用户名: 密码: 验证码:
轮轨垂向载荷连续测量与识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对铁道车辆的运行状态监测、诊断和预警是保障车辆行车安全的重要手段。通过轮轨力的监测可以及时发现列车设备的各种异常并做出诊断和预测,提出必要的整改措施,从而实现车辆的“状态修”,提高车辆及其设备的运用质量和使用效率。目前已经有很多不同的监测轮轨力的商业系统,但多数都只是峰值载荷的测试工具,或是需要对现有的轨道结构进行很大的改变才能实现连续轮轨力的测量与识别。基于这种状况,本文主要研究在不改变轨道结构的情况下连续测量与识别轮轨垂向载荷的方法。
     本文从轨道分析模型入手,介绍了轨道分析模型在列车轮载作用下的响应,分析和研究钢轨在垂直载荷作用下的应力与变形,为有效测量轮轨垂直力提供理论依据。随之介绍了基于地面测量轮轨垂直力各种方法的力学原理和实现方法。分析不同方法对于轨道支撑状态的依赖性或敏感性,指出了它们存在的缺点和适用性。利用有限元分析软件建立起了钢轨有限元模型。通过对模型的加载与解算得到钢轨模型上节点对于移动的垂直荷载作用时的响应变化规律,具体分析了钢轨中性轴上的节点在载荷点移动变化时的剪应力的变化情况。通过对仿真结果数据的分析,找出了布置剪力传感器的最优的节点位置,并仿真计算了布点之后输出的灵敏性和线性度。仿真计算了同一钢轨截面上不同横向位置荷载时对测试系统响应输出的影响以及横向力对垂直力测试系统输出的影响。计算结果表明同一截面上荷载点位置的变化不影响测试系统的输出,当钢轨两侧的布点完全对称时,横向力对垂向力测试电桥输出的影响为零。为了验证有限元仿真分析的结果,实施了室内加载实验。试验的结果分析出,仿真分析与试验的结果得到了相识的波形,但在幅值上存在一定的差异。分析了出现幅值差异的原因。
     针对轮轨垂直力测量数据中可能存在的基线漂移的干扰,本文详细研究比对了曲线拟合方法,移动中值滤波,数学形态滤波器和小波阈值去噪方法在去除基线漂移的效果,分析不同方法存在的缺点并提出了改进的意见与方案。结合轮轨垂直力信号的特点,提出针对平衡往复型的信号去除基线漂移的经验性的新方法,通过对分段数据的平稳性检验和对中值及方差的最近距离聚类,筛选出能够体现基线漂移走势的分段数据中值作为基线漂移基点,再基点进行曲线拟合得到基线。与简单的曲线拟合方法相比,本文通过数据分段的办法,尽可能多地增加了基点的数量,从而能够更细致地表达真实的基线。相比于移动中值滤波和数学形态学滤波,虽然这几种方法的本质都基于顺序滤波器,但由于本文的方法对于其他非基线的噪声对提取的基线的干扰有筛选的过程,使得其相对于另外两者有更好的表现。由于经过数据分段处理,使得整个过程的计算量大大地缩小,最后介绍了通过与小波滤波组合的方案来抑制提取的基线中含有其他干扰成分,从而获得了更好的消除效果。
     本文最后部分提出一种连续测量和识别轮轨垂直力的方法。本方法基于梁格原理,将测试期间内的钢轨分成数量有限的梁单元,同时在钢轨上布置多组观测点。假设载荷点位于梁元内的任何位置时,所布置的所有观测点的观测值不变,而在不同的梁元上施加载荷时,所有观测值组成的响应向量肯定不同,由此可通过理论计算或现场测试的方法得到单位荷载下或固定荷载下所有观测点对于载荷位置在所有划分的梁单元上移动时得到标准的响应向量库。通过将单点载荷位置对应多观测点响应向单测点响应对应一群组载荷位置点的响应转换分析和验证了响应向量的适定性要求。在己获得标准响应向量库的情况下,利用相似性测度研究了实测任意时刻下的观测点的响应与响应向量库的每个向量的关系。比较研究了欧氏距离,夹角余弦和皮尔森相关系数三种多维空间向量相似性测度对于噪声的敏感性,以便于从中选取适当测度作为隶属函数。最后使用最大隶属度识别法认定当前响应向量最相似的标准向量,从而认为两个向量的载荷点在相同的梁单元上。得到荷载点位置信息后,利用两个向量的模的比例关系来确定荷载的大小。文中通过仿真数据检验了方法的有效性。并将其用于线路试验实测的数据中,取得了较好的识别效果。最后具体分析了引起该识别方法误差的可能因素。
Railway vehicle running status monitoring, diagnosis, and early warning is important means to ensure vehicle safety. Monitoring wheel-rail forces can find out various abnormalities of the train and its devices timely, then diagnose and predict, propose the necessary corrective measures. So as to realize the locomotive vehicle "condition base maintenance" which improve the using quality and efficiency of vehicles and their equipment. At present there are a lot of different business system of monitoring wheel/rail force, but majority just test tools for peak load, or needed great changes to existing rail structure so can be realized measurement and identify the wheel/rail force. Based on this situation, this paper mainly research and development a method of continuous measurement and recognition of the wheel rail vertical load without altering the track structure.
