用户名: 密码: 验证码:
窄间隙气体放电烟气脱硫资源化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的能源结构以煤炭为主,燃煤型SO_2污染已成为我国大气污染的主要特征,因此对二氧化硫污染的治理已经刻不容缓。本文针对我国目前严峻的SO_2污染形势,而传统的烟气脱硫技术存在着运行成本高;产生大量的污水需要处理;典型的非平衡等离子体法又需要外加NH_3、电子能量低等问题,结合国家自然科学基金重点资助项目“高气压下强电场电离气体的方法及其应用的基础研究”(项目编号:60031001),提出了以窄间隙强电场电离气体放电产生高浓度羟基自由基氧化脱除烟气中SO_2的方法进行烟气脱硫,为SO_2污染的治理提供了一条新途径。
     采用窄间隙强电场电离放电技术,可以在等离子体反应器的反应腔体内形成放电电场强度高达400Td以上的强电场,使电子获得的平均能量大于10eV,电子密度大于10~(14)/cm~3,电离占空比达到2%,足以满足等离子体化学反应所需的能量要求,从而将烟气中的H_2O、O_2(H_2O、O_2气体分子的电离能分别为12.6eV、12.5eV)等气体分子电离离解形成高浓度的OH·、e_(aq)~—等氧化自由基,直接在气相中瞬间将SO_2氧化为H_2SO_4以将其脱除。
     通过对实验系统的混气方式及气体的加湿方法进行改进,建立了一套新的实验系统,并在此基础上考察了各种参数对SO_2脱除率的影响,由实验结果可知提高电源激励电压、激励频率、放电功率、含水量、含氧量或降低SO_2初始浓度、模拟烟气总气量,减小放电间隙都能提高SO_2的脱除率。通过比较不同放电面积等离子体反应器所得的实验结果后可知,等离子体反应器放电面积的变化不会影响SO_2脱除率的变化规律。文中还对模拟烟气中的含水量及含氧量对SO_2脱除率的影响强度进行了对比,得出含水量对SO_2脱除率的影响强于含氧量的影响。实验结果表面,当等离子体反应器放电间隙为0.64mm,电源激励电压为2600V,激励频率为5000Hz,模拟烟气总流量为0.1m~3/h,含氧量为21%,含水量为1.44%,SO_2初始浓度为400ppm时,SO_2脱除率可达到99%,满足了对SO_2治理的要求,说明窄间隙强电场电离气体放电是一种绿色有效的脱硫新途径。
The coal is the main energy sources in our country. SO_2 pollution deriving from burning coal has been the main characteristic of atmospheric pollution in our country. Therefore the treatment of SO_2 pollution must been carried out as soon as possible. For typical desulfuration technologies have many problems such as high cost, waste water producing, NH3 adding, low electron energy, etc, the method of desulfuration using OH radicals produced by strong electric field ionization discharge is presented in this paper, which is based on the key NSFC project "Studies of Method and Application of Gas Molecules Ionized with Strong Electric at High Pressure Field" (No.: 60031001). It is a kind of new desulfuration technology.
    Using the narrow gap strong electric field ionization discharge technology, the strong electric field whose intensity is high up to 400Td is formed in the chamber of the plasma reactor. Thanks to the high electric field, a great number of energetic electrons are produced whose electron mean energy, electron density and fractional active volume are 10eV, 10~(14)/cm~3 and 2%, respectively. The energetic electrons can provide enough energy for plasma chemical reactions. They can ionize H_2O and O_2 to form OH 、 e_(aq)-radicals and SO_2 can be removed by the oxidization of SO_2 to H2SO4 by these radicals.
