用户名: 密码: 验证码:
煤炭资源开发过程中矿区水土流失动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水土流失是目前全球瞩目的环境问题之一。大规模资源集中开采和相应工程建设引起的人为加速水土流失问题是当前水土流失研究中的关键内容,已经引起各国政府部门和专家学者的广泛重视。本论文所选研究区——神府东胜矿区位于黄土高原风蚀水蚀交错带是典型的生态环境脆弱区,是全国重要的能源基地。随着煤炭资源开采,矿区的生态环境发生重大的改变,特别是扰动地表物质的堆积弃土与裸露基岩在当地特殊的气象水文条件下极易发生加速侵蚀,产生了一系列严重的环境问题。原本脆弱的生态环境变得更加脆弱,严重制约了矿区安全生产与可持续发展。
     本研究在对矿区1990年以来的整体环境进行广泛调查研究的基础上,基本了解了煤炭资源开采对于矿区带来的环境改变状况,并针对矿区物质组成与基岩分布的实际情况,利用模拟降雨技术、模拟风化试验技术,结合GIS技术,分别有选择性地对矿区原状未扰动坡地、不同堆积年限矿区弃土堆积物进行模拟降雨试验,选择裸露基岩(砒砂岩)进行室内模拟风化试验,并在矿区范围内选择包括了弃土堆积物、原状土、砒砂岩等矿区典型的地表物质组成的六道沟小流域进行矿区水土流失预测模型研究。通过本项目的研究,掌握弃土堆积物土壤自然恢复的规律可以为矿区水土流失治理和复垦研究提供新的方法和措施。一方面为神府东胜矿区水土流失治理提供技术支持,可以有效提高水土流失治理效率,另一方面为我国矿区水土流失治理研究提供理论依据,对矿区的可持续发展具有实际指导意义。
     本文的工作成果和主要结论如下:
     1)矿区开发导致地表剧烈扰动,地表物质经搬离而重新堆积,新堆积弃土石碴结构疏松,入渗率要明显高于原状土,达到稳定入渗时间要比原状土长,但一旦产流,则侵蚀非常严重。在高强度降雨时,土壤侵蚀加剧,较原状土有近10倍的增加,如果不采取必要措施,将会严重影响当地的生态环境。
     2)不同年限弃土具有明显不同的抗侵蚀能力;随着堆积年限的增加,弃土的植被覆盖和抗侵蚀能力都有较明显的提高;弃土年限超过7年的土壤植被和抗侵蚀能力有较好恢复,超过10年的堆积弃土基本达到原状土土壤环境水平。对于有效控制矿区扰动弃土的土壤侵蚀,主要在于提高其压实性,恢复其原来的结构特征,另外,增加植被覆盖度及加快其恢复速度也可以有效减少土壤侵蚀。
     3)存在生物结皮区径流量要大于同等降雨条件下的无生物结皮区,并且生物结皮覆盖度越大其径流产生量越大。存在生物结皮区的同期径流含沙量累计产沙量要比无生物结皮区要小。说明生物结皮具有很好的抗侵蚀作用。
     4)砒砂岩区的侵蚀产沙过程与岩石风化过程密切相关。在不考虑风蚀影响的情况下,影响砒砂岩风化速率的主要因素有岩性(矿物组成、孔隙特征、胶结物等)、处理条件、冻融周期等因素。不同岩性的砂岩在同样处理条件下具有不同风化速率。溶液浸泡可以减缓砒砂岩风化,在不同的冻融环境里其影响程度不尽相同。
     5)岩石的室内温控冻融风化模拟试验,风化速率远远小于实地的风化速率,这也间接证实在岩石的风化过程中,风或者其它因素的作用远远大于冻融作用;室内浸泡与无浸泡两种岩石风化试验结果也表明,在神府东胜煤矿区岩石的风化过程中风或其它因素的作用远远大于水的作用。
     6)通过野外降雨试验模拟发现矿区堆积弃土堆积物中新近弃土侵蚀剧烈,单场降雨侵蚀模数比类似原状土坡地的侵蚀模数增加10倍多,侵蚀产沙最大。在相同条件下,降雨强度越大,侵蚀模数越大。在风沙土坡地,一旦产生径流,则含沙量很大,且沟谷的形成过程为垂直渗流—坡地潜流—崩塌。模拟结果表明水土流失具有明显空间差异性,发现侵蚀最严重的地方主要是坡度为25度的沙黄土坡地。
     本文的主要创新点为:
     1)通过对矿区开发以来历年弃土堆积物进行设定雨强下的模拟降雨试验,获得了矿区土壤自破坏后堆积状态下进行自然恢复下的侵蚀产流产沙规律,为深入研究矿区开发以来扰动土壤水土流失动态发展趋势提供新的思路。
     2)在岩石风化试验研究中,分析研究手段方面,在总结当前研究现状的基础上,有了较大的突破和创新,一改过去采用单一的冻融分析、温度变化分析、化学过程分析的方法。首次提出了结合X衍射分析技术,根据当地环境的特征,采用冻融、温控和不同水化学环境相结合的风化模拟方法。通过不同的试验环境下岩石风化过程的比较分析,对定性、定量研究影响砒砂岩风化因素具有重要的科学意义。
     3)利用ArcGIS 8.3、Mapinfo 7.0等软件,结合生态学原理,将土壤侵蚀预测落实到生态地形单元上,经过对各种生态地形单元进行野外降雨试验,获得相应的侵蚀模数。经过对各生态单元内影响土壤侵蚀的各环境要素进行权重分析,应用组合数学原理进行整个小流域的水土流失预测预报。并通过在六道沟流域进行人工降雨模拟试验,模型得到证明。水土流失生态预报模型能够准确反映土壤水蚀的空间差异性。在坡度较陡,地形破碎,暴雨频发的黄土高原,此模型可以得到较好的应用。
At present, soil and water loss has been widely concerned as one of the important environmental issues by the whole world. The accelerated soil and water loss induced by large-scale centralized exploitation and corresponding engineering construction, is the key research content of presently studies on soil erosion, which has been attracting extensive attention of many governments and experts. Shenfu-dongsheng coal mine area, be one of China's important energy base, located in the combined wind and water erosion at northern Loess Plateau, is a typical area of fragile ecological environment. With the exploitation of coal resources, the environment there has been greatly changed, particularly because the accumulated spoil and exposed bedrock which disturb the rock soil easily resulted in accelerated erosion under the local special meteorological and hydrological conditions, and consequently a series of serious environmental problems occured. Fragile ecological environment has become more vulnerable, so it seriously constrained the mine area's production safety and sustainable development.