     This thesis starting from the railway analysis model, introduced railway analysis model response under train wheel load, detailed analysis and study rail stresses and deformations under vertical loading, which providing theoretical basis for effectively measuring wheel/rail vertical force. Subsequently introduce mechanics principle and implementation of various methods for measuring wheel-rail vertical force. The dependence and sensitivity of different methods for rail support status were analyzed, and disadvantages of and applicability of various methods were pointed out. By using finite element analysis software the finite element model of rail was established. Through loading and solving the model we got the responses of rail model nodes when subjected to a moving vertical load. Through analyzing the simulation results, we found the optimal node for arrangement of shear force sensors, and got the sensitivity and linearity of sensors'output. In order to verify the results of the finite element simulation analysis, an indoor laboratory loading experiment was implemented. Indoor test decorate three different schemes in the same rail span. From compare of the results, simulation and laboratory experiment show similar waveforms, but there are differences in amplitude. Then, the possible factors for these differences are analyzed.
     Wheel-rail vertical force measurement data may be interfered by baseline drift, and the baseline drift should be eliminated before amplitude analysis. this thesis studied the effects of curve fitting, mobile median filtering, mathematical morphology filter and wavelet threshold denoising method in removing the baseline drift, analyzed the disadvantages of different methods and put forward the improvement Suggestions and solutions. According to the characteristics of the wheel/rail vertical force signal, a new empirical method was proposed to remove baseline drift, which through clustering median values and variance of median values in data segments, and picking up the median values reflected baseline drift trends, then curve fitting the Selected points as the baseline. Compared to the simple curve fitting method, the number of basis points increase as much as possible, more detailed of the true baseline is expression. Compared to moving median filtering and morphological filtering, although the nature of these methods are based on order filter, but the proposed method Inhibit non-baseline noise interference to the extracted baseline with a sifting process, making it relative better performance to the others. Moreover, segmenting the data, making the calculation of whole process is greatly reduced. Then, a scheme through combining with wavelet filtering to suppress other interfering component contains in the extracted baseline was introduced, which obtained better eliminate effect.
     In last part of this thesis, a continuous measurement and identification method for wheel-rail vertical force was proposed. The method is based on the principle beam frame. The test period is divided into a limited number of rail beam element. Then we arrange multiple sets of observation point on the rail. Assuming that when the loading point locate anywhere in the beam position, the observation values of all observations points unchanged. While the load is applied on a different beam element, all observation values response vector must be different. So, by theoretical calculation method or field testing, standard response vector library of all observation points'response for constant loads moving along all of beam element can be obtained. The request of well-posedness of response vector library was validated by convert multiple observation points for single load location point to single observation point for multiple load location points. After obtained the standard response vector library, similarity measure was employed to observer the relationship between any observation vector and each vector in response vector library. In this thesis, a comparative study of three kind of multidimensional vector space similarity measure Euclidean distance, Angle cosine and Pearson correlation coefficients for the noise sensitivity, in order to select the appropriate measure for the membership function. Then uses the maximum membership degree recognition method finds the most similar vector in the standard library to current vector, and firmly believes that both vector responses from a load located at the same beam element. After getting load point location information, the ratio of vector-mode can be used to determine the amplitude of load. Then the method was validated through simulation data, when applied to field test data from line experiment, it achieved a very good recognition. Finally, a detailed analysis of possible factors caused the recognition method error was present.
