用户名: 密码: 验证码:
纳米碳纤维生长速率及形态调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳纤维(CNFs)是一种具有广阔应用前景的新型碳材料。结构调控和连续化低成本制备是CNFs实现工业应用的技术关键。本文针对CO在Fe催化剂上歧化制备CNFs反应体系,研究了合成工艺条件及催化剂颗粒性质对CNFs生长过程速率的影响,采用TEM、SEM、XRD和N2物理吸附等方法对合成的CNFs进行了较为系统的结构表征,探索CNFs生长动力学特征与其形貌之间的关系,并通过合成过程中催化剂颗粒性质的变化讨论了这种关系的根源。最后对适用于CNFs连续合成的回转窑反应器进行了冷模实验研究和概念设计。本文主要研究结果简述如下:
     (1) H2在Fe催化CO歧化反应制备CNFs过程中具有非常重要的作用。TPD-MS表征以及理论分析结果表明反应气体中加入H2会改变CO在Fe催化剂表面的反应历程,从而促进CO在Fe催化剂上的歧化反应。另外,增加反应气体中的H2浓度,将使CNFs的最大生长速率先升高后下降,可以缩短CNFs生长的诱导期和催化剂的使用寿命,并对CNFs的形貌结构、织构性质和石墨化程度产生显著影响。
     (2)催化剂还原条件一定时,制备的CNFs形貌结构与其最大生长速率存在密切对应关系。随着CNFs最大生长速率的不断增加,CNFs的形貌结构先是从螺旋状到弹簧状,然后再到较直的CNFs,最后到无定形炭。通过改变反应气体中CO浓度、反应温度等操作条件可以控制CNFs生长速率,进而控制CNFs的形貌结构。
     (3) CNFs生长过程中,Fe催化剂颗粒首先破碎形成小的颗粒并形成碳化铁,并在不同的生长条件下形成不同的形貌。这一系列变化决定了生长过程诱导期的长短、最大速率的大小和失活速率的快慢,并同时决定了合成所得CNFs的形貌。
     (4)经过不同还原条件处理后,催化剂颗粒具有不同粒径和相态。即使在最大生长速率相同条件下,CNFs的形貌结构仍具有很大差别,这同样说明催化剂的颗粒性质是CNFs形貌结构决定性因素。适宜的还原条件对可控结构CNFs的合成具有重要作用。
     (5)通过BOC理论和过渡态理论计算,研究了Fe催化CO歧化制备CNFs的反应历程。利用微观反应动力学方法,建立了CO在Fe催化剂上歧化反应制备CNFs的动力学模型。建立的动力学模型可以预测不同反应条件下的CNFs的生长速率,并以此为基础控制和预测CNFs的形貌结构。模型计算结果表明,在Fe催化CO歧化制CNFs的过程中,CH4和H20生成的能垒较大,说明其难以生成,这与反应尾气中没有检测到CH4和H20的结果一致。
     (6)不同回转窑转速下,催化剂平均停留时间都随倾斜高度线性递减,并且转速较快时递减速率较快,而转速较低时递减速率较慢;不同回转窑倾斜高度时,催化剂平均停留时间与转速成反比关系,且当回转窑转速达到9 r/min以上后,转速对催化剂平均停留时间的影响可以忽略。催化剂停留时间分布的分散程度随回转窑反应器转速和倾斜高度的增加而减小。CNFs物料的动态休止角和流型基本不受回转窑转速和倾斜高度的影响,仅与CNFs物料在回转窑反应器内填充率的有关。
Carbon nanofibers (CNFs) are novel structural carbon materials with good application potentials in many fields. A key factor to the successful application of this material relies on its large scale production with well defined structrures and low cost. In this thesis, the carbon nanofibers sytheiszed by CO disproportionation on iron catalyst are investigated. The influences of synthetic conditions and catalyst properties on the growth rate are explored. TEM, SEM, XRD and nitrogen physical adsorption are used to characterize the structural properties of the produced CNFs and a relationship between its kinetic characteristics and the morphology of CNFs is established. The underlying causes of the relationship are also discussed by characterizing the changes of the catalyst particles'structural properties. Finally, cold mold experiments and conceptual design are carried out on a rotary kiln reactor, which is suitable for continous growth of CNFs. The main results of this work are summarized as follows:
     (1) H2 concentration is a prominent factor that influences the syntheis of carbon nanofibers by CO disproportionation on iron catalyst. TPD-MS characterization and theoretical analysis results indicate that the presence of H2 in the feed gas may change the reaction shechme and can accelerate CO disproportionation on iron catalyst. The CNFs preparation experiment results show that the maximal growth rate first increases and then decreases with the increase of H2 concentration and the induction period and life time of the catalyst are also shortened at elevated H2 concentration. The morphology, texture and graphitization degree of as-synthesized CNFs are also found to be influenced by H2 concentration.
