用户名: 密码: 验证码:
钢异形柱结构体系抗震性能的理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢异型柱结构体系是以异型截面(十字形、T形、L形)柱代替普通截面(箱形、H形)柱而形成的钢结构体系,在实施可持续发展战略和推动住宅产业化发展方面具有重大的现实意义。
     在国家自然科学基金项目(项目编号:50878008)资助下,本文总结了钢异型柱结构体系的特点,分析了钢异型柱结构相对于普通截面柱钢结构和钢筋混凝土异型柱结构的优势,在针对国内外学术界对钢异型柱结构体系抗震性能的研究尚处于起步阶段的现状基础上,提出了钢异型柱结构体系抗震性能研究中亟待或深入解决的实际问题。本文以强震区多高层钢异型柱结构为研究对象,以工程应用和钢异形柱结构技术规程的编制为研究目的,采取有限元理论和试验相结合的研究手段,对钢异型柱结构体系的异形柱构件、节点和平面框架的抗震性能进行了系统研究。
     强震下十字形截面钢异型柱变形模式、破坏类型、抗震性能和板件宽厚比限值研究。基于36个不同截面参数组合的十字形截面钢异形柱模型在常轴力、低周反复荷载下的有限元计算,模拟其受力、变形、破坏全过程,研究了滞回曲线、骨架曲线、耗能能力等抗震性能指标,得到了翼缘宽厚比、腹板高厚比和轴压比是抗震性能的主要影响因素及其对抗震性能的影响规律,对抗震性能进行了综合评价。根据抗震设计承载力取值和整体抗震性能的要求,提出了不同轴压比下,能够在强震区使用的十字形截面钢异形柱翼缘宽厚比与腹板高厚比的组合限值公式,并对十字形截面钢异形柱的抗震设计提出建议。
     强震下钢异型柱(十字形、T形、L形截面)构件的变形模式、破坏模态、抗震性能研究。分别通过1:2缩尺的8个十字形截面、8个L形截面和8个T形截面钢异形柱试验模型在低周反复荷载作用下的拟静力试验,研究了试件的变形模式、破坏模态,得到了试件的滞回曲线、承载能力、延性性能、耗能能力等抗震性能指标和板件宽厚比、轴压比对抗震性能的影响规律。对所有试件进行了与试验相同受力工况下的有限元计算。有限元计算和试验结果相互印证表明,在轴压比和翼缘宽厚比、腹板高厚比满足限值的条件下,钢异形柱(十字形、T形和L形截面)在罕遇地震作用时,其破坏模态为局部屈曲的塑性破坏;破坏时,变形以塑性为主且发展充分,有较高且稳定的抗震承载能力,具有较好的延性性能和耗能能力,能够在强震区使用。
     强震下钢异型柱-钢梁节点的变形模式、破坏模态、抗震性能研究。提出了符合异形截面特点的T形截面钢异形柱-钢梁框架节点形式,通过3个足尺的T形截面钢异形柱-钢梁框架边节点试验模型在低周反复荷载作用下的拟静力试验,研究了试件的变形模式、应变分布、破坏模态,研究了试件的滞回性能、承载能力、转动能力、延性性能、耗能能力等抗震性能指标,分析了节点域强弱对抗震性能的影响规律。考虑材料非线性、几何非线性以及边界非线性,对所有试件进行了与试验相同受力工况下的有限元计算。有限元计算和试验结果相互印证表明, T形截面钢异形柱-钢梁框架节点在罕遇地震作用时,破坏模态为局部屈曲的塑性破坏,破坏前经历充分的塑性变形,塑性铰位于远离梁柱焊缝的梁截面上且发展充分,有较高且稳定的抗震承载能力,具备较好的塑性转动能力、延性性能和耗能能力,能够在强震区使用。
     强震下T形截面钢异形柱平面框架变形模式、破坏模态、抗震性能研究。通过3榀1:2缩尺、等应力的T形截面钢异形柱平面框架试验模型在低周反复荷载作用下的拟静力试验,研究了框架试件的变形模式、应变分布、塑性铰分布及出现次序、破坏模态,研究了滞回曲线、骨架曲线、承载能力、延性性能、耗能能力、强度和刚度退化等抗震性能指标,分析了节点域强弱对抗震性能的影响规律。对所有试件进行了有限元计算。有限元计算和试验结果相互印证表明,T形截面钢异形柱平面框架在罕遇地震作用时,破坏模态为局部屈曲的塑性破坏;破坏时,塑性铰出现在盖板外的梁端部位和加劲肋以上柱脚部位,分别远离梁柱交界面和柱脚底板交界面的焊缝,变形以塑性为主且发展充分,各节点完好,有较高且稳定的抗震承载能力,强度和刚度退化较慢,具备较好的延性性能和耗能能力,能够在强震区使用。同时验证了本文钢异型柱、节点研究成果的正确性。
     综上所述,本文针对强震区钢异型柱结构的异型柱构件、节点、平面框架,系统地研究罕遇地震荷载下的变形模式、应变分布、破坏模态,得到一系列的抗震性能指标及其影响因素和规律,证明钢异型柱、节点、平面框架具有良好的抗震性能,能够在强震区使用,取得一系列的研究成果。最后,对钢异型柱结构研究有待进一步深化的问题进行了展望。
     本文研究成果为钢异型柱结构的抗震设计和钢异形柱结构技术规程的编制提供依据,在强震区具有重要的基础理论意义和工程应用价值。
Steel structure system with specially shaped columns is a steel structure system with specially shaped column (cruciform shaped, T-shaped, L-shaped) instead of general cross-section column (Box-shaped, H-shaped), which has practical significance in promoting housing industrialization.
     Sponsored by the National Natural Science Foundation of China (NSFC) program(#50878008), this dissertation summarizes the characteristic of steel structure system with specially shaped columns, analyses the predominance of steel structure with specially shaped columns rather than steel structure with general section columns and concrete structure with specially shaped columns, and aiming at the researching situation about steel structure with specially shaped columns in academia, which is still in primary stage and the seismic behavior is very little involves, puts forward practical problems of steel structure system with specially shaped columns to be solved thoroughly and immediately. By Finite-element analysis