引文
[1]Zarembski, A.M., R. Resor and P. Patel. Economics of Wayside Inspection Systems, in ASME International Mechanical Engineering Congress.2003.
    [2]Kalay, S., A. Tajaddini and D.H. Stone. Detecting wheel tread surface anomalies. Rail Transportation--1992 American Society of Mechanical Engineers, Rail Transportation Division (Publication) RTD,1992.
    [3]Lechowicz, S. and C. Hunt. Monitoring and managing wheel condition and loading. 1999.
    [4]Ramkow-Pedersen, O. and U. Danneskiold-Sams O E. New on-line wheel tread defect monitoring system with built-in diagnosis facilities.2001.
    [5]Ohtani, T. Development of wheel-flat detection system.1995.
    [6]姜会增,冯化中,芮一飞.自动轨道衡承载机构的发展及现状,2010:中国湖南长沙.
    [7]Newman, R.R., et al. Hot bearing detection with theSMART-BOLT'. in the Joint ASME/IEEE/AAR Railroad Conference (Association of American Railroads). 1990.
    [8]王炎孝,杨占平.车轮扁疤动态检测方法综述.铁道车辆,2002(6):第9-12+1页.
    [9]皮颖等.车轮踏面擦伤动态测量系统的动力学分析及计算机仿真.北方交通大学学报,2001(3):第73-76页.
    [10]Barke, D. and W.K. Chiu. Structural health monitoring in the railway industry:a review. Structural Health Monitoring,2005.4(1):p.81.
    [11]Lundgren, J. Advanced rail vehicle inspections system, in Proceedings 8th International heavy haul conference IHHA.2005.
    [12]Blevins, W., R. Morgan and C. Pinney. Integrated Wayside Systems to Improve Safety and Efficiency, in Proceedings IHHA 2003 Specialist Technical Session-Implementation of Heavy Haul Technology for Network Efficiency.2003.
    [13]Irani, F.D., G.B. Anderson and C.L. Urban. Development and deployment of advanced wayside condition monitoring systems, in International Heavy Haul Association STS-Conference.2001:Brisbane, Australia, p.313-319.
    [14]Hawthorne, K., R.B. Wiley and T. Guins. Wayside monitoring with ATSI aids wagon maintenance. Railway Gazette,2005.
    [15]Waring, R. Fewer damaged wheels through the use of impact detectors, in Conference Proceeding:The World Congress on Railway Research.2003.
    [16]den Buurman, G. and A. Zoeteman. A vital instrument in asset management. European Railway Review,2005:p.80-85.
    [17]Lagneb A Ck, R. Evaluation of wayside condition monitoring technologies for condition-based maintenance of railway vehicles.2007.
    [18]宋仪龄,史柏生,杨德江.沪宁线行车安全综合监测系统的实施与思考.上海铁道科技,2003(4):第1-4+52页.
    [19]黎国清.沪宁线行车安全综合监控系统.中国铁路,2001(7):第15-17+4页.
    [20]黎国清.沪宁线行车安全综合监测系统的研究与实施,2004.
    [21]铁路货车安全监测与应用概论.2010,中国铁道出版社.
    [22]陈建政.轮轨作用力和接触点位置在线测量理论研究[D].西南交通大学,2008.
    [23]侯卫星,王卫东,曾宇清.高精度高速连续测量轮轨动态作用力的研究.铁道学报,2010(1):第24-29页.
    [24]Matsumoto, A., et al. A New Monitoring Method of Train Derailment Coefficient. in Railway Condition Monitoring,2006. The Institution of Engineering and Technology International Conference on.2006.