     (2) The morphology of CNFs is strongly related to the maximal growth rate in case of adoption of identical reduction conditions. As the maximal growth rate increases, the morphology changed from twist to helical, then to straight and tight helical and finally to amorphous. The maximal growth rate of CNFs can be controlled by adjusting the H2 concentration, CO concentration and temperature. And so is the morphology of CNFs.
     (3) During the process of CNFs synthesis, Fe particles first would be fragmentated to small particles and transformed to iron carbide. The morphology of the particles are determined by the synthetic conditions, which can affect the induction period, maximal reaction rate, deactivation rate and finally the morphology of the CNFs.
     (4) The catalyst particles have different particle sizes and composition after reduction under various conditions. As a result, CNFs have different morphologies and structural properties even though the maximal growth rates are identical. This result also reveals that the morphology and structure of CNFs are determined by the properties of catalyst particles. To preparation of CNFs with well defined structures, a proper reduction of the catalyst is very important.
     (5) The reaction scheme of CO disproportionation on iron catalyst is studied by using BOC and transition state theory. A kinetic model is developed using microkinetic method. The modeling results are found to fit the experiment data well and can be used for controlling and monitoring the morphology of produced CNFs. The modeling results also show the energy barriers for the formation of CH4 and H2O are very high and it is hard for CH4 and H2O to form in the reaction system, which is consistent with the experimental results.
     (6) The average residence time of catalyst in the rotary kiln decreases linearly with the increase of inclination height at both high and low rotating rates. The average residence time decreases faster at high rotating rate then slower at a low rotaing rate. At different inclination heights, the average residence time of catalyst is inversely proportional to the rotating rate until it reaches 9 r/min, above which the effect of rotating rate on the average residence time of catalyst can be neglected. The distribution density of residence time becomes more concentrated as the rotate speed and the inclination height increase.
引文
[1]Hughes T V, Chambers C R. Manufacture of carbon filaments. US Patent 405480,1889.
    [2]De-Jong K P, Geus J W. Carbon nanofibers:catalytic synthesis and applications [J]. Catal. Rev. Sci. Eng.,2000,42(4):481-510.
    [3]Rodriguez N M. A review of catalytically grown carbon nanofibers [J]. J. Mater. Res., 1993,8(12):3233-3250.
    [4]Iijima S. Helical microtubules of graphite carbon [J]. Nature,1991,354(6348):56-58.
    [5]Sui Z J, Zhou J H, Dai Y C, Yuan W K. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers [J]. Catal. Today,2005,106(1-4):90-94.
    [6]Zhu J, Zhou J H, Zhao T J, Zhou X G, Chen D, Yuan W K. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction [J]. Appl. Catal. A,2009,352(1-2):243-250.
    [7]Mohammed H A S, Uttandaraman S. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon,2009,47(1):2-22.
    [8]Huang C W, Wu H C, Lin W W, Li Y Y. Temperature effect on the formation of catalysts for growth of carbon nanofibers [J]. Carbon,2009,47(3):795-803.
    [9]朱俊.纳米碳纤维负载钯金属催化剂的合成和应用研究[D].上海:华东理工大学,2009.
    [10]Rodriguez N M, Kim M, Baker R T K. Carbon nanofibers:a unique support medium [J]. J. Phys. Chem.,1994,98(50):13108-13111.
    [11]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature,1993, 363(6430):603-605.
    [12]Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature, 1993,363(6430):605-607.
    [13]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis [J]. Applied Catalysis A,2003,253(2):337-58.
