用户名: 密码: 验证码:
基于稀疏表示的超分辨率重建和图像修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀疏表示理论已成为近几年来图像处理和模式识别领域的研究热点,研究基于学习字典的模型构造方法、快速有效的稀疏表示算法及其在图像处理中的应用,具有非常重要的理论研究价值和实际意义。
     本论文基于稀疏表示理论,深入分析了其在图像表示方面的应用,并在此基础上以学习字典理论为重点,对基于稀疏表示理论的超分辨率重建、图像修复、图像类推等做了探索性和创新性的研究。主要内容有:
     1阐述了稀疏表示理论的基本概念、数学模型、优化算法、稀疏表示的唯一性和边界条件等内容,以及其在模式识别、图像处理等领域的应用。
     2提出基于稀疏字典的超分辨率重建方法,在保持稀疏字典自适应性和灵活性的同时,还加强了字典的正则性和有效性,提高了对先验知识的稀疏表示能力;采用形态分量分析法提取图像特征,更有效地利用了图像的几何结构和纹理特征信息,提高了稀疏编码的精度。
     3结合非局部自相似和联合稀疏近似的概念,提出一种基于跨尺度自相似的非局部稀疏编码的超分辨率重建框架。通过联合稀疏近似的方法,建立待处理图像的跨尺度高、低分辨率图像块间的稀疏关联,并将这种关联作为先验知识来指导超分辨率重建;在超分辨率重建过程中,既利用了样本图像的先验知识,又充分考虑了待处理图像本身的跨尺度自相似信息,能更有效地估计图像的高频细节,提高了算法的自适应性。
     4提出基于联合稀疏近似的彩色图像超分辨率方法,将彩色图像的各通道数据进行联合稀疏编码,并保证它们具有相同的稀疏性模式。该方法同时考虑彩色图像的各通道数据,兼顾了它们之间的相关性,进一步增强了对彩色图像信息的表达能力,更有效地建立高、低分辨率彩色图像间的稀疏关联。
     5提出基于稀疏分解的超分辨率方法,利用形态分量分析方法将图像分解为几何结构分量、纹理分量和残差分量,再分别对各图像分量进行超分辨率重建,提高了重建质量。
     6研究学习字典在图像修复领域应用的新方法。将非局部自相似图像块统一进行联合稀疏近似,训练高效的学习字典,使自相似图像块保持相同的稀疏性模式,保证自相似图像块投影到稀疏空间后也保留一定的相似性。该方法在字典学习过程中,既利用了样本图像的先验知识,又充分考虑待修复图像本身的相关信息,增强了图像修复算法的自适应性。
     7将学习字典应用到图像类推算法中,并将图像类推分为字典学习和类推重建两个阶段。字典学习过程可离线实现,提高了计算效率;在类推重建过程中,使用稀疏先验的线性优化问题代替传统图像类推方法中的匹配、搜索过程,进一步提高算法的计算效率。
In recent years, sparse representation has become a hotspot of research in the fields of image processing and pattern recognition. It’s theoretically and practically important to do research on construction model of learned dictionary and effective, fast sparse representation algorithms in image representation and image processing. The paper takes sparse representation theory as basis, deeply analyzes its applications in image representation; and then focuses on learned dictionary, makes an exploratory and innovative study of sparse representation based image processing techniques, including super-resolution, image inpainting and image analogies. The main contents of the paper include:
     1 The paper introduces the basic concepts, mathematical model, optimized algorithm, uniqueness and boundary conditions of sparse representation, as well as its applications in pattern recognition, image processing, etc.
     2 A novel super-resolution method based on sparse dictionary is presented. The method keeps the adaptability and flexibility of sparse dictionary, and strengthens its regularity and validity to improve the image sparse representation capability. Morphological component analysis method is applied to improve the accuracy of sparse coding. Moreover, super-resolution reconstruction and denoising are carried out simultaneously.
     3 A novel super-resolution method based on non-local simultaneous sparse coding is presented, which combines non-local self-similarity and simultaneous sparse approximation. The method defines the sparse association between high- and low-resolution patches pairs via simultaneous sparse approximation. Then the association is used as a priori knowledge to guide super-resolution reconstruction. This method not only takes advantage of the sparse prior of examples, but also takes into account image cross-scale self-similarity information. The method efficiently estimates the high frequency information of the low resolution image and the adaptability is enhanced.
     4 A novel super-resolution method for color images based on simultaneous sparse approximation is presented. The multichannel data of color images are unified for simultaneous sparse coding to make sure the same sparsity patterns. The expression ability of prior information is enhanced because of considering each channel and correlation among them. Furthermore, the sparse association between HR and LR image feature patches is efficiently built.
     5 A super-resolution method based on sparse image decomposition is presented. Firstly, the input image is decomposed into cartoon component, texture component and error component using morphological component analysis method. Next, super-resolution reconstruction of each component is performed, and the quality of super-resolved image is improved effectively.
     6 Image inpainting method based on learned dictionary is studied. The non-local self-similar patches are unified for simultaneous sparse approximation and learned dictionary, in which each element of the self-similar patches has the same sparsity pattern. The method assures the self-similar patches also possess similarity when projected onto the sparse space. During training learned dictionary, the method not only takes into account the priori knowledge of samples, but also considers the non-local self-similar information of input image, thus the adaptability is enhanced.
