mass transfer of pseudomorphic replacement: application to replacement of parent minerals and kaolinite by Al, Fe and Mn oxides during weathing. American Journal of Science, 1993, 293: 135~155
    [168] White A F, Brantey S L. Chemical weathering rates of silicate minerals. Amer. Min. Soc. Rev. Mineral, 1996, 31: 1~22
    [169] 朱伯芳.有限单元法原理与应用(第二版).北京:中国水利水电出版社,1998,327~337
    [170] 冯紫良,戴仁杰.杆系结构的计算机分析.上海:同济大学出版社,1991
    [171] 张友良,陈从新,夏元友.杆件有限单元法在抗滑桩设计中的应用研究.中国地质与防治学报,2000,11(1):30~32
    [172] Nakamura H. Design of rigid dowel piles for landslide control. 4th Int Sympo on Landslides, 1984, (2): 149~154
    [173] Takuo Y, Hisashi S.A simple estimation of the stabilizing effect of piles in a landslide slope applying the Janbu method. Landslides. Rotterdam: Balkema A A, 1999, 613~618
    [174] 王均锋.抗滑桩阻力上下限解法.岩土工程学报,2003,25(4):455~458
    [175] 熊巨华.一类双排桩支护结构的简化计算方法.勘察科学技术,1999,(2):32~34
    [176] 刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997
    [177] 周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨.岩土工程学报,2004,26(1):132~135
    [178] Terzaghi K. Theoretical soil mechanics. New York: John Wiley & Son, 1943
    [179] Wang W L, Yen B C. Soil arching in slopes. Journal of Geotechnical Engineering, American Society of Civil Engineering, 1974, 100(GT1): 61~78
    [180] Liang R, Zeng S. Numerical study of soil arching mechanism in drilled shafts for slope stabilition. Soil and Foundation, 2002, 42(2): 83~92
    [181] Chen C Y, Martain G R. Soil-structure interaction for landslide stabilizing piles. Computer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700