用户名: 密码: 验证码:
集成电路设计中乘法器的低功耗算法与实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着集成电路设计技术的高速发展,功耗已经成为该领域中除速度、面积之外需要考虑的第三因素。如今低功耗设计从电路基本组成因素出发,在设计的各个阶段采用不同的设计以降低系统功耗,以取得最大限度的低功耗效果。本文紧跟市场发展动向,从以上应用角度出发,着力研究集成电路设计中小数乘法器的前端低功耗算法以及实现技术,并且改进了现有低功耗设计技术的一些不足之处。研究成果包括:
     (1)针对乘法器内部加法运算次数的优化
     提出一种针对定点乘法系数的编码方式,使得重新编码后的系数所含非零位最少,以此来优化乘法器内部加法运算的次数。由于该算法不需要降低系统工作时钟频率和工作电压,而是直接减少了各乘法器中加法运算的数量,因此不会降低系统工作效率;由于该算法从优化乘法器内部加法结构入手,没有引入任何的近似运算,因此不损失乘法运算精度。为了测试该算法的实际低功耗效果,文章对含有大量各种不同类型乘法器的上层应用系统进行优化,然后对优化后的系统进行功耗分析和硬件测试,测试结果为该算法对各种不同类型小数乘法器进行优化的平均结果,更具有客观性、一般性和实际参考价值。
     (2)针对乘法器内部各级加法运算结果位宽的优化
     通过对小数乘法运算的误差分析,推导出一种针对定点小数乘法器的优化算法,其能够在保证小数乘法器运算精度的前提下,减少其内部总寄存器位宽。该算法在定点小数乘法器内部各级加法结果中,预先计算出在最终运算结果中将要被缺省掉的数据末位,直接在各级结果中缺省,以此来减小乘法器的总位宽。由于该算法缺省掉的是本应在最终结果中缺省的数位,因此不会对小数乘法运算产生额外的误差;由于该算法只需搜索乘法器系数中“1”的排列和位置进而进行右移缺省操作,因此其具有运行速度快,占用资源少,简单易行的特点。文章对小数乘法器优化后,进一步对其上层应用系统,插值滤波器进行优化,优化后滤波器的工作特性基本没有发生变化,但所含逻辑单元数明显减少。接下来,更进一步对含有一些数字处理模块(例如滤波器、混频器、DSP等)的射频电路进行优化,优化后射频电路的功耗分析与硬件测试结果均取得了期望的效果。文章逐步给出了该算法由底层到高层的具体开发过程,具有实际参考意义。
     (3)双重优化算法
     基于以上两种优化算法,文章提出一种可以同时优化乘法器内部加法运算次数与各级加法运算结果位宽的,具有双重优化作用的低功耗算法。该算法先对乘法系数进行优化编码,以此来减少乘法器内部加法器的数量,再根据优化后的系数在各级加法结果中计算并且直接缺省掉本应在最终结果中缺省掉的数据末位,以此来优化乘法器总位宽。在算法实现上,保存第一次优化的运算结果,为第二次优化所用,大量节省了第二次优化的计算量,提高算法整体运算速度和工作效率。双重优化算法使得两种不同算法具有良好的匹配性,相比于二者的直接结合具有更高的工作效率以及更优的实际低功耗效果。
     (4)算法的实现技术
     文章针对现阶段低功耗设计中优化逻辑自身的功耗和面积进入被优化系统从而抵消系统整体优化效果的问题,提出了一种全新的实现技术,使得优化后的乘法器具有优化算法的低功耗效果,同时又避免引入算法自身的逻辑单元。对于含有乘法器的系统,系统的参数和特性一旦确定,其内部各乘法器系数也将确定。因此在乘法器综合之前根据已经确定的系数进行优化运算,再以优化后的系数参与各级加法运算并进行缺省操作,这样可以避免优化算法自身的逻辑单元引入优化后的乘法器。在算法实现级,该技术进一步提升了优化算法的实际低功耗效果,并且改进了现阶段低功耗设计中的问题。
     (5)系统级低功耗设计技术
     基于前面得出的最优算法和实现技术,在系统应用层面,针对系统内部各种不同类型的乘法器,选取与之匹配的优化算法和硬件实现结构,进一步进行优化。在算法选取上,对于整数系数乘法器,优化其内部加法运算次数;对于系数小于1的小数乘法器,进行双重优化;对于系数大于1的小数乘法器,将整数部分和小数部分分别进行以上两种优化。在硬件实现结构的选取上,大量的实验结果表明,乘法系数中所含“1”的个数不大于4时,采用串联累加结构;反之则采用循环累加结构。系统级优化技术使得乘法器的低功耗效果得到进一步提升。
     通过本文对集成电路设计领域中乘法器低功耗设计技术的研究,在算法上给出了针对其内部加法运算数量以及加法结果位宽的优化算法;在实现上给出了一种全新的实现技术,能够改进现阶段低功耗设计中存在问题;在系统应用上给出了不同优化算法和硬件实现结构的匹配技术。本文对集成电路前端设计领域中乘法器在不同层面所进行低功耗设计具有一定的参考和借鉴意义。
With rapid development of IC technologies, power consumption has been a keyfactor for long time, beside speed and area. Currently, low power design is developedfrom basic circuit constitution, try to reduce system power consumption in each stage ofIC manufactory flow, in order to obtain the optimal low power result. The dissertationfollows to such tendency, and focuses to research and design low power methodologyand implementation, at meanwhile, improve some shortages of current low powerdesign. The main work and innovations of this dissertation are as follows:
     (1) Optimization for the number of addition operation inside multiplier