     On the basis of an extensive investigation of the mine area's overall environment under the development and construction since 1990, the authors mastered the mining area's environmental changes due to the exploitation of coal resources. According to actual situations of mining material composition and bedrock's distribution, using the simulated rainfall technology and the simulated weathering experimental technology, combined with GIS, simulated rainfall experiments were conducted respectively on the un-disturbed slopes and accumulated soils of different years, and Liudaogou watershed in this mine area was selected to study on soil erosion prediction model for all the mine area. This work supplies new methods and measures for a study of soil and water loss management and reclamation.On the one hand, this project, can provide technical support for the Shenfu Dongsheng mine to control soil erosion effectively, on the other hand, it also can offer a theoretical guidance on soil erosion for the sustainable development of mining areas of China.
     The main conclusions of the dissertation included:
     1) The soils accumulated in different years had different anti-erosion capabilities, and with the increasing of accumulation time, the vegetation covering rate and anti-erosion ability were enhanced gradually.
     2) If the time of accumulated soils were over seven years, the vegetation and anti-erosion ability had well recovered, and if the time of accumulated soils were over ten years, the vegetation and anti-erosion ability had recovered to be similar to primary soil. And the effective measures to control soil erosion of disturbed spoil mainly on enhancing soil compactility and recovering original structure characteristics. Furthermore, increasement of vegetation coverage and rapide recovery rate can reduce soil erosion availably.
     3) Runoff in microbial crust district were greater than the same rainfall conditions without microbial crust. The sediment runoff of microbial crust was more than the same period of no microbial crust, and the test area of microbial coverage of 46% carried out least sediment runoff. Microbial crust of accumulated sediment yield was smaller than the one of non-microbial crust.
     4) Regardless of the effects of wind erosion, the main factors that affected the weathering rate of pisha-sandstones were the lithologies (mineralogical composition, pore characteristics, cementation,etc), treatment conditions, arrangement of drying -wetting-freezing cycle, etc.
     5) The indoor immersion and non-immersion weathering experiments also revealed that throughout the weathering process in the region, the role of wind was greater than the role of water.
     6) By simulating model of field rainfall erosion modulus in Liudaogou small watershed, we found that there is intense soil erosion occurred on late accumulated spoil with erosion modulus 10 times more than original slope and the largest sediment yield under field rainfall simulation. Under the same situation, the greater rainfall intensity is, the greater erosion modulus is. On sandy slope, once producing runoff, the sediment concentration would be large, and the formation process of gully is vertical seepage—slope undercurrent—landslip.