     7 Learned dictionary is applied to image analogies. The method mainly includes two stages: training learned dictionary and image analogies reconstruction. The dictionary training process can be off-line achieved to improve the computational efficiency. During image analogies process, the method uses the linear optimization problem of sparse prior instead of searching and matching in conventional methods to further improve the computational efficiency.
引文
[1] B. A. Olshausen, D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583):607-609
    [2] D. L. Donoho. Compressed sensing. IEEE Transaction on Information Theory, 2004, 54(4): 1289-1306
    [3] R. Y. Tsai, T. S. Huang: Multiframe image restoration and registration, Advances in Computer Vision and Image Processing, Greenwich: JAI Press Inc., 1984:317-339
    [4] S. Baker, T. Kanade. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9):1167-1183
    [5] S. C. Park, M. K. Park, M. G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 2003, 20(3):21-36
    [6] S. Borman, R. Stevenson. Spatial resolution enhancement of low-resolution image sequences: A comprehensive review with directions for future research. Technical Report, Laboratory for Image and Signal Analysis, University of Notre Dame, 1998
    [7] W. T. Freeman, E. C. Pasztor, O. T. Carmichael. Learning low-level vision. International Journal of Computer Vision, 2000, 40:25-47
    [8] W. T. Freeman, T. R. Jones, E. C. Pasztor. Example-based super-resolution. IEEE Computer Graphics and Applications, 2002, 22(2):56-65
    [9] D. Capel, A. Zisserman. Super-resolution from multiple views using learnt image models. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'01). Washington, DC. USA: IEEE Computer Society, 2001, Vol.2: 627-634
    [10] H. Ur, D. Gross. Improved resolution from sub-pixel shifted pictures. Graphical Models and Image Processing (CVGIP), 1992, 54:181-186
    [11] M. Iranni, S. PPeleg. Improving resolution by image registration. Graphical Models and Image Processing (CVGIP), 1991, 53(5):231-239
    [12] H. Stark, P. Oskoui. High resolution image recovery from image-plane arrays, using convex projections. Optical Society of America, 1989, 6(11):1715-1726
    [13] M. C. Hong, M. G. Kang, A. K. Katsaggelos. An iterative weighted regularized algorithm for improving the resolution of video sequences. International Conference on Image Processing. Washington, DC USA: IEEE Computer Society, 1997, Vol.2: 474-477
    [14] M. Elad, A. Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing, 1997, 6(12):1646-1658
    [15] H. Takeda, P. Milanfar: Locally adaptive kernel regression for space-time super-resolution, Milanfar P, editor, Super-resolution Imaging: Springer, 2010
    [16] M. Protter, M. Elad, H. Takeda, et al. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1):36-51
    [17] Y.-R. Li, D.-Q. Dai, L. Shen. Multiframe super-resolution reconstruction using sparse directional regularization. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(7):945-956
    [18] S. Farsiu, M. D. Robinson, M. Elad, et al. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing, 2004, 13(10):1327-1344
    [19] Q. Wang, X. Tang, H. Shum. Patch based blind image super resolution. IEEE International Conference on Computer Vision (ICCV). Washington, DC USA: IEEE Computer Society, 2005, Vol.1: 709-716
    [20] U. Mudenagudi, P. Kalra, S. Banerjee. Super resolution using graph-cut. Asian Conference on Computer Vision (ACCV), 2005: 385-394
    [21] D. Datsenko, M. Elad. Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidimensional Systems and Signal Processing, 2007, 18(2-3):103-121
    [22] H. Chang, D.-Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding. IEEE Computer Society Conference on Computer Vision Pattern Recognition (CVPR 2004). Washington, DC USA: IEEE Computer Society, 2004, Vol.1: 275-282
    [23] T. Chan, J. Zhang. An improved super-resolution with manifold Learning and Histogram Matching. Proceedings of IAPR International Conference on Biometric: Springer Verlag, 2006: 756-762
    [24] S. W. Park, M. Savvides. Breaking the limitation of manifold analysis for super-resolution of facial images. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington, DC USA: IEEE Computer Society, 2007, Vol.1: 573-576
    [25] J. Qiao, J. Liu. Joint blind super-resolution and shadow removing. IEICE - Transactions on Information and Systems, 2007, E90-D(12):2060-2069
    [26] C. Liu, H.-Y. Shum, C.-S. Zhang. A two-step approach to hallucinating faces: Global parametric model and local nonparametric model. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2001, Vol.1: 192-198
    [27] C. Liu, H.-Y. Shum, W. T. Freeman. Face hallucination: theory and practice. International Journal of Computer Vision, 2007, 75(1):115-134
    [28] W. Zhang, W.-K. Cham. Learning-based face hallucination in DCT domain. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2008: 1-8
    [29] B. K. Gunturk, A. U. Batur, Y. Altunbasak, et al. Eigenface-domain super-resolution for face recognition. IEEE Transactions on Image Processing, 2003, 12(5):597-606
