用户名: 密码: 验证码:
强电离放电绿色化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色化学是当今国际化学科学研究的前沿。绿色化学的目标是:化学过程不产生污染,即从源头上消除污染。
     在化学过程中要减少有毒有害物质的使用,可以采用多种方法。近年来的研究发现,采用一些特别的非传统化学方法,可获得多种环境效果。等离子体由清洁的高能粒子组成,不会造成环境污染,对生态系统无不良影响,加上等离子体反应速度快,反应完全,使原料的转化率大大提高,有可能实现原子经济反应,因此,副反应很少,可实现零排放,可以做到清洁生产。但传统的等离子体技术受到低气压、电子平均能量低的限制,无法实现工程化。
     强电离放电过程,电子获得平均能量达到10eV~20eV,在高气压条件下使反应腔体(放电腔体)气体分子处于高能态,并分解、电离成光子、电子、离子、活性原子、激发态原子、自由基以及具有活性分子碎片等,为其化学反应提供了活性粒子。改变了现在只能在低气压条件下进行非平衡等离子体化学反应的固有概念,使常规难以进行的化学反应得以进行或者加速进行,同时也实现了用电场参数、边界条件等物理参数去控制其化学反应方向、化学反应速率和产物,省去常规化学反应需要酸、碱、加热或降温、加压或减压、光以及催化剂等多种多样控制化学反应的条件。为化学合成新物质、新材料提供了低能耗、微污染、无催化剂、无副产品和无废料的方法,解决了非平衡等离子体化学工程化难题。
     此外,本文还对强电离放电绿色化学的应用进行了研究,绿色氧化、绿色氧化技术治理船舶压载水、绿色氧化脱硫、甲烷和氮气合成氨及液体燃料均是其成功应用范例。
Today green chemistry is the front line of international chemistry research. Its goal is no pollution during the chemistry course and eliminating pollution from beginning.
    There are many methods to reduce the use of poisonous and deleterious substance during chemistry course. According to the research in these years some unconventional chemical methods can reach many environmental effects. Plasma is made of clean high-octane particle, which will not pollute environment and have no bad effect to ecosystem. Plasma has high reaction speed and can react entirely, so it can realize zero pollution. But traditional plasma technology was confined by low pressure and low energy, which cannot realize industrialization.
    At the condition of anticyclone strong ionization discharge can make electron energy reach 10eV~20eV, ionize and separate the gas in the reaction cavity to photons, electrons, ions, active atoms, inspired atoms, radicals and active fragment etc. It changed the intrinsic idea that non-equilibrium plasma chemistry can only react at low-pressure, progress the reaction without acid, alkali, calefaction, cooling, high pressure, low pressure light and catalyst which can not react at normal. Strong ionization discharge provided low-energy, non-pollution, non-catalyst, non-byproduct and no-dispose method to industrialization of non-equilibrium plasma chemistry.
    The paper has studied the application of strong ionization discharge green chemistry furthermore. Green oxidations, the treatment of ballast water by the green oxidation technology, desulfurization by green oxidation, CH4 and N2 synthesizes NH3 and liquid fuel were all its successful application.
引文
[1] Anastas P T. Green Chemistry, Theory and Practice[M]. London: Oxford University Press, 1998.
    [2] 胡常伟,李贤均.绿色化学原理和应用[M].北京:中国石化出版社,2002.
    [3] Jocelyn Kaiser. Supercritical Solvent Comes Into Its Own[J]. Science, 1996:158~171
    [4] Anstas P T, Williamson T C. Green Chemistry—Designing Chemistry for the Environment[M]. Washington: American Chemical Society, 1996
    [5] Ansatas P T, Williamson T C. Green Chemistry. Frontiers in Benign Chemical Synthesis and Processes[M]. London: Oxford University Press, 1998.
    [6] 吴毓林,陈耀全.化学迈向辉煌的新世纪[J].化学通报,1999,1:3~9
    [7] 朱清吋.绿色化学的进展[J].大学化学,1997,12(6):7~11
    [8] 闵恩洋,吴巍.绿色化学与化工[M].北京:化学工业出版社,2000.
    [9] Anastas P T, Bartlett L B, Kirchhoff M M, etc. The Role of Catalysis in the Design, Development and Implementation of Green Chemistry[J]. Catalysis, 2000,55:11~22
    [10] Stephen C Devito and Roger L Carrett. Designing Safer Chemicals[M]. Washington: American Chemical Society, 1996
    [11] 叶向群.绿色设计与绿色化学设计[J].环境污染与防治,2002.6,24(3):190~191
    [12] 国家自然科学基金委员会.自然科学学科发展战略调研报告:等离子体物理学[M],北京:科学出版社,1994.16~19
    [13] 马振国.等离子休工业的崛起与发展[J],科技导报(北京),1995,(2):14~17.
    [14] 吴承康.我国等离子体工艺研究进展[J],物理,1999,(7):388—393.