     The innovated progress of this dissertation included:
     1) Through simulated rainfall experiments with different rainfall intensitis carried out on the accumulated soils since mine area's exploitation, the rules of runoff and sediment erosion in the different accumulated soils of natural recovery have been obtained.This method improves our ideas to study on the soil and water erosion of disturbed soils since mine exploitation.
     2) On the foundation of summarization the current research, analysis methods of the rock weathering study have great breakthroughs and innovations. Instead of using a single analysis method, freeze-thaw analysis, temperature-change analysis, or chemical processes analysis, a new weathering simulation method was advanced, which is combined with X-ray, according to local environment features, and integrated with the cycle of freeze-thaw, temperature-change, and chemical processes.
     Through comparative analysis of rock weathering process under different environment, there's a great scientific importance on qualitatively and quantitatively studying the factors affecting pisha-stones weathering.
     3) Based on the softwares of ArcGIS 8.3 and Mapinfo 7.0, combined with ecological principles, the objectives of this paper were to obtain erosion modulus by field rainfall experiments in various ecological terrain units, and to predict soil loss in the whole small watershed. According to watershed runoff concentration principle, combinatorics principle, and weights analysis of environmental factors, which affect soil erosion of each ecological unit, we constructed the soil erosion prediction model. Then by conducting rainfall simulation in Liudaogou small watershed, the model was proved. The soil erosion ecological prediction model can reflect the spatial difference of soil water erosion more accurately in the Loess plateau with steep slope, small terrain plot and frequent rainstorm.
引文
Abu Hammad A H, Borresen T, Haugen L E. Effects of rain characteristics and terracing on runoff and erosion under the Mediterranean[J]. Soil and Tillage Research, 2006, 87(1):39-47.
    Alexandra G. Biomorphic analysis as a part of soil morphological investigations[J]. Catena, 2001, 43:217-230.
    Alsaaran N.and Olyphant G.A. A model for simulating rock-water interactions in a weathering profile subjected to frequent alternations of wetting and drying[J].Catena, 1998,32(3-4): 225-243.
    Amore Elena, Modica Carlo, Nearing Mark A. et al. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins[J]. Journal of Hydrology, 2004,293(1-4):100-114.
    Andrew W R, Karen M L, Peter A F. Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants[J]. Bioresource Technology, 2004, 91: 223-231.
    Angima S. D., Stott D. E., O'Neill M. K. et al. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture[J].Ecosystems & Environment, 2003,97(l-3):295-308 .
    Anthony B. Restoration of mined lands-using natural processes[J].Ecological Engineering, 1997, 8:225-269.
    Aksoy, H, Kavvas, M L. A review of hillslope and watershed scale erosion and sediment transport models[J]. Catena, 2005, 64 (2-3):247-271.
    Begonha A.and Sequeira Braga M. A. Weathering of the Oporto granite: geotechnical and physical properties[J]. Catena, 2002, 49(1-2): 57-76.
    Belnap J, Lange O L. Biological soil crusts: structure, function and management[M].Berlin: Spring-verlag, 2003.
    Benavente D., Mart(?)nez-Mart(?)nez J., Cueto N. and Garc(?)a-del-Cura M.A. Salt weathering in dual-porosity building dolostones[J]. Engineering Geology, 2007, 94(3-4): 215-226.
    Bradshaw A D, Huttl R F. Future minesite restoration involves a broader approach[J].Ecological Engineering, 2001, 17:87-90.
    Brown M T. Landscape restoration following phosphate mining: 30 years of co-evolution of science, industry and regulation[J]. Ecological Engineering, 2005, 24:309-329.
    Christiansen J E. The uniformity of application of water by sprinkler systems[J]. Agricultural Engineering, 1941,22:89-92.
    Christoph E, Gerhard E. Influence of modern soil restoration techniques on litter decomposition in forest soils[J]. Applied Soil Ecology,1998, 9:501-507.
    Daniel L M, Peter D S, Jeffrey S B. Soil Microbiological properties 20 years after surface mine reclamation: spatial analysis of reclaimed and undisturbed sites[J]. Soil Biology&Biochenmistry, 2002, 34:1717-1725.
    Devine D. L., Wood M. K., Donart G. B. Runoff and erosion from a mosaic tobosagrass and burrograss community in the northern Chinhuahuan Desert grassland[J].Journal of Arid Enviroments, 1998, 19; 11-19.
    Dhakal G.,Yoneda T.,Kato M.and Kaneko K. Slake durability and mineralogical properties of some pyroclastic and sedimentary rocks[J]. Engineering Geology, 2002,65(1): 31-45.
    Di Figlia M.G.,Bellanca A., Neri R. and Stefansson A. Chemical weathering of volcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solution investigations[J]. Chemical Geology, 2007, 246(1-2): 1-8.