    [25]Dimitrov, E., N. Nenov and T. Ruzhekov. Electronic system for measuring railway vehicle wheel load in motion, in ISSE 2010-33rd International Spring Seminar on Electronics Technology:Polymer Electronics and Nanotechnologies:Towards System Integration-Conference Proceedings.2010:Warsaw, Poland, p.370-373.
    [26]Stratman, B., Y. Liu and S. Mahadevan. Structural health monitoring of railroad wheels using wheel impact load detectors. Journal of Failure Analysis and Prevention,2007.7(3):p.218-225.
    [27]饶莉,肖继学.钢轨应力检测的应变传感器研究.伺服控制,2010(4):第77-79页.
    [28]Jonsson, J., E. Svensson and J.T. Christensen. Strain gauge measurement of wheel-rail interaction forces. The Journal of Strain Analysis for Engineering Design, 1997.32(3):p.183-191.
    [29]赵国堂,田越.轮轨水平力连续测试技术的研究.铁道学报,2000.22(3):第69-73页.
    [30]李彬,林建辉.基于轨道轮轨力连续测试的车辆运行状态地面安全监测系统的 研究.实用测试技术,2002(5):第9-10页.
    [31]潘周平,张立民.轮轨力连续测试系统设计.西南交通大学学报,2004.39(1):第69-72页.
    [32]黄志辉,申文静,刘超.高速车轮扫掠力监测系统的集成研究.现代制造工程,2009(6):第1-3+12页.
    [33]黄志辉等.高速货车车轮扫掠力检测的动力学仿真速度影响因子的研究.铁道科学与工程学报,2009(6):第67-70页.
    [34]刘超.高速扫掠力轨基监测系统集成研究[D].中南大学,2010.
    [35]柏友运.轨道支撑刚度对轮扫掠力监测信号影响规律的分析研究[D].中南大学,2010.
    [36]杨海军.列车车轮扫掠力检测实验台的设计与研究[D].中南大学,2008.
    [37]申文静.扫掠力检测实验台信号采集系统设计及集成研究[D].中南大学,2009.
    [38]Maurin, L., et al. FBG-based smart composite bogies for railway applications.2002.
    [39]Lee, K.Y., K.K. Lee and S.L. Ho. Exploration of using FBG sensor for derailment detector. WSEAS Trans. Syst,2004.3(6):p.2433--2439.
    [40]Iodice, M., et al. Fiber Bragg grating sensors-based system for strain measurements. 2005.
    [41]Ho, S.L., et al. A comprehensive condition monitoring of modern railway.2006.
    [42]Du, Y., J. Li and C. Liu. A Novel Fiber Bragg Grating Temperature Compensated Strain Sensor.2008.
    [43]Ho, T.K., et al. Signature analysis on wheel-rail interaction for rail defect detection. IET Seminar Digests,2008.2008(12216):p.36-36.
    [44]Yang, F., et al. The real-time safety monitoring of railway condition by FBG sensor. 2009.
    [45]杜彦良,张文涛.基于光纤激光传感器的重载铁路列车在途安全状态监测技术.中国工程科学,2009(10):第61-66+78页.
    [46]Wei, C, et al. A Fiber Bragg Grating Sensor System for Train Axle Counting. Sensors Journal, IEEE,2010.10(12):p.1905--1912.
    [47]Yan, L., W. Pan and B. Luo. Fiber Sensors for Strain Measurements and Axle-Counting in High-Speed Railway Applications. Sensors Journal, IEEE, 2011(99):p.1-1.
    [48]Thakkar, N.A. Monitoring of rail/wheel interaction using acoustic emission.2009, Heriot-Watt University.
    [49]宋颖.高速车轮失圆对轮轨动力作用的影响及其监测方法研究[D].北京交通大 学,2010.
    [50]Desanghere, G. and R. Snoeys. Indirect identification of excitation forces by modal coordinate transformation.1985.
    [51]Kreitinger, T.J., M.L. Wang and H.L. Schreyer. Non-parametric force identification from structural response. Soil Dynamics and Earthquake Engineering,1992.11(5): p.269-277.