    [14]Pham-Huu C, Keller N, Ehret G, Charbonniere L J, Ziessel R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. J. Mol. Catal. A,2001,170(1-2):155-163.
    [15]Pham-Huu C, Keller N, Ehret G, Charbonniere L J, Ziessel R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalysts for hydrogenation of C=C bonds [J]. Chem. Comm.,2000, (19):1871-1872.
    [16]Jhung S H, Romanenko A V, Lee K H, Park Y, Moroz E M, Likholobov V A. Carbon-supported palladium-ruthenium catalyst for hydropurification of terephthalic acid [J]. Appl. Catal. A,2002,225(1-2):131-139.
    [17]Lueking A D, Yang R T, Rodriguez N M, Baker R T K. Hydrogen storage in graphite nanofibers:effect of synthesis catalyst and pretreatment conditions [J]. Langmuir,2004, 20(3):714-721.
    [18]Lupu D, Birs A R, Misan I, Jianu A, Holzhuter G, Burkel E. Hydrogen uptake by carbon nanofibers catalyzed by palladium [J]. Int. J. Hydrogen Energy,2004,29(1):97-102.
    [19]Park C, Baker R T K. Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system [J]. J. Chem. Phys. B,1999,103(13):2453-2459.
    [20]Ma J, Park C, Rodriguez N M, Baker R T K. Characteristics of copper particles supported on various types of graphite nanofibers [J]. J. Phys. Chem. B,2001,105(48): 11994-12002.
    [21]Gao R, Tan C D, Baker R T K. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts [J]. Catal. Today,2001,65(1):19-29.
    [22]Browning D J, Gerrard M L, Lakeman J B, Mellor I M, Mortimer R J, Turpin M C. Studies into the storage of hydrogen in carbon nanofibers:Proposal of a possible reaction mechanism [J]. Nano. Lett.,2002,2(3):201-205.
    [23]Wang W, Karl J J. Computer simulations of hydrogen adsorption on graphite nanofibers [J]. J. Chem. Phys. B,1999,103(2):277-281.
    [24]Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. Graphite nanofibers as an electrode for fuel cell applications [J]. J. Phys. Chem. B,2001,105(6):1115-1118.
    [25]Chai G S, Yoon S B, Yu J S. Highly efficient anode electrode materials for direct methanol fuel cell prepared with ordered and disordered arrays of carbon nanofibers [J]. Carbon,2005,43(14):3028-3031.
    [26]成会明.纳米碳管制备、结构、物性及应用[M].2002.北京:化学工业出版社.
    [27]Jr Bradley, Y L Chen, H W Sturner. The structure of carbon filaments and associated catalytic particles formed during pyrolysis of natural gas in steel tubes[J]. Carbon.1985, 23(6):715-722.
    [28]Kim, M S, Rodriguez N M, Baker R T K. The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments [J]. J. Catal.,1991,131(1): 60-73.
    [29]Chambers A, Rodriguez N M, Baker R T K. Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene [J]. J. Mater. Res.,1996,11(2):430-438.
    [30]Motojima S, Asakura S, Kasemura T, Takeuchi S, Iwanaga H. Catalytic effects of metal carbides, oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers [J]. Carbon.1996,34(3):289-296.
    [31]范月英.有机物催化热解法制备纳米碳纤维及其储氢性能研究[D].沈阳:中国科学院金属研究所,2000.
    [32]Lau T K, Lu M, Hui D. Coiled carbon nanotubes:Synthesis and their potential applications in advanced composite structures [J]. Composites:Part B,2006,37(6): 437-448.
    [33]Motojima S, Chen X Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition [J]. J. Appl. Phys.,1999,85(8): 3919-3921.
    [34]Shi Z, Lian Y, Zhou X H, Gu Zh N, Zhang Y G, Iijima S, Zhou L X, Yue K T, Zhang Sh L. Mass-production of single-wall carbon nanotubes by arc discharge method [J]. Carbon, 1999,37(9):1449-1453.
    [35]Lambert J M, Ajayan P M, Bernier P, Planeix J M, Brotons V, Coq B, Castaing J. Improving conditions towards isolating single-shell carbon nanotubes [J]. Chem. Phys. Lett.,1994,226(3-4):364-371.