    Doerr S.H., Shakesby R.A., Blake W.H. et al. Effects of differing wildfire severities on soil wettability and implications for hydrological response[J]. Journal of Hydrology, 2006, 319(1-4):295-311.
    Eldridge D J, Zaady E, Shachak M. Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel [J]. Catena, 2000, 40(3):323-336.
    Friedli B, Tobias S, Fritsch M. Quality assessment of restored soils: combination of classical soil science methods with ground penetrating radar and near infrared aerial photography? [J]. Soil& Tillage Research, 1998, 46:103-115.
    Gao L, Miao Z W, Bai Z K, et al. A case of ecological restoration at the Xiaoyi Bauxite Mine, Shanxi Province, China[J]. Ecological Engineering, 1998, 11:221-229.
    Gardner RAM, Gerrard A J. Runoff and soil erosion on cultivated rainfed terraces in the Middle Hills of Nepal[J]. Applied Geography,2003, 23(1):23-45.
    Goudie A.S.,Wright E.and Viles H. A.The roles of salt (sodium nitrate) and fog in weathering: a laboratory simulation of conditions in the northern Atacama Desert, Chile[J]. Catena, 2002,48(4): 255-266.
    Hall K. The role of thermal stress fatigue in the breakdown of rock in cold regions[J]. Geomorphology, 1999,31: 47-63.
    Hall K. and Andre M.F. New insights into rock weathering from high-frequency rock temperature data: an Antarctic study of weathering by thermal stress[J].Geomorphology, 2001,41: 23-35.
    Hall K.,Meiklejohn I.and Arocena J. The thermal responses of rock art pigments: implications for rock art weathering in southern Africa[J]. Geomorphology, 2007,91(1-2): 132-145.
    Hemmingsen S.A.,Eikaas H.S. and Hemmingsen M.A. The influence of seasonal and local weather conditions on rock surface changes on the shore platform at Kaikoura Peninsula, South Island, New Zealand[J].Geomorphology, 2007, 87(4): 239-249.
    Housman D C, Powers H H, Collins A D et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal of Arid Environments, 2006, 66(4): 620-634.
    Jiang Hongtao., Xu Feiei, Ca Yi et al. Weathering characteristics of sloping fields in the Three Gorges reservoir area, China[J]. Pedosphere, 2006, 16(1): 50-55.
    Jim(?)nez-Espinosa R., V(?)zquez M. and Jim(?)nez-Mill(?)n J. Differential weathering of granitic stocks and landscape effects in a Mediterranean climate, Southern Iberian Massif (Spain) [J]. Catena, 2007, 70(2): 243-252.
    Joan M, Josep M M. A GIS methodology for assessing ecological connectivity application to the Barcelona Metropolitan Area[J]. Landscape and Urban Planning, 2005, 71: 243-262.
    Kalin M. Biogeochemical and ecological considerations in designing wetland treatment systems in post-mining landscapes[J]. Waste Management, 2001, 21:191-196.
    Kalin M. Passive mine water treatment: the correct approach? [J]. Ecological Engineering, 2004,22:299-304.
    Kasanin-Grubin M. and Bryan R.Lithological properties and weathering response on badland hillslopes[J]. Catena, 2007,70(1): 68-78.
    Kleeberg A, Schapp A, Biemelt D. Phosphorus and iron erosion from non-vegetated sites in a post-mininglandscape, Lusatia, Germany: Impact on aborning mining lakes[J]. Catena, 2008,72(1): 315-324.
    Kourtev P S, Ehrenfeld J G, Haggblom M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities [J]. Soil Biology & Biochemistry, 2003, 35: 895-905.
    Lant Christopher L., Kraft Steven E., Beaulieu Jeffrey et al. Using GIS-based ecological-economic modeling to evaluate policies affecting agricultural watersheds [J]. Ecological Economics, 2005, 55(4):467-484.
    Li X Y, Liu L Y , Wang J H. Wind tunnel simulation of aeolian sandy soil erodibility under human disturbance [J]. Geomorphology, 2004, 59(1-4):3-11.
    Liao M, Chen C L, Huang C Y. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area[J]. Journal of Environmental Science, 2005,17(5):832-837.
    Lier Quirijn de Jong van, Sparovek Gerd, Flanagan Dennis C. et al. Runoff mapping using WEPP erosion model and GIS tools[J] .Computers & Geosciences, 2005,31(10):1270-1276.
    Liu L C, Li S Z, Duan Z H et al. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China[J]. Journal of Hydrology, 2006, 328(1 -2):331-337.