     Develop an encoding methodology for fixed multiplication coefficient, its major isto minimum non-zero bits in optimized coefficient, in order to reduce the number ofaddition operations, which are inside multiplier. Since the methodology reducesaddition operation, rather than decrease system clock frequency and supply voltage, soit does not reduce system efficiency. And, the methodology optimizes internal structureof mulriplier, does not involve any approximation, so it does not cause anymultiplication accuracy loss. In order to test the actual low power effect, a system thatincludes several knids of multipliers is to be the optimization object, the test result is theaverage optimization result of all the intern multipliers, so it is objective, general andactual.
     (2) Optimization for the width of decimal multiplier
     After error analysis to decimal multiplier, an optimization methodology for decimalmultiplier is developed, its major is reducing the total register bits with maintaining itsoperation accuracy. The methodology can pre-calculate the last-significant-bits in eachaddition operations and omit them directly, these bits will be omited in final calculationresult, so that total register bits of multiplier can be reduced. Because the methodologyonly omit the so call “last-significant-bits”, so it does not cause more calculation error.And it only search all the “1” in coefficient and then excute further operation, so themethodology has advantages of high speed, little resource occupy and easy toimplement. In order to test the actual low power effect of such methodology, aninterpolation filter is optimized by it, its internal logic cells are reduced significantlywithout working characteristics deterioration. Then, a RF circuit is treated as theoptimization object, its optimization result is also meet our expectation. The chapter describe the methodology development from singal multiplier to RF circuit, it has actualreference value.
     (3) Dual optimization methodology
     Base on the2methodologies, a dual optimization methodology is developed, itreduces not only the number of addition operations, but also the width of one multiplier.Firstly, the methodology reduces the number of addition operations, then based on suchoptimization result, it reduces width of each addition once again. From implementationpoint of view, the result of first optimization can be used for the second one, suchimplementation save the computation effort of second optimization, and promoteoperation speed and efficiency of whole methodology. Compared to directly binding oftwo single methodologies, dual methodology has higher working efficiency, and betterlow power result.