    [36]Kokai F, Takahashi K, Yudasaka M, Yamada R, Ichihashi T, Iijima S. Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization [J]. J. Chem. Phys. B,1999,103(21):4346-4351.
    [37]Maser W K, Munoz E, Benito A M, Martinez M T, De la Fuente G F, Maniette Y, Anglaret E, Sauvajol J L. Production of high-density single-walled nanotube material by a simple laser-ablation method [J]. Chem. Phys. Lett.,1998,292(4-6):587-593.
    [38]Park S H, Kim C, Choi Y O, Yang K S. Preparations of pitch-based CF/ACF webs by electro-spinning [J]. Carbon,2003,41(13):2655-2657.
    [39]Wang Y, Serrano S, Santiago-Aviles J J. Raman characterization of carbon nanofibers prepared using electro-spinning [J]. Synth. Met.,2003,138(3):423-427.
    [40]Kim J H, Ganapathy H S, Hong S S, Gal Y S, Lim K T. Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process [J]. J. Super. Fluids,2008,47(1):103-107.
    [41]Baker R T K., Barber M A, Waite R J, Harris P S, Feates F S. Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene [J]. J. Catal.,1972, 26(1):51-62.
    [42]Nielsen J R, Trimm D L. Mechanisms of carbon formation on nickel-containing catalysts [J]. J. Catal.,1977,48(1-3):155-165.
    [43]Kock A J H M, De bokx P K, Boellaard E, Klop W, Geus J W. The formation of filamentous carbon on iron and nickel-catalysts.2. Mechanism [J]. J. Catal.,1985,96(2): 468-480.
    [44]Baker R T K, Chludzinski J J, Dudash N S, Simoens A J. The formation of filamentous carbon from cecoposition of acetylene over vanadium and molybdenum [J]. Carbon, 1983,21(5):463-468.
    [45]Tibbetts G G, Devour M G, Rodda E J. An adsorption-diffusion isotherm and its application to growth of carbon filaments of iron catalyst particles. Carbon,1987,25(3): 367-365.
    [46]Baker R T K. Catalytic growth of carbon filaments [J]. Carbon,1989,27(3):315-323.
    [47]Walker P L J, Rakszawski J F, Imperial G R. Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. Ⅱ. Rates of carbon formation [J]. J. Phys. Chem.,1959,63(2):140-149.
    [48]张勇,唐元洪,裴立宅.纳米碳纤维制备方法的研究进展[J].炭材料科学与工艺,2005,15(1):33-38.
    [49]Chen C S, Lin J H, Wu J H, Chiang C Y. Growth of carbon nanofibers synthesized from CO2 hydrogenation on K/Ni/Al2O3 catalyst [J]. Catal. Comm.,2009,11(3):220-224.
    [50]Kato T, Matsumoto T, Saito T. Effect of carbon source on formation of vapor-grown carbon fiber [J]. Carbon.1993,31:937-940.
    [51]Romero A, Garrido A, Marquez A N, Sanchez P, Lucas A, Valverde J L. Synthesis and structural characteristics of highly graphitized carbon nanofibers produced from the catalytic decomposition of ethylene:Influence of the active metal (Co, Ni, Fe) and the zeolite type support [J]. Micro. Meso. Mater.,2008,110(2-3):318-329.
    [52]Chesnokov V V, Buyanov R A. The formation of carbon filaments upon decomposition of hydrocarbons catalyzed by iron subgroup metals and their alloys [J]. Russ. Chem. Rev, 2000,69(7):623-638.
    [53]Audier M, Oberlin A, Oberlin M. Morphology and crystalline order in catalytic carbons [J]. Carbon,1981,19(2),217-224.
    [54]Tanaka A, Yoon S H, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments [J]. Carbon,2004,42(3), 591-597.
    [55]Kim M S, Rodriguez N M, Baker R T K. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts [J]. J. Catal.,1993,143(2):449-463.
    [56]Owens W T, Rodriguez N M, Baker R T K. Carbon filament growth on platinum catalysts [J]. J. Phys. Chem.,1992,96(12):5048-5053.