    Loit R, Elmar K, Igna R. Development of soil organic matter under pine on quarry detritus of open-cast oil-shale mining [J]. Forest Ecology and Management, 2002,71:191-198.
    Maria J. Fernandez S, Giuseppe C, at al. Chemical and mineralogical changes in a polygenetic soil of Galicia, NW Spain[J]. Catena, 2001, 43:251-265.
    Mathys N, Klotz S, Esteves M et al. Runoff and erosion in the Black Marls of the French Alps: Observations and measurements at the plot scale[J].Catena, 2005, 63(2-3):261-281.
    Matsuoka N. Rock weathering processes and landform development in the Sor Rondane Mountains, Antarctica[J]. Geomorphology, 1995, 12(4): 323-339.
    Matsukura Y.and Takahashi K. A new technique for rapid and non-destructive measurement of rock-surface moisture content; preliminary application to weathering studies of sandstone blocks[J]. Engineering Geology, 2000, 55(1-2): 113-120.
    Miao Z, Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China [J]. Environment Management, 2000, 59:205-215.
    Moffat A J, Meneill J D. Reclaiming disturbed land for forestry [M]. London:HMSO, 1994,112.
    Nagy M L, Johansen J R, St L L, et al. Recovery patterns of microbiotic soil crusts 70 years after arsenic contamination[J] Journal of Arid Environments,2005,63(1): 304-323.
    Parsons A J, Stone P M. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion [J]. Catena, 2006, 67(1): 68-78.
    Perk Marcel van der, Jetten Victor G. The use of a simple sediment budget model to estimate long-term contaminant export from small catchments [J]. Geomorphology, 2006, 79(1-2):3-12.
    Rulli M C, Bozzi S, Spada M et al. Rainfall simulations on a fire disturbed mediterranean area [J]. Journal of Hydrology, 2006, 327( 3-4): 323-338.
    Shamshad A, Leow, G S, Ramlah, M W A, et al. Applications of AnnAGNPS model for soil loss estimation andnutrient loading for Malaysian conditions[J], International Journal of Applied Earth Observation and Geoinformation,2008, 10:239-252.
    Sigfusson B., Gislason S.R.and Paton G.I. Pedogenesis and weathering rates of a Histic Andosol in Iceland: Field and experimental soil solution study[J]. Geoderma, 2008,144(3-4): 572-592.
    Smakhtin, V U, Low flow hydrology: a review[J]. Journal of Hydrology,2001,240: 147-186.
    Smith B.J.,Warke P.A,McGreevy J.P. and Kane H.L. Salt-weathering simulations under hot desert conditions: agents of enlightenment or perpetuators of preconceptions? [J] Geomorphology, 2005,67(1-2): 211-227.
    Sparovek Gerd, Schnug Ewald. Soil tillage and precision agriculture: A theoretical case study for soil erosion control in Brazilian sugar cane production[J]. Soil and Tillage Research, 2001, 61(1-2):47-54.
    Sourkova M, Frouzb J, Fettweisc U, et al. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany) [J]. Geoderma, 2005, 129:73-80.
    Takken I, Jetten G, Nachtergaele J et al. The effect of tillage-induced roughness on runoff and erosion patterns [J]. Geomorphology, 2001, 37(1-2):1-14.
    Uchida T, Ohte N, Kimoto A, et al. Sediment yield on a devastated hill in southern China: effects of microbiotic crust on surface erosion process [J]. Geomorphology, 2000, 32(1-2):129-145.
    Valentin C, Rajot J L, Mitja D. Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa [J]. Agriculture, Ecosystems & Environment, 2004, 104(2):287-302.
    Wang Z T, Zhou Y H, Zheng X J. Tensile test of natural microbiotic crust[J].Catena, 2006,67(2):139-143.
    Warke P A.and Smith B J. Effects of direct and indirect heating on the validity of rock weathering simulation studies and durability tests[J]. Geomorphology, 1998, 22(3-4): 347-357.
    Wells T, Binning P,Willgoose G. and Hancock G. Laboratory simulation of the salt weathering of schist: 1. Weathering of schist blocks in a seasonally wet tropical environment and greg hancock salt weathering of schist in a tropical climate[J].Earth Surface Processes and Landforms,2006,31:339-354.
    Wilson B,Pyatt F.B.Heavy metal dispersion,persistance,and bioccumulation around an ancient copper mine situated in Anglesey,UK[J].Ecotoxicology and Environmental Safety,2007,66:224-231.
    Wong M H.Ecological restoration of mine degraded soils,with emphasis on mental contaminated soils[J].Chemosphere,2003,50:775-780.
    Yair A,Raz-Yassif N.Hydrological processes in a small arid catchment:scale effects of rainfall and slope length[J].Geomorphology,2004,61 (1-2):155-169.