    [52]Lin, Y.H. and M.W. Trethewey. Finite element analysis of elastic beams subjected to moving dynamic loads. Journal of Sound and Vibration,1990.136(2):p. 323-342.
    [53]Humar, J.L. and A.M. Kashif. Dynamic response of bridges under travelling loads. Canadian Journal of Civil Engineering,1993.20(2):p.287-298.
    [54]Jiang, R.J., F.T.K. Au and Y.K. Cheung. Identification of masses moving on multi-span beams based on a genetic algorithm. Computers & Structures,2003. 81(22-23):p.2137-2148.
    [55]唐秀近.动态力识别的时域方法.大连理工大学学报,1987.4.
    [56]唐秀近.时域识别动态载荷的精度问题.大连理工大学学报,1990.30(1):第31—38页.
    [57]袁向荣等.移动荷载识别的函数逼近法.振动与冲击,2000.19(1):第4页.
    [58]袁向荣.梁振动响应曲线滑动拟合法及在移动荷载识别中的应用.噪声与振动控制,2006.26(3):第3页.
    [59]袁向荣.移动荷载识别的响应曲线滑动拟合法.振动、测试与诊断,2007.27(4):第4页.
    [60]袁向荣.噪声对移动荷载识别的影响.噪声与振动控制,2009.29(1):第3页.
    [61]陈锋.移动荷载识别的样条函数逼近法研究[D].石家庄铁道学院,2003.
    [62]陈锋.复杂桥梁结构移动荷载识别的理论与试验研究[D].天津大学,2006.
    [63]黄林,袁向荣.小波分析在桥上移动荷载识别中的应用.铁道学报,2003.25(4):第5页.
    [64]蔡元奇.时域内动态载荷识别理论及实施技术研究[D].武汉大学,2004.
    [65]Law, S.S., T. Chan and Q.H. Zeng. Moving force identification:A time domain method. Journal of Sound and Vibration,1997.201(1):p.1-22.
    [66]ZHU, X.Q. and S.S. LAW. MOVING FORCES IDENTIFICATION ON A MULTI-SPAN CONTINUOUS BRIDGE. Journal of Sound and Vibration,1999. 228(2):p.377-396.
    [67]ZHU, X.Q. and S.S. LAW. IDENTIFICATION OF VEHICLE AXLE LOADS FROM BRIDGE DYNAMIC RESPONSES. Journal of Sound and Vibration,2000. 236(4):p.705-724.
    [68]Law, S.S., et al. Regularization in moving force identification. Journal of engineering mechanics,2001.127:p.136.
    [69]Zhu, X.Q. and S.S. Law. A concrete-steel interface element for damage detection of reinforced concrete structures. Engineering Structures,2007.29(12):p.3515-3524.
    [70]Zhu, X.Q. and S.S. Law. Damage detection in simply supported concrete bridge structure under moving vehicular loads. Journal of Vibration and Acoustics,2007. 129:p.58.
    [71]Zhu, X.Q. and S.S. Law. Moving load identification on multi-span continuous bridges with elastic bearings. Mechanical Systems and Signal Processing,2006. 20(7):p.1759-1782.
    [72]Zhu, X.Q. and S.S. Law. Wavelet-based crack identification of bridge beam from operational deflection time history. International Journal of Solids and Structures, 2006.43(7-8):p.2299-2317.
    [73]Zhu, X.Q. and S.S. Law. Dynamic axle and wheel loads identification:laboratory studies. Journal of Sound and Vibration,2003.268(5):p.855-879.
    [74]Zhu, X.Q. and S.S. Law. Dynamic behavior of orthotropic rectangular plates under moving loads. Journal of engineering mechanics,2003.129:p.79.
    [75]Zhu, X.Q. and S.S. Law. Time domain identification of moving loads on bridge deck. Journal of vibration and acoustics,2003.125:p.187.
    [76]Zhu, X.Q. and S.S. Law. Moving Loads Identification Through Regularization. Journal of Engineering Mechanics,2002.128(9):p.989-1000.