study combining with experimental research, the seismic behavior of steel specially shaped columns, of steel specially shaped column with T-section to steel beam connections, of steel plane frame with T-section specially shaped columns coming from multi-story or high steel frame structure in meizoseismal area have been investigated comprehensively in this dissertation, which can provide pratical engineering applications and design specification for steel structures with specially shaped columns.
     Research on deformation properties, failure mode, seismic behavior and limit value of plate width-thickness ratio of steel specially shaped columns with cruciform section under strong seismic load. Basing on finite-element analysis of 36 models of steel specially shaped columns bearing low cyclic bending and constant axial compression, this dissertation simulated the entire process of their forcing, deformation and destruction, studied their seismic behavior such as bearing capacity, hysteretic behavior, energy-dissipation capacity and so on, also analyzed the influencing rule of flange width-thickness ratio, web depth-thickness ratio and axial compression ratio on the seismic behavior, and evaluated the holistic seismic behavior of those models. Finally, according to the requirements of seismatic bearing capacity and holistic seismic performance, this dissertation proposed the limit values of flange width-thickness ratio and web depth-thickness ratio under different axial compression ratio for application of steel specially shaped columns with cruciform section in meizoseismal area.
     Research on deformation properties, failure mode and seismic behavior of steel specially shaped columns with cruciform section under strong seismic load. The pseudo-static test on 8 steel specially shaped column models with cruciform section, 8 steel specially shaped column models with T-section, 8 steel specially shaped column models with L-section, having 1:2 geometrical scale and equal stress under cyclic loading is introduced. And then, the deformation properties, the failure model are discussed, and the hysteretic loops, skeleton curves, bearing capacity, ductility and energy-dissipation are studied. As a result, the effect of flange width- thickness ratio, web depth-thickness ratio and axial compression ratio are reviewed. At the same time, the finite-element theoretical analysis are finished. The experimental results are close to the finite-element analysis results, which shows that the steel specially shaped columns with cruciform section, or T-section, or L-section have excellent bearing capacity, good ductility and energy dissipation if certain flange width-thickness ratio, web depth-thickness ratio and axial compression ratio conditions are appropriate. Its failure model is local buckling instability failure with plenty plastic deformation. Study evidence show that steel specially shaped columns with cruciform section, or T-section, or L-section can be used in meizoseismal area.