    Vente Joris de,Poesen Jean.Predicting soil erosion and sediment yield at the basin scale:Scale issues and semi-quantitative models[J].Earth-Science Reviews,2005,71(1-2):95-125.
    Zakharova E.A.,Pokrovsky O.S.,Dupr(?) B.,Gaillardet J.and Efimova L.E.Chemical weathering of silicate rocks in Karelia region and Kola peninsula,NW Russia:Assessing the effect of rock composition,wetlands and vegetation[J].Chemical Geology,2007,242(1-2):255-277.
    Zhang Liping,Yang Dayuan.and Zhu Dakui.Denudation rate of crystalline rock in the Huangling anticline of the Three Gorges of Yangtze River in China since the Eocene[J].Science in China (Series D),2003,46(9):928-940.
    Zribi M,Ciarletti V,Taconet O,et al.Characterization of the soil structure and microwave backscattering based on numerical three-dimensional surface representation:analysis with a fractional brownian model[J].Soil Structure and Microwave Backscattering,2000,72:159-169.
    白中科,胡振华.现代化大型露天煤矿废弃地的物理特性与水土保持,1995,(10):11-13.
    白中科,左寻,郭青霞,等.大型露天煤矿土地复垦规划案例研究[J].水土保持学报,2001,15(4):118-121.
    白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报,2006,22(6):67-70.
    卞正富,张国良,胡喜宽.矿区水土流失及其控制研究[J].土壤侵蚀与水土保持学 报,1998,4(4):31-36.
    曹瑜,杨志峰,袁宝印,等.基于GIS黄土高原土壤侵蚀因子的厘定[J].水土保持学报,2003,17(2):93-96.
    陈光伟等主编.黄土高原遥感调查试验研究[M].北京:科学出版社,1988.
    陈浩,黄土丘陵沟壑区流域系统侵蚀与产沙关系[J].地理学报,2000,55(3):354-363.
    陈洪松,邵民安,张兴昌,等.野外模拟降雨条件下坡地降雨入渗、产流试验研究[J].水土保持学报,2005,19(2):5-8.
    陈洪松,邵民安,王克林土壤初始含水率对坡面降雨入渗与土壤水分再分布的影响[J].农业工程学报,2006,22(1):44-47.
    陈龙乾,邓喀中,许善宽,等.开采沉陷对耕地土壤化学特性影响的空间变化规律[J].土壤侵蚀与水土保持学报,1999,5(3):81-86.
    陈龙乾,邓喀中,唐宏,等.矿区泥浆泵复垦土壤物理特性的时空演化规律[J].土壤学报,2001,38(2):277-283.
    陈龙乾,郭达志,张明,等.矿区地表采掘废弃地充填复垦材料及技术研究[J].中国矿业大学学报,2002,31(1):60-64.
    陈文亮,唐克丽.SR型野外人工模拟降雨装置[J].水土保持研究,2000,7(4):106-110.
    陈文亮,王占礼.国内外人工模拟降雨装置综述[J].水土保持学报,1990,4(1):61-65.
    陈文亮,王占礼.人工模拟降雨特性的试验研究[J].水土保持通报,1991,11(2):55-62.
    陈一兵.土壤侵蚀建模中ANSWERS及地理信息系统ARC/INFOR的应用研究[J].土壤侵蚀与水土保持学报,1997,3(2):1-13.
    陈永宗.我国土壤侵蚀研究工作的新进展[J].中国水土保持,1989,(9):7-11.
    陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988,31-53.
    蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,16(2):19-24.
    蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,51(2):108-117.
    蔡强国,王贵平,陈永宗,等.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998,4.
    崔龙鹏,白建峰,史永红,等.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学 报,2004,41(6):896-904.
    鄂竟平.中国水土流失与生态安全综合科学考察总结报告.2008,11.
    傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    胡霞,蔡强国,刘连有,等.人工降雨条件下几种土壤结皮发育特征[J].土壤学报,2005,42(3):504-507.
    胡霞,严平,李顺江,等.人工降雨条件下土壤结皮的形成以及与土壤溅蚀的关系[J]水土保持学报,2005,19(2):13-16.
    胡振琪.我国煤矿区的侵蚀问题与防治对策[J].中国水土保持,1996,(1):11-13.
    胡振琪.煤矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,22(6):617-622.
    胡振琪,戚家忠,司继涛.粉煤灰充填复垦土壤理化性状研究[J].煤炭学报,2002,27(6):639-644.
    胡振琪,魏忠义,秦萍.塌陷地粉煤灰充填复垦土壤的污染性分析[J].中国环境科学,2004,24(3):311-315.