    [30] X. Wang, X. Tang. Hallucinating face by eigentransformation. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2005, 35(3):425-434
    [31] J.-S. Park, S.-W. Lee. An example-based face hallucination method for single-frame, low-resolution facial images. IEEE Transactions on Image Processing, 2008, 17(10):1806-1816
    [32]郑丽贤,吴炜,杨晓敏,等.基于多分辨率塔式结构的幻觉脸技术的研究.光电子.激光, 2008, 19(9):1244-1249
    [33] A. Hertzmann, C. E. Jacobs, N. Oliver, et al. Image Analogies. Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH. Los Angeles, California: ACM Press, 2001: 327-339
    [34] A. A. Efros, W. T. Freeman. Image quilting for texture synthesis and transfer. 28th annual conference on Computer graphics and interactive techniques (SIGGRAPH '01). New York: ACM Press, 2001: 341-346
    [35] J. Sun, N.-N. Zheng, H. Tao, et al. Image hallucination with primal sketch priors. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03). Washington, DC USA: IEEE Computer Society, 2003, Vol.2: 729-736
    [36] S. Rajaram, M. D. Gupta, N. Petrovic, et al. Learning-based nonparametric image super-resolution. EURASIP J. Appl. Signal Process, 2006, 2006:1-11
    [37] K. S. Ni, T. Q. Nguyen. Image superresolution using support vector regression. IEEE Transaction on Image Processing, 2007, 16(6):1596-1610
    [38] K. I. Kim, Y. Kwon. Example-based learning for single-image super-resolution. Proc. the 30th DAGM Symposium. Munich, Germany: Springer, 2008: 456-463
    [39] K. Kim, Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6):1127-1133
    [40] D. Li, S. Simske. Example based single-frame image super-resolution by support vector regression. Journal of Pattern Recognition Research, 2010, 5(1):1-16
    [41]古元亭,吴恩华.基于图像类推的超分辨率技术.软件学报, 2008, 19(4):851-860
    [42]潘琪,罗笑南,朱继武.基于学习的局部几何相似性的医学图像放大(英文).软件学报, 2009, 20(5):1146-1155
    [43]浦剑,张军平.基于词典学习和稀疏表示的超分辨率方法.模式识别与人工智能, 2010, 23(3):335-340
    [44]吴炜,杨晓敏,陈默,等.基于流形学习的人脸图像超分辨率技术研究.光学技术, 2009, 35(1):84-88
    [45] J. Yang, J. Wright, T. Huang, et al. Image super-resolution as sparse representation of raw image patches. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2008: 1-8
    [46] G. Yu, S. Mallat. Sparse super-resolution with space matching pursuits. Signal Processing with Adaptive Sparse Structured Representations (SPARS'09), 2009: 1-6
    [47] S. Mallat, G. Yu. Super-resolution with sparse mixing estimators. IEEE Transaction on Image Processing, 2010, 19(1):2889-2900
    [48] J. Wang, S. Zhu, Y. Gong. Resolution enhancement based on learning the sparse association of image patches. Pattern Recognition Letters, 2010, 31(1):1-10
    [49] M. Bertalmio, G. Sapiro, V. Caselles, et al. Image inpainting. Proceedings of SIGGRAPH 2000. New Orleans, USA: ACM Press, 2000: 417-424
    [50] A. Bugeau, M. Bertalmío, V. Caselles, et al. A comprehensive framework for image inpainting. IEEE Transaction on Image Processing, 2010, 19(10):2634-2645
    [51] T. F. Chan, J. Shen. Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 2002, 62(3):1019-1043
    [52] T. F. Chan, J. Shen. Non-texture inpainting by curvature-driven diffusions (CDD). Journal of Visual Communication and Image Representation, 2001, 12(4):436-449
    [53] A. Tsai, A. Yezzi, A. S. Willsky. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transaction on Image Processing, 2001, 10(8):1169-1186
    [54] S. Esedoglu, J. Shen. Digital inpainting based on the Mumford-Shah-Euler image model. European Journal of Applied Mathematics, 2002, 13:353-370
    [55] T. F. Chan, J. Shen, H.-M. Zhou. Total variation wavelet inpainting. Journal of Mathematical Imaging and Vision, 2006, 25(1):107-125
    [56] X. Zhang, T. F. Chan. Wavelet inpainting by nonlocal total variation. Technical Report, University of California, 2009
    [57] D. J. Heeger, J. R. Bergeny. Pyramid-based texture analysis/synthesis. the Proceedings of the 1995 International Conference on Image Processing (ICIP). Washington, DC USA: IEEE Computer Society, 1995, Vol.3: 648-651
    [58] A. A. Efros, T. K. Leung. Texture synthesis by non-parametric sampling. IEEE International Conference on Computer Vision (ICCV). Washington, DC USA: IEEE Computer Society, 1999, Vol.2: 1033-1038
    [59] J. S. D. Bonet. Multiresolution sampling procedure for analysis and synthesis of texture images. Proceedings of the 24th annual conference on Computer graphics and interactive techniques: ACM Press, 1997, Vol.31: 361-368
    [60] J. Portilla, E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 2000, 40(1):49-70
    [61] V. Kwatra, I. Essa, A. Bobick, et al. Texture optimization for example-based synthesis. ACM SIGGRAPH 2005. Los Angeles: ACM Press, 2005, Vol.24: 795-802
    [62] L.-Y. Wei, M. Levoy. Fast texture synthesis using tree-structured vector quantization. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. New Orleans, LA, USA: ACM Press, 2000: 479-488
    [63] V. Kwatra, A. S. odl, I. Essa, et al. Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics, 2003, 22(3):277-286