     Research on deformation properties, failure mode and seismic behavior of steel specially shaped column with T-section to steel beam connection under strong seismic load. The pseudo-static test on 3 steel specially shaped column with T-section to steel beam connection models of full-scale is introduced. The deformation properties, the strain distribution, the failure model are discussed, and the hysteretic loops, skeleton curves, bearing capacity, shear deformation of panel zone, rotation, ductility and energy-dissipation are studied. As a result, the effect of panel-zone’s thickness are reviewed. Testing results indicate that the steel specially shaped column with T-section to steel beam connection has strong and steady bearing capacity, excellent plastic rotational performance, good ductility and energy-dissipation. Finite-element analysis were conducted on material nonlinearity, geometric nonlinearity and contacting nonlinearity, and the results are close to those from the tests. The typical failure mode was local buckling instability with sufficient plastic deformation, the plastic hinge with being fully developed occurred at the beam far away from the wedding of column-to-beam. Study evidence shows that steel specially shaped column with T-section to steel beam connection can be used in meizoseismal area.
     Research on deformation properties, failure mode and seismic behavior of steel plane frame with T-section specially shaped columns under strong seismic load. The pseudo-static test on 3 steel plane frame models with T-section specially shaped columns is introduced, which are equal-stress and 1:2 reduced scale. The deformation properties, strain distribution, distribution of plastic hinge and appearance order, failure model are discussed, and the seismic behavior indexes such as hysteretic loops, skeleton curves, bearing capacity, ductility, energy-dissipation, strength-degradation and stiffness-degradation are studied. Besides, the corresponding influencing factors and regulations are reviewed. Finite-element analysis is carried out based on material nonlinearity, geometric nonlinearity. The experimental results are closed to the finite-element analysis results, which shows that the steel frame with T-section specially shaped column has strong and steady bearing capacity, slow strength-degradation and stiffness-degradation, good ductility and energy-dissipation. The typical failure mode is local buckling instability with sufficient plastic deformation under strong seismic load. When it’s destroyed, the plastic hinges with being fully developed are being at the beam-end and column-feet far away from the wedding of column-to-beam and column-to-motherboard, all connections are good as well. Study evidence shows that the steel frame with T-section specially shaped column can be used in meizoseismal area. The study results of the plane frame validate the correctness and universality of the study results of steel specially shaped column and connections with steel specially shaped columns.
     In conclusion, focusing on the columns, connections, frames in steel structure system with specially shaped columns in meizoseismal area, the paper studies the failure mode of structure under strong seismic load, gets a series of seismic behavior indexes and corresponding influencing factors and regulations, testifies that steel structure system with specially shaped columns can be used in meizoseismal areas, and obtains corresponding research results. Finally, the paper presents some deepening problems’prospects of steel structure system with specially shaped columns.
     This dissertation can provide background for the seismic design of engineering and compilations of Technical Specification for steel structure with specially shaped columns. Also those research results has important theoretical significance and practical value in engineering applications.