     (4) Implementation solution
     To improve the problem of optimization logic is brought into optimized system,which is existed in present low power design, the dissertation develop a newimplementation technique. By using it, the optimized system has expected low powerresult, at meanwhile, the optimization logic cells are absented in it. For the system thatinclude multipliers, once its characteristics is confirmed, the coefficients of all theinternal multipliers are also fixed, so each coefficient can be optimized in advance, then,the operation is excuted just based on the optimized coefficient after synthesis, thissolution avoid optimized multiplier to include optimization logic cells. Fromsystempoint of view, such solution promote the actual result of methodology.
     (5) System level low power optimization approach
     On system level, based on dual optimization methododlogy and newimplementation solution, plus select different software methodologies and hardwarestructures for different kinds of multiplier. In optimization methododlogy stage, additionnumber optimization is for integer multiplier, dual optimization is for decimal multiplierwhose coefficient is less than one, separately optimization to the integer and decimalparts of decimal multiplier whose coefficient is larger than one. In hardware structurestatge, use series accumulate structure when the count of one in the coefficient is nomore than four, otherwise use cycle accumulate structure. Such approach is system levellow power approach, it promotes system low power result.
     Through the research of low power technique for multipliers in IC design, inmethodology stage, optimization for addition number and addition width are developed, in implementation stage, a new implementation solution is developed, which canimprove the problem of present low power design, in system application stage, amemthodology and structure selection is developed. The dissertation develop the lowpower technique for multipliers in different stages, it has reference value to IC front-endlow power design for fixed coefficient multipliers.
引文
[1.1]陈运必,李正东,郭立,谢锦生,赵龙。基于DHS-NPDS的低功耗运动估计硬件结构设计[J]中国科学.2012Vol.42(4):527-536.
    [1.2] ZHENG JiaPeng. LI Wei, LU XueQing. CHENG YuHua, WANG YangYuan. Alow power and small area all digital delay-locked loop based on ring oscillatorarchitecture[J]. CHINA SCIENCE,2012Vol.55(2):453-460.
    [1.3] QIN Bo. CHEN Hongyi. WANG Xin. WANG Albert. HAO Yinghui. An UltraLow-Power FCC-Compliant5th-Derivative Gaussian Pulse Generator forIR-UWB Transceiver. Chinese Journal of Electronics.2009-4:115-121.
    [1.4] LIYan. Yavuz Degerli. JI Zhen. A Low Power Column-level High SpeedAuto-zeroed Comparator for CMOS Active Pixel Sensor Based Vertex Detector.Chinese Journal of Electronics.2010-1:87-95
    [1.5]陶亮,顾涓涓,基于多抽样率滤波实现离散Gabor展开与变换的快速并行算法[J].中国科学.2011Vol.41(5):617-625.
    [1.6] Nie Zedong. Zhang Fengjuan. Li Jie and Wang Lei. Low-power digital ASICfor on-chip spectral analysis of low-frequency physiological signals[J]. Journalof Semiconductors,2012,33(6):065004-4.
    [1.7] Wu Zhaohui. Zhang Xu. Liang Zhiming and Li Bin. CMOS implementation ofa low-power BPSK demodulator for wireless implantable neural commandtransmission[J]. Journal of Semiconductors,2012,33(5):055005-7.
    [1.8] Zhu Minghao. Zhu Congyi. Li Wenjiang and Zhang Yaohui. A low-powerhigh-speed driving circuit for spatial light modulators[J]. Journal ofSemiconductors.2012.33(2):025013-5.
    [1.9] Gong Zheng. Chen Bei. Hu Xueqing, Shi Yin and Dai Fa Foster. A low power8th order elliptic low-pass filter for a CMMB tuner[J]. Journal ofSemiconductors.2011.32(9):095002-7.
    [1.10] Zhang Qi. Kuang Xiaofei and Wu Nanjian. An ultra-low-power RF transceiverfor WBANs in medical applications[J]. Journal of Semiconductors.2011.32(6):065008-8.
    [1.11]邓军,杨银堂,全数字接收机中一种低功耗插值滤波器结构及其VLSI实现[J].西安电子科技大学学报.2010-37(2):320-325.