    [64] S. Zelinka, M. Garland. Jump map-based interactive texture synthesis. ACM Transactions on Graphics, 2004, 23(4):930-962
    [65] A. Criminisi, P. Perez, K. Toyama. Region filling and object removal by exemplar-based image inpainting. IEEE Transaction on Image Processing, 2004, 13(9):1200-1212
    [66]付绍春,楼顺天.基于区域纹理合成的图像修补算法.电子与信息学报, 2009, 31(6):1319-1322
    [67] I. Drori, D. Cohen-Or, H. Yeshurun. Fragment-based image completion. ACM Transactions on Graphics, 2003, 22(3):303-312
    [68] F. Cao, Y. Gousseau, S. Masnou, et al. Geometrically guided exemplar-based inpainting. http://hal.archives-ouvertes.fr/hal-00380394/en/. 2009
    [69] M. Bertalmio, L. Vese, G. Sapiro, et al. Simultaneous structure and texture image inpainting. IEEE Transaction on Image Processing, 2003, 12(8):882-889
    [70] M. Elad, J.-L. Starck, P. Querre, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 2005, 19(3):340-358
    [71] O. G. Guleryuz. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: theory. IEEE Transactions on Image Processing, 2006, 15(3):539-554
    [72] O. G. Guleryuz. Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part II: adaptive algorithms. IEEE Transactions on Image Processing, 2006, 15(3):555-571
    [73] M. J. Fadili, J.-L. Starck, F. Murtagh. Inpainting and zooming using sparse representations. The Computer Journal, 2007(6):1-16
    [74] J. Mairal, M. Elad, G. Sapiro. Sparse representation for color image restoration. IEEE Transactions on Image Processing, 2008, 17(1):53-69
    [75] J. Mairal, F. Bach, J. Ponce, et al. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 2010, 11:19-60
    [76] B. Shen, W. Hu, Y. Zhang, et al. Image inpainting via sparse representation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington, DC USA: IEEE Computer Society, 2009: 697-700
    [77] Z. Xu, J. Sun. Image inpainting by patch propagation using patch sparsity. IEEE Transactions on Image Processing, 2010, 19(5):1153-1165
    [78] G. Peyre. Sparse modeling of textures. Journal of Mathematical Imaging and Vision, 2009, 34(1):17-31
    [79]胡正平,刘文,许成谦,等.局部自适应学习基稀疏约束结合信息优先权选择扩散的迭代图像修复算法研究.仪器仪表学报, 2010, 31(3):600-605
    [80] S. Mallat, Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415
    [81] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basis pursuit. Technical Report, Stanford, 1995
    [82] D. H. Hubel, T. N. Wiesel. Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 1959, 148(574-591)
    [83] D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. Journal Optical Society, 1987, 4(2):379-394
    [84]杨谦,齐翔林,汪云九.视皮层V1区简单细胞的稀疏编码策略.计算物理, 2001, 18(2):143-146
    [85] D. L. Donoho, X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862
    [86] M. Elad, A. M. Bruckstein. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 2002, 48(9):2558-2567
    [87] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transaction on Information Theory, 2004, 50(10):2231-2242
    [88] E. Candes, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2):489-509
    [89] E. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2005, 59(8):1207-1223
    [90] E. Candes, T. Tao. Decoding by linear programming. IEEE Transaction on Information Theory, 2005, 51:4203-4215
    [91] A. Cohen, W. Dahmen, R. DeVore. Compressed sensing and best k-term approximation. Journal of the American Mathematical Society, 2009, 22:211-231
    [92] Y. Zhang. On theory of compressive sensing via l1 minimization Simple derivations and extensions. Technical Report, Department of Computational and Applied Mathematics, Rice University, 2008
    [93] S. Jafarpour, W. Xu, B. Hassibi, et al. Efficient and robust compressed sensing using high-quality expander graphs. IEEE Transactions on Information Theory, 2008, 55(9):4299-4308
    [94] Y. Pati, R. Rezaiifar, P. Krishnaprasad. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, 1993, Vol.1: 40-44
    [95] D. Needell, R. Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316
    [96] T. T. Do, L. Gan, N. Nguyen, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. 42nd Asilomar Conference on Signals, Systems and Computers, 2008: 581-587
    [97] M. Gharavi-Alkhansari, T. S. Huang. A fast orthogonal matching pursuit algorithm. IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, DC USA: IEEE Computer Society, 1998, Vol.3: 1389-1392
    [98] D. L. Donoho, Y. Tsaig, I. Drori, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Technical Report, Department of Statistics, Stanford University, 2006: 1-39
    [99] W. Dai, O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5):2230-2249
    [100] D. Needell, J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 2008, 26(3):301-321
    [101] P. Vincent, Y. Bengio. Kernel matching pursuit. Machine Learning, 2002, 48:169-191
    [102] L. Rebollo-Neira, D. Lowe. Optimized orthogonal matching pursuit approach. IEEE Signal Processing Letters, 2002, 9(4):137-140
    [103] T. Blumensath, M. E. Davies. Stagewise weak gradient pursuits. IEEE Transactions on Signal Processing, 2009, 57(11):4333-4346