引文
1中华人民共和国建设部.国家建筑钢结构产业“十五”计划和2010年发展规划纲要.住宅产业,2000,(9):5-9
    2北京市建筑节能墙改办“北京钢结构住宅发展前景”课题组.北京钢结构住宅发展前景.墙体革新与建筑节能. 2004, (12):44-50
    3蔡玉春.钢结构住宅产业化的现状与进展.钢结构,2005,20(1):79-83
    4薛发.北京市钢结构住宅发展现状.工程建设与设计,2004,(7):4-6
    5王志涛,田杰,苏经宇等.汶川地震建筑物震害浅析.工程抗震与加固改造,2008, 30(6): 13-18
    6马东辉,郭小东,陈国林.后汶川地震时代抗震综合方法.工程与建设,2009, 23(2): 217-218
    7于劲,苏倩兮.小高层钢结构住宅结构体系初探.第九届高层建筑抗震技术交流会议论文集,厦门,2003:29-33
    8中华人民共和国建设部.混凝土异型柱结构技术规程(JGJ149-2006).北京:中国建筑工业出版社,2006
    9严士超.混凝土异形柱结构技术规程理解与应用.北京:中国建筑工业出版社,2007:1-19
    10张爱林,于劲,徐敏,刘显旺.钢异形柱结构体系的发展前景与研究计划.工业建筑,2008(增刊):1241-1244
    11叶列平,经杰.论结构抗震设计方法.第六届全国地震工程会议论文集,南京,2002:419-429
    12谢礼立,马玉宏.现代抗震设计理论的发展过程.国际地震动态,2003, 298(10): 1-8
    13林淼童.从各国规范比较看结构抗震设计思想的演变.工程建设与设计. 2005, (10):11-13
    14王亚勇,郭子雄,吕西林.建筑抗震设计中地震作用取值-主要国家抗震规范比较.建筑科学,1999,15(5):36-39
    15 FEMA-273. Nehrp Guidelines for the Seismic Rehabilitation of Buildings. Washington:1997.
    16 AIJ-98. Recommendation for Limit State Design of Steel Structures. Tocky:1998
    17中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总站.建筑抗震设计规范(GB 50011-2001). 2008版.北京:中国建筑工业出版社,2008
    18陈以一,周锋,陈城.宽肢薄腹H形截面钢柱的滞回性能.世界地震工程. 2002,12(4):23-29
    19陈以一,马越,赵静,童乐为.薄柔高频焊接H钢柱的试验和抗震承载力评价.同济大学学报. 2006,34(11):1421-1426
    20陈以一,沈祖炎,大井谦一等.反复变动轴力作用下钢柱的数值分析模型.同济大学学报. 1994,22(12):499-504
    21肖岩,周涛,李华.局部约束轧制H型钢柱的抗震性能研究.建筑结构学报,2008, 29(2): 118-124
    22 S.Yamazaki, S.Minami. Inelastic behavior of steel beam-columns subject to varying axial force and cyclic bending moment. In Tusami, eds Proc of the 5th international colloquium on stability and ductility of steel structures. NAGOYA,JAPAN,1997,561-568
    23 K.Ohi, Y.Chen, K Takanashi. An experimental study on inelastic behavior of H-shaped steel beam columns subject to varying axial and lateral load. Journal of Structure Engineering, 1996, 42B(AIJ):421-430
    24 Tsutomu Usami, Shengbin Gao, Hanbin Ge,Elastoplastic Analysis of Steel Members and Frames Subjected to Cyclic Loading. Engineering Structures,1998,22(2):135-145
    25苏明周,顾强.箱形截面钢压弯构件的滞回性能和板件宽厚比限值研究.建筑结构学报.2000, 21(5):41-47
    26苏明周,顾强,郭兵.箱形截面钢压弯构件受循环弯矩作用的试验研究和理论分析.建筑结构学报.2001, 22(4):9-16
    27 Malley J.O. , SAC steel project summary of phase I testing investigation results. Engineering Structures. 1998,20(4-6):300-309
    28 Popov E.P.. Panel zone flexibility in seismic moment joints. Journal of Construct Steel Research. 1987:91-188
    29 Popov E.P., Sertero V.V.. Cyclic loading of steel beams and connections. J.Structut.Div.,ASCE. 1973,99(6):189-1204
    30 Popov E.P.,Balan T.A.,Yang T.S.. Post-Northridge earthquake seismic steel moment connections. Earthquake Spectra. 1998,14(4):659-677