    [1.12] FENG Jining. YANG Xiaobo. DIAO Zhejun. GONG Wenfei. WU Siliang.NLFM Interference Suppressing Based on Time-Varying AR Modeling andAdaptive IIR Notch Filter. Chinese Journal of Electronics.2011-4:36-45.
    [1.13] Avinash K. Ahmed L. Janet W. Design of energy efficient channel buffers withrouter bypassing for network on chips[J]. Quality of Electronic Design,2009:826-832
    [1.14] Wong A C W, Kathiresan G, et al. A1V wireless transceiver for an ultra lowpower SoC for biotelemetry applications[J]. European Solid State CircuitsConf.2007.127-130
    [1.15] Yoo H, Anderdon D V. Hardware-efficient distributed arithmetic architecturefor high-order digit filter[J]. Proc. IEEE International Conference on Acoustics,Speed and Signal Processing,2005: V125-V128
    [1.16]刘欢,潘伟,李广军等。一种基于CSD架构的新型高速可重构滤波器[J].微电子学与计算机.2009-4:26.4.
    [1.17] Xu F. Chang C H. Jong C C. Design of low-complexity FIR filters based onsigned-powers-of-two coefficients with reusable common sub expression[J].IEEE Transactions on Computer Aided Design Circuits System.2007(26):1898-1907
    [1.18] Uppalapati H. Rastgar H. Ahmadi M. Sid-Ahmed M A. Design of quadraturemirror filter banks with canonical signed digit coefficients using geneticalgorithm[C]. International Conference on Communications, Circuits andSystems,2005:682-686.
    [1.19] Avinash Karanth Kodi. Ashwini Sarathy, Ahmed Louri. et al. Adap tiveinter2router links for low2power, area2efficient and reli2ableNetwork2on2Chip (NoC) architectures[C]. ASP2DAC2009. Athens: OhioUniv,2009,1-126.
    [1.20]何学辉,吴兆平,苏涛,吴顺君。任意相位编码信号及其脉压滤波器联合优化设计[J].西安电子科技大学学报.2009-36(6):1027-1033
    [1.21]丁玉美,高西全,数字信号处理。第二版.西安.西安电子科技大学.2008.pp.231-234
    [1.22] XIE Jinsong. LI Xianfeng. TONG Dong. CHEN Jie. CHENG Xu. ALow-Power dTLB Design Based on Memory Region Encoding. ChineseJournal of Electronics.2008-4:77-80.
    [1.23] Graillat S. Langlois P, Louvet N. Compensated Horner Scheme. TechnicalReport, University of Perpignan, France, July2005.
    [1.24] Kripasagar Venkat.”Efficient Micro Mathematics–Multiplication andDivision Techniques for MCUs”. Circuit Cellar magazine,2008, March(212):pp.60
    [1.25] Kripasagar Venkat.“Optimized Digital Filtering for the MSP430,” TexasInstruments2007
    [1.26]郝冬艳,张明,郑伟低。功耗VLSI芯片的设计方法.微电子学与计算机[J],2007.24(6):137-142
    [1.27] Uwe Meyer-Baese, Digital Signal Processing with Field Programmable GateArrays. Second edition. McGraw-Hill Education,2006. pp.65-66
    [1.28] Lyons Richard.“Understanding Digital Signal Processing”,2nd Ed., PrenticeHall, Upper Saddle River, New Jersey,2004, pp:556-561.
    [1.29]梁昌洪,官伯然。“简明微波”.第二版.西安.西安电子科技大学.2008. Pp:30-40.
    [1.30] Ricardo A, Losada and Richard Lyons,“Reducing CIC Filter Complexity”,IEEE Signal Processing Magazine.2006, July
    [1.31] Magnus Karlsson.“Implemtntation of digital serial Filters” Link ping Studiesin Science and Technology Dissertations.Sweden.2005June. No.925
    [1.32]徐芝兰,杨莲兴。CMOS集成电路低功耗设计方法.微电子学.2004(34):223-226.