    [104] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597
    [105] S.-J. Kim, K. Koh, M. Lustig, et al. An interior-point method for large-scale l1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing, 2007, 1(4):606-617
    [106] E. v. d. Berg, M. P. Friedlander. Probing the pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 2008, 31(2):890-912
    [107] Y. Wang, W. Yin. Sparse signal reconstruction via iterative support detection. SIAM Journal on Imaging Sciences, 2010, 3(3):462-491
    [108] E. J. Candes, J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics, 2005, 6(2):227-254
    [109] G. H. Mohimani, M. Babaie-Zadeh, C. Jutten. A fast approach for overcomplete sparse decomposition based on smoothed L0 norm. IEEE Transactions on Signal Processing, 2009, 57(1):289-301
    [110] R. Zdunek, A. Cichocki. Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals. IEEE Transaction on Image Processing, 2008, 56(10):4752-4761
    [111] D. Angelosante, G. B. Giannakis. RLS-weighted lasso for adaptive estimation of sparse signals. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Washington, DC USA: IEEE Computer Society, 2009: 3245-3248
    [112] D. D.L., T. Y. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory, 2008, 54(11):4789-4812
    [113] W. Yin, J. Darbon, D. Goldfarb, et al. The bregman iterative algorithm for l1-minimization. Technical Report, Department of Computational and Applied Mathematics, Rice University, 2007
    [114]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展.电子学报, 2009, 37(5):1070-1081
    [115] A. J. Bell, T. J. Sejnowski. The "Independent components" of natural scenes are edge filters. Vision Research, 1997, 37(23):3327-3338
    [116] K. Engan, B. D. Rao, K. Kreutz-Delgado. Frame design using FOCUSS with method of optimal directions (MOD). Norwegian Signal Processing Symposium, 1999: 65-69
    [117] K.Engan, K. Skretting, J. H. Hus?y. A family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation. Digital Signal Processing, 2007, 17(1):32-49
    [118] S. F. Cotter, B. D. Rao. Application of total least squares (TLS) to the design of sparse signal representation dictionaries. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers. Washington, DC USA: IEEE Computer Society, 2002, Vol.1: 963-966
    [119] K. Kreutz-Delgado, B. D. Rao. FOCUSS-based dictionary learning algorithms. Wavelet Applications in Signal and Image Processing VIII. Bellingham, Washington: SPIE, 2000, Vol.4119: 459-473
    [120] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, et al. Dictionary learning algorithms for sparse representation. Neural Computer, 2003, 15(2):349-396
    [121] M. Aharon, M. Elad, A. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transaction on Image Processing, 2006, 54(11):4311-4322
    [122] J. Mairal, F. Bach, J. Ponce, et al. Online dictionary learning for sparse coding. International Conference on Machine Learning (ICML). Montreal, Quebec, Canada: ACM Press, 2009: 689-696
    [123] K. Skretting, K. Engan. Recursive least squares dictionary learning algorithm. IEEE Transaction on Signal Processing, 2010, 58(4):2121-2130
    [124] A. Y. Yang, J. Wright, Y. Ma, et al. Feature selection in face recognition: a sparse representation perspective. Technical Report, UC Berkeley, 2007
    [125] J. Wright, A. Y. Yang, A. Ganesh, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine intelligence, 2009, 31(2):210-227
    [126] M. A. Ranzato, Y.-L. Boureau, Y. LeCun. Sparse feature learning for deep belief networks. Advances in Neural Information Processing Systems (NIPS), 2007: 1-8
    [127] R. Raina, A. Battle, H. Lee, et al. Self-taught learning: Transfer learning from unlabeled data. International conference on Machine learning (ICML). New York, NY, USA: ACM Press, 2007: 759-766
    [128] K. Kavukcuoglu, M. Ranzato, R. Fergus, et al. Learning invariant features through topographic filter maps. IEEE Conference on Computer Vison and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2009: 1605-1612
    [129] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, et al. Learning convolutional feature hierarchies for visual recognition. Advances in Neural Information Processing Systems (NIPS), 2010: 1-9
    [130] R. Zhi, M. Flierl, Q. Ruan, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(1):38-52
    [131] S. Lazebnik, C. Schmid, J. Ponce. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2006, Vol.2: 2169-2178
    [132] J. Yang, K. Yuz, Y. Gongz, et al. Linear spatial pyramid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2009: 1794 -1801
    [133] K. Yu, T. Zhang, Y. Gong. Nonlinear learning using local coordinate coding. Advances in Neural Information Processing Systems, 2009: 1-9
    [134] M. Everingham. Overview and results of the classification challenge. The PASCAL Visual Object Classes Challenge Workshop at ICCV, 2009: 1-22
    [135] J. C. Yang, K. Yu, T. Huang. Supervised translation-invariant sparse coding. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA: IEEE Computer Society, 2010: 3517-3524