    胡振琪,张光灿,魏忠义,等.煤矸石山的植物种群生长及其对土壤理化特性的影响[J].中国矿业大学学报,2003,32(5):491-496.
    胡振琪,张光灿,毕银丽,等.煤矸石山刺槐林分生产力及生态效应的研究[J].生态学报,2002,22(5):621-628.
    黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169.
    黄杏元,马劲松,汤勤.地理信息系统概论(修订版)[M].北京:高等教育出版社,2003,4.
    洪坚平,谢营荷,孔令节,等.矿山复垦区土壤生物及其生化特性研究[J].生态学报,2000,20(1):669-672.
    江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究,1996,3(2):84-97.
    江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1)1-9.
    景可,李钜章,李风新.黄河多沙粗沙区产水产沙对中游水来沙的贡献率[J].土壤侵 蚀与水土保持学报,1999,5(1):13-18,26.
    景可,李钜章,李风新.黄河中游侵蚀量及趋势预测[J].地理学报,1998,53(s1):107-115.
    李壁成,李锐,马晓云,等.小流域水土保持信息系统的建立与应用[J].水土保持学报,1989,3(3):26-32.
    李壁成,主编.小流域水土流失与综合治理遥感监测[M].北京:科学出版社,1995,25-32.
    李德平,张玉梅,方继臣,等.矸石山水土流失规律与防治措施的研究[J].水土保持研究,2001,8(3):31-32,42.
    李淼,宋孝玉,沈冰,等.黄土沟壑区不同植被对产流产沙的影响[J].西北农林科技大学学报(自然科学版),2006,34(1).117-120.
    李清河,孙宝平,孙立达.黄土区小流域土壤侵蚀系统模拟的研究[J].水土保持学报,2002,16(3):1-4.
    李锦,主编.土壤制图[M].福州:福建地图出版社,1997,169-179.
    李鹏,李占斌,郑良勇.植被恢复演替初期对模拟降雨产流特征的影响[J].水土保持学报,2004,18(1):54-57,62.
    李锐,杨勤科.空间信息技术在水土保持规划中的应用[J].水土保持通报,1999,16(1):114-118.
    李忠武,蔡强国,吴淑安,等.内昆铁路施工期不同下垫面土壤侵蚀模拟研究[J].水土保持学报,2001,15(2):5-8.
    刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350.
    刘高焕,刘俊卫,朱会义.基于GIS的小流域地块单元划分与汇流网络计算[J].地球科学进展,2002,21(2):139-145.
    刘景,王金达,张学林,等.煤矿塌陷地复垦还田生态重建研究——以抚顺煤矿为例[J].地理科学,2000,20(2):189-192.
    刘利年.国内外工矿区造成的恶果和土地复垦经验[J].水土保持通报,1986,6(2):76-79.
    龙健,黄昌勇,腾应,等.我国南方红壤矿山复垦土壤的生物特征研究[J].水土保持 学报,2002,16(2):126-129.
    龙健,黄昌勇,滕应,等.矿区废弃地土壤生物及其生化活性[J].生态学报,2003,(23)3:496-503.
    陆兆熊,蔡强国.黄土高原地区土壤侵蚀与土地管理研究进展[J].水土保持学报,1992,6(4):86-95.
    马修军,谢昆青.GIS环境下流域降雨侵蚀动态模拟研究-以PCRaster和LISEM模型为例[J].环境科学进展,1999,7(5):137-144.
    门宝辉.VB5.0在初步开发小流域水土保持规划信息体统中的应用[J].水土保持通报.1999,19(6):36-38.
    倪九派,傅涛,李瑞雪,等.应用ARC/INFO预测芋子沟小流域土壤侵蚀量的研究[J].水土保持学报,2001,15(4):46-50.
    山西省水土保持科学研究所,中国科学院、国家计划委员会地理研究所,加拿大多伦多大学地理系.晋西黄土高原土壤侵蚀管理与地理信息系统应用研究[M].北京:科学出版社,1992.
    史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农用地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    孙虎,甘枝茂.人为弃土的堆积与侵蚀过程的初步研究[J].西北地质,1998,19(1):61-65.
    孙泰森,师学义,杨玉敏,等.五阳矿区采煤塌陷地复垦土壤的质量变化研究[J].水土保持学报,2003,17(4):35-38.
    唐克丽主编.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社,1990,45-91.
    唐克丽主编.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993,149-177.
    唐克丽.黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J].中国水土保持,2000,(11):11-12,17.
    唐克丽,史立人,史德明,等.中国水土保持[M].北京:科学出版社,2004,356.