    [1.33] Malvar H S, Hallapuro A, Karczewicz M, et al. Low complexity transform andquantization in H.264/AVC. IEEE Transactions on Circuits and Systems forVideo Technology,2003(13):598-603
    [1.34] Kang Sung-Mo. Elements of low power design for integrated systems.Proceedings of the2003International Symposium on Low Power Electronicsand Design. Seoul, Korea,2003:205-210
    [1.35] Daniele L, Macro R. Binary canonic signed digit multiplier for high-speeddigital signal processing[C]. The200447thMidwest symposium on Circuitsand Systems.2004:33-68
    [1.36] Krzysztof Sozanski.“Implementation of Modified Wave Digital Filters UsingDigital signal processors,” IEEE Transaction on.2002
    [1.37] Matthew P. Donadio. CIC Filter Introduction. IEEE, July2000
    [1.38]孟建熠,丁永林,严晓浪,葛海通。一种RTL级数据通路ODC低功耗优化算法.电子学报.2010-38(7):1654-1659.
    [1.39] WEN Shuhong. CUI Huijuan. TANG Kun. Low Power Embedded MultimediaProcessor Architecture. Chinese Journal of Electronics.2008-4:107-116
    [1.40]胡定磊,陈书明。低功耗编译技术综述.电子学报.2005-33(4):676-682.
    [1.41] WU Zhijun. SHI Zhen. Filtering LDoS Attack by FIR Filter. Chinese Journal ofElectronics.2010-2:87-95
    [1.42] XIEXiaofeng. ZHANGWenjun. RUANJun. YANGZhilian. SimulationOptimization with Multiple—demes Genetic Algorithms in Master—SlaveParallel Mode[J]. Chinese Journal of Electronics.2003-2:167-175
    [1.43] SHI Wei, CHEN Fang-uan, WANG Zhi-ing, REN Hong-guang, SU Bo, WANGYou-rui and LU Hong. Design and VLSI Implementation of an AsynchronousMicroprocessor Based on Transport Triggered Architecture.2011-39(2):395-401.
    [1.44] HE Yi-gang, JIANG Jin-guang and WU Jie. Fully Differential4th-order BesselFilter Accurately Designed with Group Delay.200230(2):249-251
    [1.45]白银刚,于盛林。一种广义多结构元形态滤波器.电子学报.2009-37(4):792-797.
    [1.46] ZHANG Bin. ZHENG Weixing. FENG Dazheng. Highly EfficientSurface-Search Algorithm for Adaptive FIR Filtering. Chinese Journal ofElectronics.2007-2:66-73
    [1.47]赖晓平。二维线性相位FIR滤波器设计的投影最小二乘算法.电子学报.2006-34(6):1036-1040.
    [1.48] Segars S.Low power design techniques for microprocessor-s[A]. ISSCC[C].2001.
    [1.49] SHUIPenglang. ZHANGAihua. Signal-adapted FIR Filter Banks WithoutPerfect-reconstruction Property. Chinese Journal of Electronics.2005-2:187-196.
    [1.50] Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic著.周润德等译《数字集成电路-电路.系统与设计(第二版)》.电子工业出版社.
    [1.51] DENG Fang-an, YONG Long-quan, ZHOU Tao and LIU Li-hua. Shortest PathProblem Algorithm in Network Based on Matrix Multiplication.2009-37(7):1594-1598
    [1.52] WANG Nian-ping and JIN Chen-hui. More Analyses for Multiplication ofLarge Integers Using the Algorithm of Divide and Conquer.2008-36(1):133-135.
    [1.53] Y. Hida, X. S. Li and D. H. Bailey. Algorithms for quad-double precisionfloating point arithmetic. In N.Burgess and L.Ciminiera, editors, proceedingsof the15thSymposium on Computer Arithmetic. Vail, Colorado, Page155-162,Los Alamitors, CA, USA,2001. Institute of Electronics Engineers.
    [1.54] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society forIndustrial and Applied Mathematics, Philadelphia, PA, USA, second edition,2002.