    31 M.D.Engelhardt,A.S.Husain. Cyclic loading performance of welded flange-bolted web connections,V119,ST12,ASCE. Dec.1993:3537-3550
    32 K.C.Tsai,S.Wu,E.P.Popov. Experimental performance of seismic steel beam-column moment joints. Journal of Structural Engineering. 1995,121(6):925-931
    33 Roeder C.W.,Knechtel B.,Thomas E.. Seismic behavior of older steel structure. Journal of Structural Engineering. 1996,122(4):365-373
    34 Lee C.H.,Uang C.M.. Analytical modeling of dual panel zone in haunch repaired steel MRFs. Journal of Structural Engineering. 1997,123(1):20-29
    35 Watanabe E.,Sugiura K.,Nagata K.. Performances and damage to steel structures duringthe 1995 Hyogoken-Nanbu earthquake. Engineering Structures. 1998,20(4):282-290
    36 Kuwamura H.. Fracture of steel during an earthquake state-of-art in Japan. Engineering Structures. 1998,(4):310-322
    37 FEMA-335D. State of the art report on connection performance of steel moment fames subject to earthquake ground shaking. Prepared by the SAC Joint Venture for the Federal Emergency Agency, Washington DC, 2000:355-434
    38 FEMA-335C. State of the art report on systems performance of steel moment fames subject to earthquake ground shaking. Prepared by the SAC Joint Venture for the Federal Emergency Agency, Washington DC, 2000:282-349
    39 Reidar Bjorhovde, Andre Ceison, Jacques Brozzetti. Classifieation system for beam-to-column connection. Structure. Eng. ASCE., 1990,116(11):1292-1299
    40 Sakai Junichi, Matsui Chiaki, Yoshizumi Makoto. Effect of collapse modes on earthquake resistant properties for steel frames. Eleventh World Conference on Earthquake Engineering,Acapulco,Mexico,1996: 779-786
    41 Masayoshi Nakashima,Takeshi Minami,Isao Mitani. Moment redistribution caused by beam fracture in steel moment frames. Journal of Structural Engineering. 2000,126(1):137-144
    42 Masayoshi Nakashima, C.W.Roeder, Yoshiomi Maruoka. Steel moment frames for earthquake in United States and Japan. Journal of Structural Engineering. 2000,126(1):861-868
    43王万祯,赵海宏,顾强.钢框架梁柱刚性节点破坏机理分析.工业建筑. 2002,32(8):63-65
    44宋振森,顾强,郭兵.刚性钢框架梁柱连接试验研究.建筑结构学报. 2001,22(1):53-57
    45姚国春.地震载荷下焊接钢结构梁柱节点断裂行为研究.天津大学博士论文.2001:1-16
    46李杰.地震循环载荷下钢结构梁柱焊接节点耗能和损伤行为的研究.天津大学博士论文.2002
    47 FEMA-350. Recommended seismic design criteria for new steel moment-frame Buildings. 2000
    48 Qi Wubo , Hiroaki Mimura. Streamline geometry optimization in beam-co1umn connection. Journal of Structural Engineering. 2002,(6):829-831
    49石永久,李兆凡,陈宏等.高层钢框架新型梁柱节点抗震性能试验研究.建筑结构学报. 2002,23(30):2-7
    50李兆凡,石永久,陈宏,等.改进型钢结构梁柱节点非线性有限元分析.建筑结构. 2002,32(9):15-18
    51陈宏,石永久,王元清等.钢框架梁柱节点受力性能的非线性分析.工业建筑,2001,31(5):56-58