    [77]Zhu, X.Q. and S.S. Law. Practical aspects in moving force identification. Journal of Sound and Vibration,2002.258(1):p.123-146.
    [78]Zhu, X.Q. and S.S. Law. Orthogonal function in moving force identification on a continuous beam. Journal of Sound and Vibration,2001.245(2):p.329-345.
    [79]ZHU, X.Q. and S.S. LAW. IDENTIFICATION OF MOVING INTERACTION FORCES WITH INCOMPLETE VELOCITY INFORMATION. Mechanical Systems and Signal Processing,2003.17(6):p.1349-1366.
    [80]ZHU, X.Q. and S.S. LAW. DYNAMIC LOAD ON CONTINUOUS MULTI-LANE BRIDGE DECK FROM MOVING VEHICLES. Journal of Sound and Vibration, 2002.251(4):p.697-716.
    [81]ZHU, X.Q. and S.S. LAW. PRACTICAL ASPECTS IN MOVING LOAD IDENTIFICATION. Journal of Sound and Vibration,2002.258(1):p.123-146.
    [82]ZHU, X.Q. and S.S. LAW. ORTHOGONAL FUNCTION IN MOVING LOADS IDENTIFICATION ON A MULTI-SPAN BRIDGE. Journal of Sound and Vibration,2001.245(2):p.329-345.
    [83]ZHU, X.Q. and S.S. LAW. PRECISE TIME-STEP INTEGRATION FOR THE DYNAMIC RESPONSE OF A CONTINUOUS BEAM UNDER MOVING LOADS. Journal of Sound and Vibration,2001.240(5):p.962-970.
    [84]ZHU, X.Q. and S.S. LAW. IDENTIFICATION OF VEHICLE AXLE LOADS FROM BRIDGE DYNAMIC RESPONSES. Journal of Sound and Vibration,2000. 236(4):p.705-724.
    [85]ZHU, X.Q. and S.S. LAW. MOVING FORCES IDENTIFICATION ON A MULTI-SPAN CONTINUOUS BRIDGE. Journal of Sound and Vibration,1999. 228(2):p.377-396.
    [86]Zhu, X.Q., S.S. Law and J.Q. Bu. A State Space Formulation for Moving Loads Identification. Journal of Vibration and Acoustics,2006.128(4):p.509-520.
    [87]翟婉明,王其昌.轮轨动力分析模型研究.铁道学报,1994(1).
    [88]Timoshenko, S. Method of analysis of statical and dynamical stresses in rail, in Proc. of 2nd International Congress for Applied Mechanics.1927. Zurich, Zwitzerland.
    [89]Esveld, C. Modern Railway Track.3rd ed.1999:MRT-Productions.
    [90]谢天辅.铁路轨道结构静力计算问题.1979,北京:人民铁道出版社.124.
    [91]邢书珍.铁路轨道结构强度计算矩阵解法.1994:中国铁道出版社.334.
    [92]翟婉明,王其昌.轮轨动力分析模型研究.铁道学报,1994(1).
    [93]翟婉明.车辆-轨道耦合动力学.2007:科学出版社.
    [94]曾树谷.铁路轨道动力测试技术,1988,北京:中国铁道出版社.
    [95]Gradwohl, J.R., E.W. Pottala and I.O.E.A. Engineer. Comparison of two methods for removing baseline wander in the ECG, in Computers in Cardiology,1988. Proceedings.1989. p.493-496.
    [96]Xia, H. and Y. Zhan. A new method using the technique of cubic spline interpolation to remove baseline wander. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2003.20(3):p.524-6,530.
    [97]蔡坤,陆尧胜.基于中值滤波的心电基线校正方法的研究.医疗设备信息,2004.19(2):第5-7页.
    [98]张勇,张萍,王介生.心电图中滤除基线漂移的研究,in 2006年全国石油化工生产安全与控制学术交流会2006:北京.第132-136页.
    [99]朱伟芳,齐春.一种实用的去基线漂移滤波算法.苏州大学学报(工科版),2006.26(1):第62-64页.