    [136] B. Xie, M. Song, D. Tao. Large-scale dictionary learning for local coordinate coding. Proceedings of the British Machine Vision Conference, 2010: 36.1-36.9
    [137] Y. Lin, T. Zhang, S. Zhu, et al. Deep coding networks. Advances in Neural Information Processing Systems (NIPS), 2011: 1-9
    [138] K. Yu, T. Zhang. Improved local coordinate coding using local tangents. International Conference on Machine Learning (ICML), 2010: 1215-1222
    [139] J. Friedman, T. Hastie, H. Hudotoing, et al. Pathwise coordinate optimization. The Annals of Applied Statistics, 2007, 1:302-332
    [140] J. Zhang. A probabilistic framework for multitask learning: [PhD Thesis]. Carnegie Mellon University, 2006:
    [141] X.-T. Yuan, S. Yan. Visual classification with multi-task joint sparse representation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2010: 3493-3500
    [142] I. Ramirez, P. Sprechmann, G. Sapiro. Classification and clustering via dictionary learning with structured incoherence and shared features. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2010: 3501-3508
    [143] M. Elad, M. Aharon. Image denoising via learned dictionaries and sparse representation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC USA: IEEE Computer Society, 2006, Vol.1: 895-900
    [144] J. Mairal, F. Bach, J. Ponce, et al. Non-local sparse models for image restoration. IEEE International Conference on Computer Vision (ICCV). Washington, DC USA: IEEE Computer Society, 2009: 2272-2279
    [145] J. Yang, J. Wright, T. Huang, et al. Image super-resolution via sparse representation. IEEE Transaction on Image Processing, 2010, 19(11):2861-2873
    [146] W. S. Dong, L. Zhang, G. Shi, et al. Image deblurring and supper-resolution by adaptive sparse domain selection and adaptive regularization. http://www4.comp.polyu.edu.hk/ ~cslzhang/. 2011
    [147] B. Yang, S. Li. Multifocus image fusion and restoration with sparse representation. IEEE Transaction on Information Theory Instrumentation and Measurement, 2010, 59(4):884-892
    [148] J. L. Starck, M. Elad, D. L. Donoho. Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 2005, 14:1570-1582
    [149] J.-L. Starck, M. Elad, D. Donoho. Redundant multiscale transforms and their application for morphological component separation. Advances in Imaging and Electron Physics, 2004, 132:288-348
    [150] J. Huang, T. Zhang. The benefit of group sparsity. Annals of Statistics, 2010, 38(4):1978-2004
    [151] Y. C. Eldar, H. Bolcskei. Block-sparsity: coherence and efficient recovery. IEEE Transactions on Signal Processing, 2010, 58(6):3042-3054
    [152] G. Yu, G. Sapiro. Image modeling and enhancement via structured sparse model selection. 17th IEEE International Conference on Image Processing (ICIP). Washington, DC USA: IEEE Computer Society, 2010: 1641-1644
    [153] J. Chen, X. Huo. Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05). Washington, DC USA: IEEE Computer Society, 2005, Vol.4: 257-260
    [154] D. L. Donoho. For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 2006, 59(7):907-934
    [155] E. Candes, T. Tao. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12):5406-5425
    [156] I. Ramirez, G. Sapiro. Universal regularizers for robust sparse coding and modeling. Technical Report, Scientific Computation in the University of Minnesota, 2010
    [157] S. Osher, M. Burger, D. Goldfarb, et al. An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 2005, 4(2):460-489
    [158] J. Xu, S. Osher. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Transactions on Image Processing, 2006, 16(2):534-544
    [159] M. Burger, S. Osher, J. Xu, et al. Nonlinear inverse scale space methods for image restoration. Lecture Notes in Computer Science, 2005, 3752:25-36
    [160] W. Yin, S. Osher, D. Goldfarb, et al. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences (SIIMS), 2008, 1(1):143-168
    [161] J. Cai, S. Osher, Z. Shen. Linearized bregman iteration for frame based image deblurring. SIAM Journal on Imaging Sciences archive, 2009, 2(1):143-168
    [162] M. V. Afonso, J. M. Bioucas-Dias, M. A. T. Figueiredo. Image denoising with compound regularization using a bregman iterative algorithm. Conference on Telecommunications (ConfTele'09). Santa Maria da Feira, Portugal, 2009
    [163] A. Marquina, S. J. Osher. Image super-resolution by TV-regularization and bregman iteration. Journal of Scientific Computing, 2008, 37(3):367-382
    [164] L. I. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4):259-268
    [165] Y. Wang, W. Yin, Y. Zhang. A fast fixed-point algorithm for convex total variation regularization. Technical Report, Rice University, 2007
    [166] A. Chambolle. Total variation minimization and a class of binary MRF models. Lecture Notes in Computer Science, 2005, 3757:136-152
    [167] D. Goldfarb, W. Yin. Parametric maximum flow algorithms for fast total variation minimization. SIAM Journal on Scientific Computing, 2009, 31(5):3712-3743
    [168] J. Darbon, S. Osher. Fast discrete optimization for sparse approximations and deconvolutions. Technical Report, Institute for Pure and Applied Mathematics, University of California, Los Angeles, 2007