    The new experimental system is established. The findings are the SO_2 removal efficiency can be enhanced by increasing the excitation voltage, excitation frequency, excitation power, H_2O concentration, O_2 concentration or decreasing SO_2 initial concentration, simulative flue gas total flux and discharge gap. The changing rule of desulfuration efficiency will not be changed if the discharge area of plasma reactor is changed. In this paper, the comparison of effect intensity on desulfuration efficiency of water and oxygen concentration of simulation flue gas is also made, and the conclusion is drawn that the effect of water concentration of gas on desulfuration efficiency is larger than that oxygen concentration do. The experimental results show when the discharge gap, excitation voltage, excitation frequency, simulative flue gas total flux, O_2
引文
[1] 国家环保总局,2005年中国环境状况公报
    [2] 韩成年,燃煤二氧化硫污染及其治理技术的现状分析,中国铸造装备与技术,2001,2:5~9
    [3] 李青,潘焰平,燃煤电厂二氧化硫污染与治理,山东电力技术,2002,123(1):29~32
    [4] 国家环保总局,2002年中国环境状况公报
    [5] 孔火良,吴慧芳,金宝升,燃煤电厂烟气脱硫技术及其主要工艺,煤矿环境保护,2002,16(6):22~28
    [6] 蒋欣等,烟气脱硫技术的应用研究,环境污染治理技术与设备,2003,4(3):82~84
    [7] 郝吉明等,大气污染控制工程,北京:高等教育出版社,2002,340~347
    [8] Frank N W, Economics of the Electron Beam Process, NATO ASI Series (Penetrante and Schultheis, Eds), Springer-Verlag, 1993, G34, Part B, 27~32
    [9] Kawamura k, Aoki A, Kimura H et al, Electron Beam Dry Flue Gas Treatment Process, Environ Sei Tech, 1980, 14:228~310
    [10] 青木慎治,電子排处理技术,燃料及燃烧,1990,47(3):23~26
    [11] 桥本昭司,排電子处理,J IEEE Japan,1990,119(5):278~280
    [12] O Tokunaga, K Nishimura, M Washino et al, Radiation Treatment of Exaust Gases Ⅱ: Oxidation of Sulfur Dioxide in the Moist Mixture of Oxygen and Nitrogen, Int J Radiat Isotopes, 1987, 29: 87~89
    [13] O Tokunaga, K Nishimura, N Suzuki et al, Effects of CO,O_2,NO,H_2O and Irradiation Temperature on the Radiation-induced Oxidation of SO_2, J Chem Soc Japan Chem Ind Chem, 1997, 11: 1582~1586
    [14] O Tokunaga, N Suzuki, Radiation Chemical Reaction in NO_x and SO_2 Removal from Flue Gas, Radiat Phys Chem, 1984, 24:145~165
    [15] 毛本将,王保健,姜一鸣等,等离子体烟气脱硫脱硝工业试验装置,电力环境保护,2000, 16(3):5~7
    [16] 李燕,电子束烟气脱硫脱硝技术,西山科技,2002,(6):3~4
    [17] Paur H R,Jordan s,Aerosol Formation in the Electron Beam Dry Scrubbing Process,Radiat Phys Chem,1988,31(3):9~13
    [18] Okihiro Tokunaga.Electron Beam Irradiation Technology for Purification of Flue Gas.Journal of the Institute of the Institute of Electrostatics Japan.1995,19(4):296~300
    [19] E A Filimonova,R H Amirrov, H T Kim et al. Comparative Modeling of NO_x and SO_2 Removal from Pollutant Gases Using Pulsed-Corona and Silent Discharges, J. Plys. D; Appl. Phys, 2000,33:1716~1727
    [20] 陈亚非,张奇兴,电子束烟气脱硫若干问题探讨,中国电力,2000,33(7):78~80
    [21] 邰德荣,韩宾兵,成都电厂电子束烟气脱硫示范工程,中国电力,1998,31(11):42~47
    [22] S Masuda, Pulse Corona Induced Plasma Chemical Process: A Horizon of New Plasma Chemical Technologies, Pure and Appl chem, 1988, 60: 727~731
    [23] T Urabe, Y Wu, S Masuda et al, Experimental Studies on NO_x and SO_2 Removal by Pulse Corona Discharge, Proc Inst Electrostatics Japan, 1988, 12(5):354~359
    [24] J S Chang, S Masuda, Mechanism of Pulse Corana Induced Plasma Chemical Process for Removal of NO_x and SO_2 from Cobustion Gases, Conf Rec IEEE/IAS, 1988, 1628~1630
    [25] 增田闪一,化学反应-PPCP SPCP 应用,静电气学会誌 1990,14(6):473~476
    [26] Clements J S, Combined Removal of SO_2/NO_x and Fly Ash from Simulated Flue Gas Using Pulse Streamer Corona, IEEE Trans Ind Appl, 1989, 25(1): 62~69
    [27] Dinelli G, Industrial Experiments in Pulse Corona Simultaneous Removal of NOx and SO_2 from Flue Gas, IEEE Trans Ind Appl, 1990, 26(3): 535~541
    [28] Giorgio Dinelli, Luigi Civitano, Massimo Rea, Industrial Experiments on Pulse Corona Simultaneous Removal of NO_x and SO_2 from Flus Gas, IEEE Transaction on Industry Application, 1990, May/June, vol. 26, No. 3: 535~541