    [57]Rodriguez N M, Kim M S, Downs W B, Baker R T K. In:Carbon fibers, filaments and compositions [M]. Figueiredo J L, Bernardo C A, Baker R T K, Huttinger K J, editors, Dordercht:Kluwer Academic Press,1987,177:541.
    [58]Endo M, Kim Y A, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus M S. Vapor-grown carbon fibers (VGCFs)-Basic properties and their battery applications [J]. Carbon,2001,39(9):1287-1297.
    [59]Kumar S, Rath T, Mahaling R N, Reddy C S, Das C K, Pandey K N, Srivastava, Yadaw S B. Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites [J]. Mater. Sci. Eng. B,2007,141(1):61-70.
    [60]Ehrburger P. Surface properties of carbon fibers. In:Carbon fibers, filaments and compositions [M]. Figueiredo J L, Bernardo C A, Baker R T K, Huttinger K J, editors, Dordercht:Kluwer Academic Press,1989,177:147-161.
    [61]Fitzer E, Geigl K H, Huttner W, Weiss R. Chemical interactions between the carbon fibre surface and epoxy resins [J]. Carbon,1980,18(6):389-393.
    [62]Matsumoto M, Hashimoto T, Uchiyama Y, Murata K, Goto S. Use of modified carbon whiskers as an electrode in coulometric cells [J]. Carbon,1993,31(6):1003-1004.
    [63]Kim B J, Lee Y S, Park S J. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers [J]. Inter. J. Hydro. Energy,2008,33(15):4112-4115.
    [64]Xie G W, Lv Z G, Wang G X. Preparation and catalytic hydrogenation properties of amorphous Ni-P alloy supported on carbon nanofibers [J]. Mater. Chem. Phys.,2009, 118(2-3):281-283.
    [65]Lin Z, Ji L W, Zhang X W. Electrocatalytic properties of Pt/carbon composite nanofibers [J]. Elec. Acta,2009,54(27):7042-7047.
    [66]Liu Z J, Xu Z D, Yuan Z Y. Cyclohexanol dehydrogenation over Co/carbon nanotube catalysts and the effect of promoter K on performance [J]. Catal. Lett.,2001,72(3-4): 203-206.
    [67]陈荣生,肖华,黄卫华,童华,王宗礼,程介克.单壁碳纳米管修饰的高灵敏纳米碳纤维电极[J].高等学校化学学报,2003,24(5):808-810.
    [68]Sebastian D, Suelves I, Lazaro M J, Moliner R. Carbon nanofibers as electrocatalyst support for fuel cells:Effect of hydrogen on their properties in CH4 decomposition [J]. J. Power Sour.,2009,192(1):51-56.
    [69]Van Steen E, Prinsloo F F. Comparison of preparation methods for carbon nanotubes supported Iron Fischer-Tropsch catalysts [J]. Catal. Today,2002,71(3-4):327-334.
    [70]Bezemer G L, Van Laak A, Van Dillen A J, De Jong K P. Cobalt supported on carbonnanofibers-a promising novel Fischer-Tropsch catalyst [J]. Stud. Surf. Sci. Catal., 2004,147:259-264.
    [71]Kvande I, Chen D, Ronning M, Venvik H J, Holmen A. Highly active Cu-based catalysts on carbon nanofibers for isopropanol dehydrogenation [J]. Catal. Today,2005,100(3-4): 391-395.
    [72]赵铁均.纳米碳纤维的微观结构调控及相关催化性能研究[D].上海:华东理工大学,2004.
    [73]赵稼祥.纳米碳纤维及其应用[J].纤维复合材料.2003,20(4):48-50.
    [74]陈红燕,王继辉.纳米碳纤维及其在聚合物中的应用[J].玻璃钢/复合材料,2005,(3):41-43.
    [75]Bernardo C A, Lobo L S. Kinetics of Carbon Formation from acetylene on nickel. J. Catal.,1975,37(2):267-278.
    [76]David C G, Calvin H. B. Kinetics of Carbon Deposition during methatnation of CO. Ind. Eng. Prod. Res. Dev.,1981,20(1):80-87.
    [77]Audier M, Coulon M, Bonnetain L. Disproportionation of CO on iron-cobalt alloys-Ⅱ kinetic study on iron-cobalt alloys of different compositions. Carbon,1983,21(2): 99-103.