    [169] A. Beck, M. Teboulle. A fast iterative Shrinkage-Thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences, 2009, 2(1):183-202
    [170] I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications in Pure and Applied Mathematics, 2004, 57:1413-1457
    [171] M. Elad, B. Matalon, M. Zibulevsky. Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization. Applied and Computational Harmonic Analysis, 2007, 23:346-367
    [172] X. Zhang, M. Burger, X. Bresson, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 2010, 3(3):253-276
    [173] J. Cai, S. Osher, Z. Shen. Linearized bregman iterations for compressed sensing. Mathematics of Computation, 2009, 78(267):1515-1536
    [174] T. Goldstein, S. Osher. The split bregman method for l1 regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2):323-343
    [175] D. Baron, S. Sarvotham, R. G. Baraniuk. Bayesian compressive sensing via belief propagation. IEEE Transactions on Signal Processing, 2010, 58(1):269-280
    [176] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1:211-244
    [177] D. P. Wipf, B. D. Rao. Sparse bayesian learning for basis selection. IEEE Transactions on Signal Processing, 2004, 52(8):2153-2164
    [178] A. Kanemura, S.-i. Maeda, S. Ishii. Sparse bayesian learning of filters for efficient image expansion. IEEE Transaction on Image Processing, 2010, 19(6):1480-1490
    [179] R. Rubinstein, M. Zibulevsky, M. Elad. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE transactions on signal processing, 2009, 58(2):1553-1564
    [180] M. S. Lewicki, T. J. Sejnowski. Learning overcomplete representations. Neural Computer, 2000, 12(2):337-365
    [181] K. Engan, S. O. Aase, J. H. Husey. Method of optimal directions for frame design. IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, DC USA: IEEE Computer Society, 1999, Vol.5: 2443-2446
    [182] R. Vidal, Y. Ma, S. Sastry. Generalized principal component analysis (GPCA). IEEE Transaction on Pattern Analysis & Machine Intelligence, 2005, 27(12):1945-1959
    [183] J. Mairal, F. Bach, J. Ponce, et al. Supervised dictionary learning. Neural information processing systems foundation, 2009: 1-8
    [184] R. Rubinstein, A. M. Bruckstein, M. Elad. Dictionaries for sparse representation modeling. Proceedings of the IEEE. Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6):1045-1057
    [185] D. Donoho, M. Elad. Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization. Proceedings of the National Academy of Sciences of the United States of America (PNAS). Washington, DC. USA: United States National Academy of Sciences, 2003, Vol.100: 2197-2202
    [186] M. Aharon, M. Elad, A. M. Bruckstein. On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra and its Applications, 2006, 416(1):48-67
    [187] R. Gribonval, M. Nielsen. Sparse representations in unions of bases. IEEE Transactions on Information Theory, 2003, 49(12):3320-3325
    [188] R. Gribonval, M. Nielsen. Sparse decompositions in unions of bases. IEEE Transactions on Information Theory, 2003, 49(12):3320-3325
    [189] F. Marvasti, A. Amini, F. Haddadi, et al. A unified approach to sparse signal processing. Computing Research Repository (CoRR), 2009, abs/0902.1853:1-43
    [190] J. Wright, M. Yi, J. Mairal, et al. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6):1031-1044
    [191] M. Elad, M. A. T. Figueiredo, M. Yi. On the role of sparse and redundant representations in image processing. Proceedings of the IEEE, 2010, 98(6):972-982
    [192] S. Lesage, R. Gribonval, F. Bimbot, et al. Learning unions of orthogonal bases with thresholded singular value. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Washington, DC USA: IEEE Signal Processing Society, 2005, Vol.5: 293-296
    [193] J. Mairal, G. Sapiro, M. Elad. Learning multiscale sparse representations for image and video restoration. Society for Industrial and Applied Mathematics (SIAM), 2008, 7(1):214-241
    [194] M. Aharon, M. Elad. Sparse and redundant modeling of image content using an Image-Signature-Dictionary. Society for Industrial and Applied Mathematics (SIAM), 2008, 1(3):228-247
    [195] E. Amaldi, V. Kann. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 1998, 209(1-2):237-260
    [196] B. Efron, T. Hastie, I. Johnstone, et al. Least angle regression. The Annals of Statistics, 2004, 32(2):407-499
    [197] M. Irani, S. Peleg. Motion analysis for image enhancement: Resolution, Occlusion, and Transparency. Journal on Visual Communications and Image Representation, 1993, 4(4):324-335
    [198] M. Ebrahimi, E. R. Vrscay. Solving the inverse problem of image zooming using "self-examples". The International Conference on Image Analysis and Recognition (ICIAR). Montreal, Canada: Springer, 2007, Vol.4633: 117-130
    [199] J. A. Tropp, S. J. Wright. Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE. Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6):948-958
    [200] Z.-Q. Luo, M. Gastpar, J. Liu, et al. Distributed signal processing in sensor networks IEEE Signal Processing magazine, 2006, 23(4):14-15