    [15] Roth J R. Industrial plasma engineering/Vol.1: Principles[M], Tennessee, USA: IOP Publishing Ltd, 1995, 286-317.
    [16] Blaustein B D, Fu Y C. Hydrocarbons from H2+CO and H2+CO2 in microwave discharge: Le Chatelier's Principle in discharge reactors of a circulation system[J], Ibid, 1979, 53(10): 1448-1450.
    [17] Zhang Y, Wei C, Cao W M, et al. A plasma-activated Nil α -A1203 catalyst for the conversion of CH4 to syngas [J], Plasma Chemistry and Plasma Processing, 2000, 20(1): 137-144.
    [18] Edwards J H, Maitra A M. The chemistry of methane reforming with carbon dioxide and its current and potential applications[J], Fuel Processing Technology, 1995, 42: 269-289.
    
    
    [19] Sun B, Masayuki S. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution[J], Journal of Physics D: Applied Physics, 1999, 32: 1908-1915.
    [20] Xia J E Gao X X . By-products NOx control and performance Improvement of a packed-bed nonthermal plasma reactor[J], Plasma Chemistry and Plasma Processing, 2000, 20(2): 225-233.
    [21] Park J H, Pfender E. Reduction of chemical reactions in nitrogen and nitrogen-hydrogen plasma jets flowing into atmosphereic air[J], Plasma Chemistry and Plasma Processing, 2000, 20(2): 165-181.
    [22] Maezono I, Chang J S. Reduction of CO2 from combustion gases by DC corona torches[J], IEEE Transactions on Industry Applications, 1990, 26(4): 651-655.
    [23] M.Higashi,M.Sugaya, K.Veki. Plasma Processing of exhaust gas from a diesel engine Vehicle[A].Proc. Int, Conf. Plasma chem[C],1985,2:366~371.
    [24] S.Tanaka, H.Uyama, O.Matsumoto. Synthetic Effects of Catalysts and Plasmas on the Synthesis of Ammonia and Hydrazine[J]. Plasma Chem. and Plasma Process,1994, 14(4):491~504.
    [25] Shenton M J, Stevens G C. Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatmenta[J], Journal of Physics D: Applied Physics, 2001, 34: 2761-2768.
    [26] Shenton M J, Lovell-Hoare M C, Stevens G C. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment[J], Journal of Physics D: Applied Physics, 2001, 34: 2754-2760.
    [27] Mizuno A, Kisanuki Y. Indoor air cleaning using a pulsed discharge plasma[J], IEEE Transaction on Industry Applications, 1999, 35(6): 1284-1288.
    [28] 白希尧,张芝涛,白敏冬.高气压强电离放电等离子体学科的形成及应用展望[J].自然杂志,2000,22(3):156~161.
    [29] 徐学基.诸定昌.气体放电物理[M]:上海复旦大学出版社,1996.
    [30] 白春礼,苏明 单分子化学与物理[J].世界科技研究与发展,2000,21(4):12-15
    [31] 罗莉,周建英.化学反应飞秒相干动力学与激光相干控制[J].物理,2000,29(3):141~147.
    [32] 白希尧,白敏冬,周晓见.羟基药剂治理赤潮研究[J].自然杂志,2002,24(1):26~33.
    [33] 白敏冬,张芝涛,白希尧等.羟基游离基杀死压载水中微生物研究[J].海洋与湖沼,2003,23(5):484~490.
    [34] Bai Mindong,Bai Xiyao,Zhang Zhitao. 2000,20(4):511
    [35] 秦艳,严立,朱新河.常压介质阻挡放电非平衡等离子体渗氮.大连海事大学学报,2001,27(3):92~95.