    [78]Sophie L P, Sigrid D, Christophe B, Georges H, Pirard J P. A kinentic study of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition using a Fe-Co/Al2O3 catalyst [J]. Carbon,2007,45(6):1167-1175.
    [79]Fan Y Y, Cheng, H M, Wei, Y L, Su G, Shen Z H. The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers [J]. Carbon,2000, 38(6):789-795.
    [80]Ci L, Zhu H, Wei B, Xu C, Liang J, Wu D. Graphitization behavior of carbon nanofibers prepared by the floating catalyst method [J]. Mater. Lett.,2000,5-6(1):21-24.
    [81]Qian W Z, Liu T, Wang Z W, Wei F, Li Z F, Luo G H, Li Y D. Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor [J]. Appl. Catal. A,2004,260(2):223-228.
    [82]Parmon V N, Kuvshinov G G, Sadykov V A, Sobyanin V A. New catalysts and catalytic processes to produce hydrogen and syngas from natural gas and other light hydrocarbon [J]. Stud. Surf. Sci. Catal.,1998,119:677-684.
    [83]Wang Y, Wei F, Luo G H, Yu H, Gu G S. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor [J]. Chem. Phys. Lett.,2002, 364(5):568-572.
    [84]于作龙.纳米碳管的批量制备和应用[J].中国高校科技与产业化,2003,(6):41-42.
    [85]Sophie L P, Jean-Paul P. Modeling of a continuous rotary reactor for carbon nanotube synthesis by catalytic chemical vapor deposition [J]. AIChE J.,2009,55(3):675-686.
    [86]Couteau E, Hernadi K, Seo J W, Thien-Nga L, Miko Cs, Gaal R, Forro L. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production [J]. Chemical Physics Letters,2003,378 (1-2):9-17.
    [87]Yang K L, Yang R T. The accelerating and retarding effects of hydrogen on carbon deposition on metal surfaces [J]. Carbon,1986,24(6):687-693.
    [88]Nishiyama Y, Tamai Y. Effect of hydrogen on carbon deposition catalyzed by copper-nickel alloys. J. Catal.,1976,45(1):1-5.
    [89]Tavares M T, Alstrup I, Bernardo C A, Rostrup-Nielsen J R. Carbon formation and CO methanation on silica-supported nickel and nickel-copper catalysts in CO+H2 mixtures [J]. J. Catal.,1996,158(2):402-410.
    [90]Ci L J, Wei J Q, Wei B Q, Liang J, Xu C L, Wu D H. Carbon nanfibers and single-walled carbon nanotubes prepared by the floating catalyst method [J]. Carbon,2001,39(3): 329-335.
    [91]Wahed W, Kazunori K, Peter T A R, Kozo S. Experimental characterization of the Role of Hydrogen in CVD Synthesis of MWCNTs [J]. Carbon,2007,45(4):833-838.
    [92]Monzon A, Lolli G, Cosma S, Mohamed S B, Resasco D E. Kinetic Modeling of the SWNT Growth by CO Disproportionation on CoMo Catalysts [J]. J. Nanosci.& Nanotech.,2008,8(11):6141-6152.
    [93]Tavares M T, Alstrup I, Bernardo C A, Rostrupnielsen J R. CO Disproportionation on silica-supported nickel and nickel-copper catalysts. J. Catal.,1994,147(2):525-534.
    [94]Carl L Y. Chemical properties hand book [M]. McGraw-Hill Book Co.,1999.
    [95]Fishtik L, Ravindra D. A UBI-QEP microkinetic nodel for the water-gas shift reaction on Cu(111). Surf. Sci.,2002,512(3):229-253.
    [96]Baker R T K, Rodriguez N M. A review of the use of in-situ electron-microscopy techniques for the study of the iron-based catalysts for coal conversion processes [J]. Energy& Fuels,1994,8(2):330-340.
    [97]Inoue S, Ichikuni N, Suzuki T, Uematsu T, Kaneko K. Capillary condensation of N2 on multiwall carbon nanotubes[J]. J Phys Chem B,1998,102(24):4689-4692.