    [29] E V Belousova, V A Goncharev, S G Gosteev et al, Removal of SO_2, NO_x and Organic Impurities from Atmospheric Air by Simultaneous Exposure to Pulsed and Direct-Current Corona Discharge, Khim Vys Energ (Eng Transl), 1992, 25: 468
    [30] 赵君科等,脉冲电晕等离子体法烟气脱硫脱硝技术进展,四川环境,2000,19(4):6~8
    [31] 定方正毅,环境保全 放电应用研究,静电气学会誌,1995,19(4):281~252
    [32] 刘书海,等离子体烟气脱硫技术现状与关键问题讨论,环境科学,1996,17(2):86~89
    [33] 白希尧,张芝涛,白敏药,气体放电非平衡等离子体化学脱硫脱硝理论基础研究,工业安全与防尘,2000,9:14~17
    [34] 毛本将,王保健,姜一鸣等,等离子体烟气脱硫脱硝工业试验装置,电力环境保护,2000,16(3):5~7
    [35] Moo B C, Jeanne H B, Mark J R, et al. Removal of SO_2 from gas streams using a dielectric barrier discharge and combined plasma photolysis, J Appl Phys, 1991, 69(8): 4409~4414
    [36] Dhail S K, Sardja Dielectric barrier discharge for processing of SO_2/NO_x, Jappl Phy, 1991, 69(9): 6319~6322
    [37] Moo Been Chang, Jeanne H. Balbach, Mark J. Rood et al. Removal of SO_2 from Gas Streams Using a Dielectric Barrier Discharge and Combined Plasma Photolysis, J. Appl. Phys, 1991, 69(8): 4409~4417
    [38] Dhall S K, Sardja. Dielectric barrier discharge for the removal of SO2 from flus gas, IEEE Transactions on Plasma Science, 1989, 17(2): 205~211
    [39] S K Dahli, I Sardja, Dielectric-barrier Discharge for Processing of SO_2/NO_x, J Appl Phys, 1991, 69:6318~6320
    [40] M B Chang, J H Balbach, M J Rood et al, Removal of SO_2 from Gas Streams Using Dielectric Barrier Discharge and Combined Plasma Photolysis, J Appl Phys, 1991, 69: 4408~4411
    [41] M B Chang, Simultaneous Removal of SO_2 and NO from Gas Streams via Combined Plasma Photolysis, PhD Dissertation, College of Enginerring, University of Illinois at Urbana-Champaign, Urabana, 1992, Ⅲ, 1~182
    [42] M B Chang, M J Kushner, M J Rood, Simultaneous Removal of SO_2 and NO from Simulated: Flue Gas Streams Using Dielectric Barrier Discharge Plasmas, Plasma Chem Plasma Procs, 1992, 12: 565~567
    [43] K Okazaki, A Mizuno, K Shimizo et al, Application of Semi-Wet Type Corona Discharge Reactor to the Simultaneous Removal of NO_x, SO_2 and Fly Ash in Pulverised Coal Combustion, Procs JSME-ASME Int Conf On Power Eng (ICOPE~93), Tokyo, Japan, 1993,2:100~105
    [44] E A Filimonova, R H Amirrov, H T Kim et al, Comparative Modeling of NO_x and SO_2 Removal from Pollutant Gases Using Pulsed-Corona and Silent Discharges, J Phys D: Appl Phys, 2000, 33: 1716~1727
    [45] Hongbin Ma, Paul Chen, Minglang Zhang et al, Study of SO_2 Removal Using Non-thermal Plasma Induced by Dielectric Barrier Discharge (DBD), Plasma Chemistry and Processing, 2002, 22(2):239~254
    [46] B M Penetrante, J N Bardsley, M C Hsiao, Kinetic Analysis of Non -thermal Plasma Used for Pollution Control, Jpn J Aool Phys, 1997, 36(7B): 5007~5017
    [47] 白希尧,张芝涛,白敏冬等,高气压强电离放电等离子体学科的形成及应用展望,自然杂志,2000,22(3):156~160
    [48] 张芝涛,鲜于泽,白敏冬等,强电离放电研究,东北大学学报,2002,23(5):507~510
    [49] Baldur Eliasson, Senior Member, Urich Kogelschatz, Nonequilibrium Volume Plasma Chemical Processing, IEEE Trans. Plasma Sci, 1991, 19(6): 1063~1077
    [50] BAI Xiyao, ZHANG Zhitao, HAN Hui et al, Research Situation and Progress of Non-equilibrium Plasma Chemistry, Chinese Science Bulletin, 2002, 47(7):529~530
    [51] Roth J R, Industrial Plasma Engineering, University of Tennessee Knoxville TNUSA, IOP Publishing Ltd, 1995, 1:98~210
    [52] 徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996
    [53] 赵化侨,等离子体化学与工艺,合肥:中国科学技术大学出版社,1993
    [54] T G Beuthe, J S Chang, Handbook of Electrostatic Processes, 1995, 163~164
    [55] 菅井秀郎,等离子体电子工程学,北京:科学出版社,2002
    [56] 山本克治,设乐和弘,广濒宏树,石川岛播磨技报,1996,36(3):153
    [57] 水野彰,放电排处理技术,静电气学会志,1995,19(4):289~295
    [58] 贾之慎等,比色法测量Fenton反应产生的羟自由基,生物化学与生物物理进展,19 23(2):184~186
    [59] I Gargantini, Further Applications of Circular Arithmatic Schroeder Cike Algorithms with Error Bovnds for Finding Zeros of Polynomials, SIAMJ. Narner. Anac, 1998, 15:497~510
    [60] Wang X W, Zhong S M, Shen G X, Bell's Disk Polynomials and Parallel Disk Iteration, Numerical Mathematics, 1987, 4:328~346
    [61] 孙存普,张建中,段绍瑾,自由基生物学导论,合肥:中国科技大学出版社,1999,28~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700