    [100]阴玺等.一种改进的心电信号基线漂移矫正方法.计算机仿真,2007.24(11):第107-109页.
    [101]Kaiser, W. and M. Findeis. Artifact processing during exercise testing. Journal of Electrocardiology,1999.32(Supplement 1):p.212-219.
    [102]孔令锋,谢锡城,卢志远.矫正心电信号中基线漂移的数字滤波技术及其实现.中国医疗器械信息,2003.9(6):第12-14页.
    [103]王琦.心电图去基线漂移的数字滤波算法比较.科学技术与工程,2008.8(8):第2183-2186页.
    [104]Oguz, S.H., M.H. Asyali and I.O.E.A. Engineer. A morphology based algorithm for baseline wander elimination in ECG records, in Biomedical Engineering Days, 1992., Proceedings of the 1992 International.1992. p.157-160.
    [105]王伟,蒋式勤.去除心磁信号基线漂移的形态学滤波器.现代科学仪器,2008.""(1):第93-95页.
    [106]Taouli, S.A. and F. Bereksi-Reguig. Noise and baseline wandering suppression of ECG signals by morphological filter. J Med Eng Technol,2010.34(2):p.87-96.
    [107]Park, K.L., P.K.J. Lee and H.R. Yoon. Application of a wavelet adaptive filter to minimise distortion of the ST-segment. Medical & Biological Engineering & Computing,1998(5).
    [108]Xu, L., et al. Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter. Computers in Biology and Medicine,2007.37(5):p. 716-731.
    [109]Sayadi, O. and M.B. Shamsollahi. ECG baseline correction with adaptive bionic wavelet transform, in Signal Processing and Its Applications,2007. ISSPA 2007. 9th International Symposium on.2007:Sharjah. p.1-4.
    [110]Arvinti, B., et al. Electrocardiogram baseline wander removal using stationary wavelet approximations, in Optimization of Electrical and Electronic Equipment (OPTIM),2010 12th International Conference on.2010:Basov. p.890-895.
    [111]Zhang, D. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction. Conf Proc IEEE Eng Med Biol Soc,2005.2:p.1212-5.
    [112]陆英北,张增芳,蔡坤宝.基于小波变换的心电信号基线矫正方法.北京生物医学工程,2000.19(4):第235-239页.
    [113]李小燕等.基于小波变换的自适应滤波器消除ECG中基线漂移.中国科学技术 大学学报,2000.30(4):第450-454页.
    [114]张文琼,刘肖琳,吴涛.一种利用小波变换逼近信号滤除心电图基线漂移的方法.计算机工程与应用,2005(20):第222-224页.
    [115]陈隽,徐幼麟.经验模分解在信号趋势项提取中的应用.振动、测试与诊断,2005.25(2):第101-104页.
    [116]Weng, B., M. Blanco-Velasco and K.E. Barner. Baseline Wander Correction in ECG by the Empirical Mode Decomposition, in Bioengineering Conference,2006. Proceedings of the IEEE 32nd Annual Northeast.2006. p.135-136.
    [117]Zhidong, Z., et al. A New Algorithm for Removal Baseline Wander in ECG Signal Based on Empirical Mode Decomposition, in第七届国际测试技术研讨会.2007:中国北京.p.1559-1562.
    [118]Pan, N.等. Accurate Removal of Baseline Wander in ECG Using Empirical Mode Decomposition, in第六届人脑及心脏无损功能源成像国际研讨会暨生物医学功能成像国际联合会议(The 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and The International Conference on Functional Biomedical Imaging)2007:杭州.第177-180页.
    [119]Zhao, Z. and J. Liu. Baseline Wander Removal of ECG Signals Using Empirical Mode Decomposition and Adaptive Filter, in Bioinformatics and Biomedical Engineering (iCBBE),2010 4th International Conference on.2010:Chengdu, p. 1-3.
    [120]Gu, Z., et al. Pulse wave signal baseline wander elimination using morphology, in Signal Processing (ICSP),2010 IEEE 10th International Conference on.2010: Beijing, China, p.74-77.