    [98]Iwashita N, Park C R, Fujimoto H, et al. Specification for a standard procedure of X-ray diffraction measurements on carbon materials [J], Carbon,2004,42(4):701-714.
    [99]周静红.应用于TA加氢精制的Pd/CNF新型催化剂设计及性能研究[D].上海:华东理工大学,2006.
    [100]Kvande I, Chen D, Yu Z, Ronning M, Holmen A. Optimization and scale-up of CNF production based on intrinsic kinetic data obtained from TEOM [J]. J. Catal.,2008, 256(2):204-214.
    [101]Lu W X, Sui Z J, Zhou J H, Li P, Zhou X G, Chen D. Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst [J]. Chem. Eng. Sci.,2009,65(1):193-200.
    [102]Stadermann M, Sherlock S P, In J B, Fornasiero F, Park H G, Artyukhin A B., Wang Y, Yoreo J J D, Grigoropoulos C P, Bakajin O, Chernov A A, Noy A. Mechanism and Kinetics of Growth Termination in Controlled Chemical Vapor Deposition Growth of Multiwall Carbon Nanotube Arrays [J]. Nano Lett,2009,9(2):738-744..
    [103]Chen D, Christensen K O, Ochoa-Fernandez E, Yu Z X, T(?)tdal B, Latorre N, Monzon A, Holmen A. Synthesis of carbon nanofibers:effects of Ni crystal size during methane decomposition [J]. J. Catal.,2004,229(1):82-96.
    [104]Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation and steady-state growth [J]. J. Catal.,1997, 169(1):240-249.
    [105]Kuznetsov V L, Usoltseva A N, Butenko Yu V. Mechanism of coking on metal catalyst surfaces:Ⅰ. Thermodynamic analysis of nucleation [J]. Kinetics and Catalysis,2003, 44(5):726-734.
    [106]McCaldin S, Bououdina M, Grant D M, Walker G S. The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst [J]. Carbon,2006,44(11): 2273-2280.
    [107]Motojima S, Kawaguchi M, Nozaki K, Iwanaga H. Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics [J]. Carbon,1991,29(3):379-385.
    [108]Motojima S, Chen X Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition [J]. J. Appl. Phys.,1999,85(8): 3919-3921.
    [109]Chen X Q, Saito T, Kusunoki M, Motojima S. Three-dimensional vapor growth mehcansim of carbon microcoils [J]. J. Mater. Res.,1999,14(11):4329-4336.
    [110]Chen X Q, Yang S, Motojima S. Morphology and growth models of circular and flat carbon coils obtained by the catalytic pyrolysis of acetylene [J]. Mater. Lett.,2002,57(1): 48-54.
    [111]Chen X Q, Yang S, Takeuchi K, Hashishin T, Iwanaga H, Motojiima S. Conformation and growth mechanism of the carbon nanocoils with twisting form in comparison with that of carbon microcoils [J]. Diamond and Related Materials,2003,12(10-11): 1836-1840.
    [112]Bi H, Kou K C, Wu H W, Zhao Q X, Wang Z C, Zhang J Q. Review on preparation methods and growth mechanism of carbon micro/nanocoils [J]. J. Syn. Crys.,2008,37(6): 1379-1384.
    [113]Raupp G B, Delgass W N. Mossbarer Investigation of Supported Fe and Fe-Ni Catalysts Ⅱ. Carbide Formed by Fischer-Tropsch Synthesis [J]. J. Catal.,1979,58(3):348-360.
    [114]Henriksson K O E, Nordlund K. Simulations of cementite:an analytical for the Fe-C system [J]. Phys. Rev. B,2009,79:144107-144112.
    [115]Baker R T K, Alonzo J R, Dumesic J A, Yates D J C. Effect of the surface state of iron on filamentous carbon formation [J]. J Catal,1982,77(1):74-84.
    [116]Yu Zh X, Chen D, Totdal B, Holmen A. Effect of catalyst preparation on the carbon nanotube growth rate [J]. Catal Today,2005,100(3-4):261-267.
    [117]Cheung C L, Kurtz A, Park H, Lieber C M. Diameter-controlled synthesis of carbon nanotubes [J]. J. Phys. Chem. B,2002,106(10):2429-2433.