    [1.55]伦淑娴,张化光。一类非线性时滞离散系统模糊H∞滤波器的设计.电子学报.2005-33(2):231-235.
    [1.56]孟祥意,陶然,王越。分数阶傅里叶域滤波器组的一般化设计方法.电子学报.2009-37(9):2046-2051.
    [1.57] X S Li, J W Demmel, D H Bailey, G Henry, Y Hida, J Iskandar, W Kahan, S YKang, A Kapur, M C Martin, B J Thompson, T Tung, and D J Yoo. Designimplementation and testing of extended and mixed precision BLAS.ACMTrans. Math. Software,2002-28(2):152-205.
    [1.58] T Ogita, S M Rump, and S Oishi. Accurate sum and dot product. SLAM J. Sci.Comput,2005-26(6):1955-1988
    [1.59] S M Rump, T Ogita, and S Oishi. Accurate summation. Technical report,Hamburg University of Technology, Germany, Nov,2005.
    [1.60]宁俊松,罗正祥,羊恺,补世荣,刘娟秀。宽阻带平面低通滤波器的设计.电子学报.2008-36(2):342-345
    [1.61]唐长文,张洁,闵昊。一种新型的高速FIR滤波器及其VLSI实现.电子学报.2002-30(2):295-297
    [1.62] Ying Jianhua, Huang Meng and Huang Yang. Design of an LDO with capacitormultiplier. Journal of Semiconductor.2010,31(7):075010-4.
    [1.63] Gao Yanjun, Duanmu Qingduo, Wang Guozheng, Li Ye and Tian Jingquan.Formation of a silicon micropore array of a two-dimension electron multiplierby photo electrochemical etching. Journal of Semiconductor.2009,30(2):022001-4
    [1.64] Yu Hongmin, Chen Stanley L and Liu Zhongli. Design of a DedicatedReconfigurable Multiplier in an FPGA. Journal of Semiconductor.2008,29(11):2218-2225
    [1.65] Zhu Huili, Chen Xiaping and Wu Zhengyun. Separate Absorption andMultiplication4H-SiC UltravioletAvalanche Photodetector. Journal ofSemiconductor.2007,28(2):284-288.
    [1.66] Huo Mingxue, Tan Xiaoyun, Liu Xiaowei, Wang Yonggang, Ren Lianfeng andQi Xiangkun. An Integrated Four Quadrant CMOS Analog Multiplier. Journalof Semiconductor.2006,27(13):335-339.
    [1.67]王沁,李占才,齐悦。基于两层流水线结构的FIR滤波器设计.电子学报.2005-33(2):367-369.
    [1.68] WANG Hongmei LI Fule LI Guolin WANG Zhihua. Resolution Analysis of theFirst Stage in the High Precision Pipelined ADCs. Chinese Journal ofElectronics.2006-1:41-53.
    [2.1]徐红,李刚,黄朝耿,叶丰。一种设计IIR数字滤波器的参数化方法。电子学报,2012-40(4):847-851
    [2.2] M. Unser,“splines: A perfect fit for signal and image processing”, IEEE SignalProcessing Mag., vol.16, pp.22-38, Nov.1999
    [2.3] WUXuedong WANGYaonan. Pose and Motion Estimation from Vision Basedon the First-Order Interpolation Filter. Chinese Journal of Electronics.2004-3:212-220
    [2.4] ZHANG Huihong. WANG Pengjun. GU Xingsheng. Area Optimization ofFixed-Polarity Reed-Muller Circuits Based on Niche Genetic Algorithm[J].Chinese Journal of Electronics.2011-1:199-207
    [2.5] LIU Duo and DAI Yi-qi. A New Method of Scalar Multiplication of EllipticCurve over OEF.2005-33(8):1451-1456
    [2.6] BAI Guo-qiang, ZHOU Tao and CHEN Hong-i. A Selection of the SecureElliptic Curve and Fast Calculation of Scalar Multiplication.2002-30(11):1654-1657
    [2.7]余洪敏,陈陵都,刘忠立。FPGA中专用可重构乘法器的设计。半导体学报,2008,29(11):2218-2225
    [2.8] YOU Lin. XU Maozhi. ZHAO Junzhong. ZHENG Zhiming. Speeding UpScalar Multiplications on Hyperelliptic Curves by Making Use of FrobeniusEndomorphism. Chinese Journal of Electronics.2006-1:66-76.