    [36] 孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科技大学出版社,1999:31-197
    
    
    [37] Bernie M. PENETRANTE, J. Norman BARDSLEY, Mark C. HSIAO. Kinetic Analysis of Non-Thermal Plasmas Used for Polltion Control. Jpn. J. Appl. Phys,1997,36(7B):5007-5017
    [38] 全球压载水管理项目中国国家项目实施小组.全球更换压载水管理项目[J].交通环保,2001,专版1期:1~4
    [39] Gregory M. Ruiz etc. Global spread of microorganisms by ships[J]. Nature, 2000, 408:49~50
    [40] Mackenzie etc. Alien invaders. New Scientist[J], 1999,162:18~19
    [41] Geoff Rigby. From Ballast to Bouillabaisse[J]. Science,2000,289:241
    [42] Donald M. Anderson. Turning back the harmful red tide[J]. Nature, 1997, 388:513~514
    [43] 林火平.压载水管理[J].世界海运,2001,24(3):40~41
    [44] 李世信,王学忠.IMO海上环境保护委员会第45届会议[J].中国船检,2000,1:36~37
    [45] 张硕慧,王倩.加热法处理船舶更换压载水对外来生物存活的影响[J].交通环保,1999,21(6):4~5
    [46] 雷震东,吴创之,陈勇等.我国燃煤二氧化硫污染控制技术及其应用[J].煤炭转化,21(4),1998:7-11
    [47] 冯宗炜.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学,2(9),2000:5-11
    [48] 肖文德,吴志泉编著.二氧化硫脱除与回收[M].北京:化学工业出版社,2001
    [49] Y N Novoselov, G A Mesyats, D L Kuznetsov. Plasma-chemical Oxidation of SO_2 in Air by Pulsed Electron Beam. J. Phys. D: Appl. Phys, 2001,34:1248-1255
    [50] Moo Been Chang, Jeanne H. Balbach, Mark J. Rood, Mark J. Kushner. Removal SO_2 from Gas Streams Using a Dielectric Barrier Discharge and Combined Plasma Photolysis[J]. Appl. Phys. 1991, 69(8):4409-4417
    [51] 丁锋,我国油气资源勘探开发现状与对策.http://UNIT.CUG.EDU.CN,2004,1
    [52] 刘洪岩,发展我国天然气化工的几点思考.http://ChemDevelop. com,2003,12
    [53] Pena M. A., New catalytic routes syngas and hydrogen production, Appl. Catal. A: General, 1996, 144:7-57
    [54] 徐占林,毕颖艳,甑开吉,甲烷催化二氧化碳重整制合成气反应研究进展,化学进展,2000,12(2):121-130
    [55] Jack H. Lunsford, Catalytic conversion of methane to more useful chemical and fuel: a challenge for 21st century, Catalysis Today, 2000, 63:165-174
    [56] 胡捷,贺德华,甲烷直接转化及制合成气研究进展,天然气化,2003,28:46-50
    [57] 尚丽霞,谢为国,吕绍清,邱发礼,甲烷和空气部分氧化制合成气,合成化学,2001,9(2):113-116
    [58] 尹国川,奚祖威,曹国英,甲烷催化氧化制含氧化合物的研究,化学进展,1999,11(1):21-29
    [59] 王保伟,许根慧,刘吕俊,电促进甲烷偶联合成碳二烃研究进展,化工进展,2001,4:14-18
    
    
    [60] 王保伟,许根慧,刘昌俊,等离子体在天然气中的应用,化工学报,2001,52(8):659-665
    [61] 朱爱民,张秀玲,宫为民,代斌,脉冲电晕等离子体作用下甲烷偶联反应的研究Ⅱ.反应添加气的影响,应用化学,1999,16(4):70-73
    [62] 张月萍,刘昌俊,许根慧,甲烷等离子体化学利用及其对新世纪能源、环境和化工的影响,化工进展,2001,(3):51-56
    [63] Luk'yanov V B, Eremeev A P, Nesmeyanov An N. Synthesis of oxygen-containing organic compounds in electric discharges. Ⅺ. effect of the addition of argon and of the wall temperature on the formation of alde-hydes and carboxylic acids under the conditions of circulation, russian J of phys chem., 1974, 48(4): 531-533
    [64] Finlayson D, Geoffrey J, Manufacture of aliphatic aldehydes, US Patent, 1987, (1): 881-885
    [65] Changjun Liu, Abdulathim Marafee, Bobby Hill, Oxidative Coupling of Methane with ac and dc Corona Discharges, Ind. Eng. Chem. Res., 1996,35:3295-3301
    [66] Thanyachotpaiboon K, Chavadej S, Caldwell T A, Conversion of methane to higher hydrocarbons in AC nonequilibrium plasma, AIChE Journal, 1998,44(10):2252-2257
    [67] L.M. Zhou, B. Xue, U. Kogelschatz, Partial Oxidation of Methane with Oxygen or Air in a Nonequilibrium Discharge Plasma, Plasma Chemistry and Plasma Processing, 1998, 18(3):375-393
    [68] Tanabe Shuji, Okitsu Kenji, Matsumoto Hiroshige, Profiles of methane dimerization with a glow discharge plasma system, Nagasaki Daigaku Kogakubu Kenkyu Hokoku, 1999,29(53):329-332
    [69] 宋爱民,宫为民,张秀玲,周杰,脉冲电晕等离子体应用于甲烷偶联的探索研究,天然气化工,1997,22(2):1-4
    [70] 朱爱民,宫为民,张秀玲,张报安,脉冲电晕等离子体作用下甲烷偶联反应Ⅰ.无氧气氛下,中国科学(B辑),2000,30(2):167-173
    [71] 朱爱民,张秀玲,宫为民,张报安,有氧气氛下等离子体甲烷偶联反应的研究,物理化学学报,2000,16(9):839-843
    [72] 朱爱民,张秀玲,李小松,宫为民,脉冲电晕等离子体作用下甲烷“超平衡”转化制乙炔和氢,中国科学(B辑),2002,32(2):179-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700