    52 Kazuhiko Kasai,Ian Hodgson,David Bleiman. Rigid-bolted repair method for damaged moment connections. Engineering Structures,1998,20(4-6):521-532
    53陈杰,苏明周,申林等.钢结构焊接翼缘板加强式梁柱刚性连接滞回性能试验研究.建筑结构学报,2007,28(3):1-7
    54 Egor Paul Popov,Tzong-shuoh Yang,Shih-Po Chang. Design of steel MRF connections before and after 1994 Northridge earthquake. Engineering Structures, 1998,20(12): 1030-1038
    55易方民.高层建筑偏心支撑框架结构抗震性能和设计参数研究.中国建筑科学研究院博士论文,2000
    56高小旺,张维嶽,易方民等.建筑钢结构梁柱节点试验研究报告.中国建筑科学研究院试验报告.2000
    57 E.P.Popov,V.V.Bertero. Cyclic loading of steel beams and connections. V99,ST6,ASCE. June, 1973:1189-1204
    58 S.J.Chen,C.H.Yeh,J.M.Chu. Ductile steel beam-to-column connections for seismic resistance. J.Struc.Engng.. V122,N11,1996: 1292-1329
    59 Ralph M.Richard,C.Jay Ailen,James E.Partridge. Proprietary slotted beam connection design. Modern steel construction. 1997,(3):28-31
    60马人乐,杨阳,陈桥生等.长圆孔变型性高强螺栓节点抗震性能试验研究.建筑结构学报,2009,30(1):101-106
    61杨庆山.梁腹板开圆孔的钢框架抗震节点.中国安全科学学报,2005,15(2):45-50
    62茹继平,杨娜,杨庆山.翼缘削弱型钢框架梁柱节点的性能研究综述.工程力学,2004,21(1):61-66
    63王秀丽,沈世钊,殷占忠等.钢框架梁腹板开孔型连接节点力学性能试验研究.工程力学,2006,23(6):65-76
    64赵均,田守瑞,邹景春等.圆形截面组合柱-钢梁框架节点反复加载试验研究.建筑结构学报,2006,27(2):20-27
    65侯光瑜,陈彬磊,刘向阳等.圆形截面组合柱-钢梁框架节点受剪承载力分析.建筑结构学报,2006,27(2):28-32
    66宗周红,林于东,陈慧文等.方钢管混凝土柱与钢梁连接节点的拟静力试验研究.建筑结构学报,2005,26(1):77-84
    67宗周红,葛继平,杨强跃等.反复荷载作用下方钢管混凝土柱与钢梁连接节点非线性有限元分析.建筑结构学报,2006,27(2):75-81
    68余海群,钱稼茹,颜锋等.足尺钢梁柱刚性连接节点抗震性能试验研究.建筑结构学报,2006,27(6):18-27
    69 ANSI/AISC SSPEC-2005. Seismic provisions for structural steel buildings. American Institute of Steel Construction, INC. 2005,3
    70 Ricles J.M., Peng Sw., Lu L.w.. Seismic behavior of composite concrete filled steel tube column-wide flange beam moment connection. Journal of Structural Engineering, ASCE,2004,130(2):223-232
    71 Rassati G.A., Leon T.t., Noe S.. Component modeling of partially restrained composite joints under cyclic and dynamic loading. Journal of Structural Engineering, ASCE, 2004, 130(2): 343-351
    72 Kihak Lee, Douglas A. Foutch. Performance evaluation of new steel frame buildings for seismic loads. Earthquake Engineering and Structural Dynamics. 2002,vol.31:653-670
    73 Seung-Yul Yun, Ronald O. Hamburger,C. Allin Conell, Douglas A. Foutch. Seismic Performance evaluation for steel moment frames. Journal of Structural Engineering. 2002, 128(4):534-545
    74 A.A.Shama,M.S.Zarghamee,R.P.Ojdrovic, B.W. Schafer. Seismic damage evaluation of a steel building using Stress triaxially. Structural Engineering. 2003,.25:271-279
    75李洪泉,于之椓,吕西林等.钢框架结构在地震作用下累积损伤分析及试验研究.建筑结构学报,2004,25(3):69-74