    [2.9]周浩华,沈泊,章倩苓。一种GF(2~k)域的高效乘法器及其VLSI实现。半导体学报,2001,22(8):1063-1068.
    [2.10]于敦山,沈绪榜。32位定/浮点乘法器设计。半导体学报,2001,22(1):91-95
    [2.11] LeiQianqian. ChengZhiming. GongZheng. Shiyin. A200mA CMOSlow-dropout regulator with double frequency compensation techniques for SoCapplication。2011,32(11):115009-5.
    [2.12] Liao Pengfei. Luo Ping. Zhang Bo. Li Zhaoji. A high linearity current modemultiplier/divider with a wide dynamic range[J]. Journal of Semiconductors.2012,33(12):125003-4.
    [2.13]何永泰,黄文卿。基于FPGA的CSD编码乘法器[J]。电子测量技术。2006,29(4):87-89。
    [2.14]朱霞,柴志雷,须文波。基于CSD编码的FIR数字滤波器优化设计[J]。计算机工程与设计,2009,30(2):271-275。
    [2.15] XIONG Yan. LIANG Xiao. MIAO Fuyou. A Novel Pauli EvolutionaryQuantum Algorithm for Combinatorial Optimization[J]. Chinese Journal ofElectronics.2010-3:95-103
    [2.16] WANG Xiaoqing. FANG Youyuan. ZHENG Yanxing. ZONG Jianjian. GUTianyang. Perimeter-Search-Based Semi-Join Query Optimization Algorithmin Data-Sharing Environment[J]. Chinese Journal of Electronics.2009-4:54-62
    [2.17] YANG Yun. ZHAO Wenqing. Design of Three High-Performance ConcurrentSystolic Arrays for Band Matrix Multiplication. Chinese Journal of Electronics.2005-4:156-164
    [2.18]刘志华,杨军,陈晏。用VHDL实现线性相位FIR滤波器[J]。昆明冶金高等专科学校学报,2005,21(5):70-76
    [2.19]郑燕,郝建国,党建华。基于VHDL语言与QuartusⅡ软件的可编程逻辑器件应用与开发[M]。北京:国防工业出版社,2007,3:24-171
    [2.20] Yu Hongmin. Chen Lingdu. Liu Zhongli. Design of a DedicatedReconfigurable Multiplier in an FPGA[J]. Journal of Semiconductors.2008,29(11):2218-2225.
    [2.21] HAN Muhua. LIU Leibo. WEI Shaojun. Hierarchical Optimization ofMulti-objective Embedded System Design Using Pareto-frontier Algebra[J].Chinese Journal of Electronics.2008-3:141-150
    [2.22]张星星,李毅,熊保玉,韩军,张跃军,董方圆,张章,虞志益,程旭,曾晓洋。65nm下低功耗稳定性高的寄存器堆的设计。半导体学报,2012,33(3):035010-5
    [2.23] SHAN Hangguan. WANG Hao. WANG Zongxin. Joint Optimization ofSubchannel Reassignment and Power Adaptation for Multicarrier CooperativeSystems[J]. Chinese Journal of Electronics.2008-2:45-54
    [2.24] Jung-Pil Choi, Seung-Cheol Shin, Jin-Gyun Chung. Efficient Rom SizeReduction for Distributed Arithmetic[J]. IEEE International Symposium onCircuits and SystemsⅡ,2004,4:1161-1164
    [2.25] Heeong Yoo, David V. Anderson. Hardware-Efficient Distributed ArithmeticArchitecture for High-Order Digital Filters[J]. in proc. IEEE Int. Conf.Acoustics, Speech, Signal Processing(ICASSP)A,2005,3: V/125-V/128
    [2.26] Pramod Kumar Meher, Shrutisagar Chandrasekaram, Abbes Amira. FPGARealization of FIR Filters by Efficient and Flexible Systolization UsingDistributed Arithmetic[J]. IEEE Transactions on Signal Processing,2008,56(7):3009-3017
    [2.27]范明俊,任俊彦,过瑶,李宁,叶凡,李联。一种用于低功耗流水线模数转换器的新型低电压运算放大器。半导体学报,2009,30(1):015009-4.