    [121]Wang, K.Q., et al. Pulse Baseline Wander Removal Using Wavelet Approximation, in 2003 Annual Conference on Computers in Cardiology.2003:Thessaloniki Chalkidiki, Greece. p.605-608.
    [122]Lisheng, X., et al. Adaptive baseline wander removal in the pulse waveform, in 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002).2002: Maribor, Slovenia, p.143-148.
    [123]王鹏,魏守水,黄青华.基于小波变换的自适应滤波器消除脉搏波基线漂移.中国医学物理学杂志,2004.21(5):第296-299页.
    [124]全晓莉,古良玲,赵明富.一种消除脑血流信号中基线漂移的新方法.微计算机信息,2009.25(1):第309-3 1 1页.
    [125]冯昕(?)等.基于多项式拟合的拉曼光谱基线漂移校正方法.计算机与应用化学, 2009.26(6):第759-762页.
    [126]胡英.数学形态学及其在地震信号处理中的应用[D].成都理工大学,2005.
    [127]李吉涛,杨庆山.地震波基线漂移的处理方法.北京交通大学学报,2010.34(1):第95-99页.
    [128]张丽等.均值加速的快速中值滤波算法.JOURNAL OF TSINGHUA UNIVERSITY (SCIENCE AND TECHNOLOGY),2004.44(9).
    [129]刘茗.基于噪声检测的自适应中值滤波算法.计算机应用,2011.31(02):第390--392页.
    [130]苟中魁等.一种基于极值的自适应中值滤波算法.红外与激光工程,2005.34(001,):第98--101页.
    [131]Hwang, H. and R.A. Haddad. Adaptive median filters:new algorithms and results. Image Processing, IEEE Transactions on,1995.4(4):p.499-502.
    [132]Brownrigg, D. The weighted median filter. Communications of the ACM,1984. 27(8):p.807--818.
    [133]Barbero Romero, V. ECG baseline wander removal and noise suppression analysis in an embedded platform.2009.
    [134]Sun, P., et al. An improved morphological approach to background normalization of ECG signals. Biomedical Engineering, IEEE Transactions on,2003.50(1):p. 117-121.
    [135]张乾.基于数学形态滤波器的医学信号处理[D].哈尔滨工程大学,2002.
    [136]刘艳丽等.基于形态滤波的脉搏波信号基线漂移消除方法研究.合肥工业大学学报(自然科学版),2011.34(4):第525-528页.
    [137]季虎.心电信号自动分析关键技术研究[D].国防科学技术大学,2006.
    [138]Ji, T.Y., et al. Baseline normalisation of ECG signals using empirical mode decomposition and mathematical morphology. Electronics Letters,2008.44(2):p. U141-U142.
    [139]刘姝.数学形态学在信号处理方面的应用研究[D].大连理工大学,2006.
    [140]杨丰,余英林.小波变换在心电信号滤波处理中的应用研究.生物医学工程学杂志,1997.14(4):第317-320页.
    [141]Cai, C.W., Y.K. Cheung and H.C. Chan. Dynamic response of infinite continuous beams subjected to a moving force--An exact method. Journal of Sound and Vibration,1988.123(3):p.461-472.
    [142]罗志玉.人工神经网络法在桥梁荷载识别中的应用[D].同济大学,2004.
    [143]王波.基于BP神经网络的桥上移动荷载识别[D].天津大学,2005.
    [144]金虎.基于人工神经网络的结构荷载识别与损伤识别研究[D].浙江大学,2005.
    [145]张策萍.基于BP神经网络的移动荷载识别方法研究[D].浙江大学,2007.
    [146]陈修辉.基于神经网络的桥梁移动荷载识别[D].西南交通大学,2009.
    [147]肖新标,金学松,温泽峰.轨枕支撑硬点对轨枕动力响应的影响.交通运输工程学报,2007.7(6):第28-35页.
    [148]赵培杰,黄志辉.铁路货车新型动态超偏载检测装置的研究.铁道货运,2005(006):第37--39页.
    [149]曾庆元等.列车脱轨的力学机理与防止脱轨理论.铁道科学与工程学报,2004.1(001):第19--31页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700