    76 Daniel Grecea, Florea Dinu, Dan Dubina. Performance criteria for MR steel frames in seismic zones. Journal of Constructional Steel Research, 2006,60: 739-749
    77黄炳生,舒赣平,吕志涛.多层轻钢框架的地震时程分析.工业建筑, 2001,31(8):5-7
    78郑廷银,马梦寒,张玉等.考虑节点域变形效应的空间支撑钢框架结构的二阶弹塑性分析.土木工程学报,2005,38(4):39-45
    79 V.Gioncu. Framed structural Ducti1ity and seismic response. Journal of Constructional Steel Research,2005,55:125-154
    80 Tshtomu Usami, Zheng Yi, Hanbin Ge. Seismic design method for thin-walled steel frame structures. Journal of Structural Engineering, 2001,127(2):137-144
    81 Federico M.Mazzolani, Vincenzo Piluso. Plastic design of seismic resistant steel frames. Earthquake Engineering and Structural Dynamies. 1997,26:167-191
    82 M.S.Karakostas, E.S.Mistakidis. Determination of the load-displacement curve of moment resisting steel frames under horizontal loading. Computational Mechanics, 2006,vol.27:341-351
    83 Ben Kato. Deformation capacity of steel structures. Journal of Constructional Steel Research. 1990,17:33-94
    84阎兴华.多层轻钢框架的往复水平荷载试验.工程力学(增刊). 2000:774-778
    85贾连光,许峰,张绍武等.轻型钢框架结构的抗震性能试验研究.工业建筑. 2005,35(10):64-68
    86黄炳生,舒赣平,吕志涛.梁端楔形翼缘连接钢框架低周反复荷载试验研究.建筑结构学报. 2006,27(2):57-63
    87黄炳生,舒赣平,吕志涛.削弱梁翼缘连接轻钢框架的低周反复荷载试验.工程抗震与加固改造. 2006,28(4):41-46
    88黄炳生,舒赣平.低周反复荷载下两层轻钢框架抗震性能试验研究.地震工程与工程振动. 2006,26(6):114-119
    89黄炳生,黄顾忠,舒赣平等.梁端楔形翼缘连接钢框架抗震性能和抗震设计研究.世界地震工程,2008,24(3):127-130
    90 Ramamurthy L N, Hafeez Kham T A. L-Shaped Column Design for Biaxial Eccentric. Journal of Structural Engineering, 1983,7:23-27
    91 Davister M. D.. Analysis of Reinforced Concrete Columns of Arbitrary Geometry Subjected to Axial Load and Biaxial Bending. Concrete Internation,1986,7:42-46
    92 Dundar C., Sahin B. Arbitrarily shaped Reinforced Concrete Members Subject to Biaxial Bending and Axial Load. Computer and Structures,1993,49(4):32-35
    93 C.Y. Yau, S.L.Chan, A.K.W. So.. Biaxial Bending Design of Arbitrarily Shaped Reinforced Concrete Column. ACI Structural Journal, 1993,6:269-278
    94 Mallikarjunal, Mahadevappa P. Computer-Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-1: L-shaped Sections. Computer and Structures, 1992,48(5):43-46
    95 Mallikarjunal, Mahadevappa P. Computer Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending ALT-shaped Sections. Computer and Structures,1993,49(6):29-34
    96 S.N, Sinha. Design of Cross Section of Column. The Indian Concrete Journal. 1996, 3: 153-158.
    97赵艳静,李忠献,陈云霞.四级抗震等级时钢筋混凝土异形柱轴压比限值的研究.建筑结构学报,2004,25(3):33-38
    98赵艳静,陈云霞,于顺泉.钢筋混凝土异形截面框架柱轴压比限值的研究.天津大学学报,2004,37(7):600-604
    99李杰,吴建营,周德源等. L形和Z形宽肢异形柱低周反复荷载试验研究.建筑结构学报,2002,23(1):9-15
    100黄雅捷,梁兴文,吴敏哲等.钢筋混凝土异形柱框架结构抗震试验与分析.建筑结构,2002,32(1):49-52