    [3.1] YANG Bo. GUAN Xinping. Global Stability of Nonlinear Optimization FlowControl with Time Delay[J]. Chinese Journal of Electronics.2007-3:199-209
    [3.2]周盛华,杨志超,吴南健,李美云。小面积低功耗RFID射频前端电路设计。半导体学报,2006,27(13):361-364
    [3.3] YOU Hailong. JIA Xinzhang. The Characterization and Optimization of theMicrocircuit Process Equipment Using Design of Experimentand DataTransformation[J]. Chinese Journal of Electronics.2007-1:109-117
    [3.4] E G Walters Ⅲ. Design tradeoffs using truncated multipliers in FIR filterimplementations[D]. Seattle, Proceedings of SPIE,2002,4791:357-368.
    [3.5] CHENG Xin. JIN Feng. YANG Xiaozong. An Optimized Deadlock Detectionand Resolution Algorithm for Distributed One-resource Request Model[J].Chinese Journal of Electronics.2006-4:91-100.
    [3.6]俞颖,周磊,闵昊。用异步电路的低功耗微控制器的VLSI设计与实现。半导体学报,2001,22(10):1346-1351.
    [3.7] Kim S M, Chung J G, Parhi K K. Design of Low Error CSD Fixed-WidthMultiplier[J]. IEEE International Symposium on Circuits and Systems,2002,1:69-72.
    [3.8] Cheng-Yu Pai, Al-Khalili, A J Lynch et al. low-power constant-coefficientmultiplier generator[C]. Proceedings of the14thAnnual IEEE InternationalASIC/SOC Conference,2001:185-189.
    [3.9]魏少军。系统集成芯片设计的若干关键技术。中国科学,2008,Vol,38(6):941-948.
    [3.10] Hyeone-Ju Kang, In-Cheol Park. FIR filter synthesis algorithms for minimizingthe delay and the number of adders[J]. IEEE Transactions on Circuits andsystemsⅡ,2001,42:770-777.
    [3.11]马上,胡剑浩,叶燕龙,张林,凌翔。一种有符号余数系统2n缩放方法及VLSI实现。中国科学,2010,Vol.40(6):899-908
    [3.12] GAOJun. DONGHuoming. SHAOJing. ZHAOJing. Parameters Optimizationof Synergetic Recognition Approach[J]. Chinese Journal of Electronics.2005-2:116-126.
    [3.13] DeBrunner L. S., Debrunner V. E., Bhogaraju D., Definigcanonical-signed-digit number system as arithmetic codes, Systems andComputers,2002. Conference Record of the Thirty-Sixth Asilomar Conferenceon, vol.2,3-6Nov.2002, pp:1593-1596
    [3.14] Steven R. Norsworhy, Richard Schreier, New York. Delta-Sigma DataConverters Theory, Design and Simulation. The Institute of Electrical andElectronics Enginerrings, Inc.
    [5.1]马上,胡剑浩,张林,凌翔。一种基为{2n-1,2n+1,22n+1}的余数系统奇偶检测方法及其应用。中国科学,2008,Vol.38(4):647-656
    [5.2] HSUChaohsing. CHENTsongyi. PanJengshyang. Designing Adaptive LinearArray Antenna to Achieve Pattern Steering Optimization by Phase-AmplitudePerturbations Using Genetic Algorithms[J]. Chinese Journal of Electronics.2005-1:110-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700