    [118]Anderson P E, Rodriguez N M. Effect of catalyst supports in the synthesis of graphite nanostructures [J]. Mat. Res. Soc. Symp. Pro.,2000,593(1):45-50.
    [119]Lee S H, Ruckenstein E. Simulation of the behavior of supported metal catalysts in real reaction atmospheres by means of model catalysts [J]. J. Catal.,1987,107(1):23-81.
    [120]Rodriguez N M, Chambers A, Baker R T K. Catalytic engineering of carbon nanostructures [J]. Langmuir,1995,11(10):3862-3866.
    [121]Chen J L, Ma Q, Rufford T E, Li Y D, Zhu Z H. Influence of calcination temperatures of Feitknecht compound precursor on the structure of Ni-Al2O3 catalyst and the corresponding catalytic activity in methane decomposition to hydrogen and carbon nanofibers [J]. Appl. Catal. A,2009,362(1):1-7.
    [122]Lee S H, Ruckenstein E. Simulation of the behavior of supported metal catalysts in real reaction atmospheres by means of model catalysts [J]. J. Catal.,1987,107(1):23-81.
    [123]Kunadian I, Andrews R, Qian D L, Menguc M P. Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method [J]. Carbon,2009,47(2):384-395.
    [124]Baker R T K, Harris P S, Thomas R B, Waite R J. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene [J]. J. Catal.,1973, 30(1):86-95.
    [125]Atsushi T, Seong-Ho Y, Isao M. Formation of fine Fe-Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers [J]. Carbon,2004,42(7):1291-1298.
    [126]Ermakova M A, Ermakov D Y, Kuvshinov G G. Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon:Part I. Nickel catalysts [J]. Appl Catal A,2000,201(1):61-70.
    [127]Rodriguez N M, Kim M S, Fortin F, Mochida I, Baker R T K. Carbon deposition on iron-nickel alloy particles [J]. Appl. Catal. A,1997,148(2):265-282.
    [128]Tadaki T, Murai Y, Koreeda A, Nakata Y, Hirotsu Y. Structure and phase transformation of nano-scale particles of Fe-Ni alloys [J]. Mater. Sci. Eng,1996, A217/218:235-238.
    [129]Philippe R, Serp Ph, Kalck Ph, Kihn Y, Bordere S, Plee D, Gaillard P, Bernard D, Caussat B. Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition [J]. AIChE J.,2009,55(2):450-464.
    [130]Yi Z, Kevin J S. A kinetic model of CH4 decomposition and filamentous carbon formation on supported Co catalysts [J]. J. Catal.,2005,231(2):354-364.
    [131]Shustorovich E. The bond-order conservation approach to chemisorption and heterogeneous catalysis:applications and implications [J]. Adv. Catal.,1990,37(pages ii-iv):101-163.
    [132]Pirard S L, Lumay G, Vandewalle N, Pirard J-P. Motion of carbon nanofibers in a rotating drum:The dynamic angle of repose and a bed behavior diagram [J]. Chemical Engineering Journal,2009,146(1):143-147.
    [133]Paradise M, Goswami T. Carbon nnarotubes-production and industial application [J]. Mat. Des.,2007,28(5):1477-1489.
    [134]Dai H, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J]. Chem. Phys. Lett.,1996,260(3-4):471-475.
    [135]Colomer J F, Bister G, Willems I, Konya Z, Fonseca A, Van Tendeloo G, Nagy J B. Synthesis of single-wall carbon nanotubesby catalytic decomposition of hydrocarbons [J]. Chem. Commun.,1999, (14):1343-1344.
    [136]Thayer A M. Carbon nanotubes by the metric tons [J]. Chem. Eng. News.2007,85(46): 29-35.
    [137]Pirard J P. Made in Belgium [J]. Chem. Eng. News.2008,86(12):5-5.
    [138]Anonymous. Arkema inaugurates carbon nanotube pilot plant; other CNT developments [J]. Additives for Polymers,2006:6-7.
    [139]Jean-Paul P, Christophe B. Method and installation for making carbon nanotubes [P]. EP: 1594802B1,2008.
    [140]Mellmann J. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior powder [J]. Technology,2001,118(2):251-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700