    101肖建庄,陈隽,张其云等.钢筋混凝土异形柱框-桁架结构振动台试验研究.建筑结构,2002, 32(5):40-43
    102同济大学土木工程防灾减灾国家重点试验室.八度区六层异形柱框架结构模型模拟地震振动台试验研究报告(A20031125-416-1), 2003,12
    103曹万林,樊太,张维斌等.钢骨混凝土异形截面柱抗震性能试验及分析.土木工程学报,2007,40(1): 13-27
    104 LI Hong-xing, BAI Guo-liang, ZHU Jia-ning, ZHU Li-hua. Experimental research on seismic behavior of abnormal joint in reinforced concrete frame. J·Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2006,38(2):168-176
    105白国良,李红星,朱佳宁.钢筋混凝土框架异型节点抗震性能试验研究.建筑结构学报,2004,25(4):8-14
    106广东省建设管理委员会.钢筋混凝土异形柱结构技术规程(DBJ/T15-15-95).广东省地方标准,1995
    107天津市建设管理委员会.钢筋混凝土异形柱结构技术规程(DB29-16-2003, J10249-2003).天津市地方标准,2003
    108江西省建设管理委员会.钢筋混凝土异形柱结构技术规程(DB36/T368-2002).江西省地方标准,2002
    109江苏省质量技术监督局.钢筋混凝土异形柱框架结构技术规程(DB32/512-2002).江苏省地方标准,2002
    110辽宁省建设厅.异形柱框架轻质墙结构(抗震)设计规程(DB34/222-2001).辽宁省地方标准,2002
    111安徽省质量技术监督局,安徽省建设厅.安徽省异形柱框架轻质墙结构(抗震)设计规程(DB34/222-2001).安徽省地方标准,2001
    112河北省建设厅.钢筋混凝土异形柱框架结构住宅技术规程(DB13(J)36-2002).河北省地方标准,2002
    113甘肃省建设委员会.钢筋混凝土异形柱框架结构构造图集(DBJ/T25-77-99).甘肃省地方标准,1999
    114上海市建设管理委员会.钢筋混凝土异形柱结构技术规程(DG/TJ08-009-2002).上海市地方标准,2002
    115张莉若,王明贵.钢异形柱在钢结构住宅工程中的应用.全国钢结构学术年会,2006: 60-62
    116王明贵,张莉若,谭世友.钢异形柱弯扭相关屈曲研究.钢结构,2006,21(4):35-37
    117王明贵,王晓瑜,陈章华.钢异形柱轴心受压承载力实用计算研究.钢结构,2007, 22(7): 44-47
    118徐珂,程燕立,王雷.钢结构住宅设计的几点总结.建筑结构,2005,35(2):24-27
    119张爱林,徐敏,于劲等.十字形钢异形柱截面压弯构件的滞回性能研究.钢结构,2009,24(2):9-11
    120于劲,张爱林,刘会军等.十字形截面钢异形柱的抗震性能和板件宽厚比限值研究.工业建筑,2010,40(3):116-123
    121张爱林,于劲,徐敏等.低周反复荷载作用下十字形截面钢异形柱抗震性能试验研究.建筑结构学报,2010,31(2):11-19
    122张爱林,于劲,徐敏等.低周反复荷载作用下T形截面钢异形柱抗震性能试验研究.建筑结构学报,2010,31(2):20-27
    123张爱林,刘显旺,于劲等.单调荷载下钢异型柱(T形)框架节点的力学性能研究.钢结构,2009,24(2):15-19
    124张爱林,刘显旺,于劲等. T形钢异型柱框架节点性能分析.工业建筑,2009,39(增刊):532-536
    125 ANSI/AISC SSPEC-2005. Seismic provisions for structural steel buildings. Chicago,American Institute of Steel Construction, INC. March 9,2005
    126范立础,卓卫东.桥梁延性抗震设计.人民交通出版社,2001:81-97
    127中国建筑技术研究院.高层民用建筑钢结构技术规程(JGJ 99-98).中国建筑工业出版社,1998
    128金属材料室温拉伸试验方法(GB/T 228-2002).
    129钢及钢产品力学性能试验取样位置及试样制备(GB/T 2975-1998)
    130中华人民共和国建设部.建筑抗震试验规程(JGJ 101-96).中国建筑工业出版社,1997
    131姚谦峰,陈平.土木工程试验.中国建筑工业出版社,2001
    132 Xiangdong Tong. Seismic Behavior of Composite Steel Frame-Reinforced Concrete Infill Wall Structural System. Dissertation Submitted to University of Minnesota in Partial Fulfilment of the Requirments for the Degree of Doctor Philosophy. Bell & Howell Information and Learning Company, 2001:138-149
    133王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58
    134唐九如.钢筋混凝土框架节点抗震(第一版).东南大学出版社,1989
    135中华人民共和国建设部.钢结构设计规范(GB50017-2003).北京:中国建筑工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700