    [201] D. Malioutov, M. Cetin, A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022
    [202] M. Fornasier, H. Rauhut. Recovery algorithms for vector valued data with joint sparsity constraints. SIAM Journal of Numerical Analysis, 2008, 46(2):577-613
    [203] D. Baron, M. F. Duarte, S. Sarvotham, et al. An information theoretic approach to distributed compressed sensing. Allerton Conference on Communication, Control, and Computing. Monticello, Illinois, USA: Curran Associates, Inc., 2005: 1-12
    [204] A. Rakotomamonjy. Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms. Technical Report, University of Rouen, 2010
    [205] J. A. Tropp, A. C. Gilbert, M. J. Strauss. Algorithms for simultaneous sparse approximation, part I: Greedy pursuit. Signal Processing, special issue "Sparse approximations in signal and image processing" 2006, 86(3):572-588
    [206] D. Glasner, S. Bagon, M. Irani. Super-resolution from a single image. IEEE International Conference on Computer Vision (ICCV). Washington, DC USA: IEEE Computer Society, 2009: 349-356
    [207] J. A. Tropp, A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transaction on Information Theory, 2007, 53(12):4655-4666
    [208] G. Cristobal, E. Gil, F. Sroubek, et al. Superresolution imaging: a survey of current techniques. Advanced Signal Processing Algorithms, Architectures, and Implementations XVIII: SPIE, 2008, Vol.7074: 70740C-18
    [209] Y. Meyer. Oscillating patterns in image processing and nonlinear evolution equations: The fifteenth dean jacqueline B. Lewis memorial lectures. American Mathematical Society, 2001:122
    [210] S. Osher, A. Sole, L. Vese. Image decomposition and restoration using total variation minimization and the H-1 Norm. Multiscale Modeling & Simulation, 2003, 1(3):349-370
    [211] J. J. Shen. Piecewise H-1+H0+H1 images and the Mumford-Shah-Sobolev model for segmented image decomposition. Applied Mathematics Research Express, 2005, 4:143-167
    [212] G. Giboa, S. Osher. Non-local linear image reconstruction and supervised segmentation. SIAM Multiscale Modeling and simulation, 2007, 6(2):595-630
    [213] T. Saito, Y. Ishii, Y. Nakagawa, et al. Adaptable image interpolation with skeleton-texture separation. IEEE International Conference on Image Processing (ICIP06). Washington, DC USA: IEEE Computer Society, 2006: 681-684
    [214]何鹏,陶建华.基于Sobolev空间序列特征值问题的自然图像小尺度模式分析.自动化学报, 2008, 35(12):1568-1573
    [215] D. L. Donoho, M. Elad, V. N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1):6-18
    [216] M. J. Fadili, J. L. Starck, J. Bobin, et al. Image decomposition and separation using sparse representations: An overview. Proceedings of the IEEE, 2010, 98(6):983-994
    [217] L. Zhang, X. Wu. An edge guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 2006, 15(8):2226-2238
    [218] X. Li, M. T. Orchard. New edge-directed interpolation. IEEE Transactions on Image Processing, 2001, 10(10):1521-1527
    [219] P. Getreuer. Image zooming with contoure stencils. Proceedings of the SPIE Computational Imaging VII. Pollak, Ilya: SPIE, 2009: 72460P
    [220] Z. Wang, A. C. Bovik, H. R. Sheikh, et al. Image quality assessment: From error visibility to structural similarity. IEEE Transaction on Image Processing, 2004, 13(4):600-612
    [221] J. Yang, J. Wright, T. Huang, et al. Image Super-Resolution via Sparse Representation. Image Processing, IEEE Transactions on, 2010, PP(99):1-1
    [222]朱为,李国辉.基于自动结构延伸的图像修补方法.自动化学报, 2009, 35(8):1041-1047
    [223] J. Dahl, P. C. Hansen, S. H. Jensen, et al. Algorithms and software for total variation image reconstruction via first-order methods. Numerical Algorithms, 2010, 53(1):67-92
    [224] S. Roth, M. J. Black. Fields of Experts. International Journal of Computer Vision, 2009, 82(2):205-229
    [225] H. Lee, A. Battle, R. Raina, et al. Efficient sparse coding algorithms. Advances in Neural Information Processing Systems (NIPS), 2007, Vol.19: 801-808
    [226] R. M. French. The computational modeling of analogy-making. Trends in Cognitive Sciences, 2002, 6(5):200-205
    [227] T. Welsh, M. Ashikhmin, K. Mueller. Transferring color to greyscale images. ACM Transactions on Graphics, 2002, 21(3):277-280
    [228] J. B. Lackey, M. D. Colagrosso. Supervised segmentation of visible human data with image analogies. Proceedings of the International Conference on Artificial Intelligence (IC-AI '04). Las Vegas, Nevada, USA: CSREA, 2004, Vol.2: 843-847
    [229] A. Dremeau, C. Herzet, C. Guillemot, et al. Anisotropic multi-scale sparse learned bases for image compression. Proc. SPIE Electronic Imaging Conference on Visual Information Processing and Communication. San Jose, California, USA: SPIE, 2010, Vol.7543: 754304.1-754304.8
    [230] P. Bao, X. Ma. Texturing and line art rendering using patch-based image analogies Proceedings of the IEEE Workshop on Multimedia Signal Processing. Washington, DC USA: IEEE Computer Society, 2002: 142-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700