    唐克丽,郑粉莉,史德明.土壤侵蚀研究回顾与展望[J].土壤学报,1989,26(3):226-233.
    唐泽军,雷廷武,张睛雯等.降雨及聚丙烯酰胺(PAM)作用下土壤的封闭过程和结皮 的形成[J].生态学报,2002,12(5):674-681.
    唐政洪,蔡强国,李忠武,等.内蒙古砒砂岩地区风蚀、水蚀及重力侵蚀交互作用研究[J].水土保持学报,2001,15(2):25-29.
    滕应,黄昌勇,龙健,等.矿区侵蚀土壤的生物活性及其群落功能多样性研究[J].水土保持学报,2003,17(1):115-118.
    王百群,张卫,邢大韦.神府—东胜煤田大柳塔矿区水质及其污染评价[J].水土保持研究,1994,1(4):100-111.
    王青杵.煤炭开采区废弃物堆置体坡地侵蚀特征研究[J].中国水土保持,1998,(8):26-29.
    王青杵,王贵平.黄土高原煤炭开采区水土流失特性研究[J].水土保持研究,2001,8(4):83-85,132.
    王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996,40-46.
    卫海燕,张科利,王敬义.分布式侵蚀预报模型中网格面积的选定-以黄土高原丘陵沟壑区为例[J].地理研究,2002,21(5):578-584.
    魏忠义,胡振琪,白中科.露天煤矿排土场平台“堆状地面”土壤重构方法[J].煤炭学报,2001,26(1):19-22.
    吴发启,范文波.土壤结皮与降雨溅蚀的关系研究[J].水土保持学报,2001,15(3):1-3.
    武春龙,江忠善,郑世清.安塞县纸坊沟流域土壤侵蚀类型遥感制图[J].水土保持通报,1990,10(4):6-12,19.
    奚成刚,杨成永,许兆义.铁路工程施工期路堑边坡地产流产沙规律研究[J].中国环境科学,2002,22(2):174-178.
    许炯心.黄河中游多沙粗沙区的风水两相侵蚀产沙过程[J].中国科学,D辑,2000,30(5):540-548.
    徐天蜀,彭世揆,岳彩荣.基于GIS的土壤侵蚀评价研究[J].南京林业大学学报(自然科学版),2002,26(4):43-46.
    晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337.
    杨春霞,吴卿,杨剑锋,等.人工模拟坡面产流试验研究[J].中国水土保持,2003,6:24-25
    杨聪,于静洁,刘昌明等.华北山区坡地产流规律试验研究[J].地理学报,2005,60(6):1021-1028.
    杨景才,关三和.建设山川秀美的神东矿区,确保能源基地的可持续发展[J].煤矿环境保护,2000,14(6):9-12.
    杨联安,杨凯.GIS软件在小流域规划与管理中的应用初探[J].西北大学学报(自然科学版),2002,32(6):672-676.
    杨勤科,李锐,李智广,等.区域水土流失快速调查研究初报[J].水土保持通报,1999,19(3):36-39.
    杨晓晖,张克斌,赵云杰.生物土壤结皮——荒漠化地区研究的热点问题[J].生态学报,2001,21(3):747-480.
    叶浩,石建省,李向全,等.砒砂岩岩性特征对抗侵蚀性影响分析[J].地球学报,2006,27(2):145-150.
    游松财,李文卿.GIS支持下的土壤侵蚀量估算-以江西省泰和县灌溪乡为例[J].自然资源学报,1999,14(1):62-68.
    于东升,史学正.GIS中土壤信息系统的研究进展[J].土壤学进展,1993,(6):26-31.
    于东升,史学正,王宁.用人工模拟降雨研究亚热带坡耕地土壤的沟蚀和沟间侵蚀[J].土壤学报,2001,38(2):160-166.
    余新晓,张学霞,李建牢,等.黄土地区小流域植被覆盖和降水对侵蚀产沙过程的影响[J].生态学报,2006,26(1):1:8.
    查小春,唐克丽.黄土丘陵地土壤侵蚀与土壤性质变化[J].地理学报,2003,58(3):464-469.
    詹小国,王平.基于RS和GIS的三峡库区水土流失动态监测研究[J].长江科学院院刊,2001,18(2):41-44.
    张登荣,朱建丽,徐鹏炜.基于卫星遥感和GIS技术的水土流失动态监测体系研究[J].浙江大学学报(理学版),2001,28(5):577-582.
    张帆,王利,连飞.应用地理信息系统(GIS)监测河北省蔚县水土流失治理成效[J].中国沙漠,1998,18(2):175-177.
    张丽萍,唐克丽.矿山泥石流[M].北京:地质出版社,2001,24-30;67.
    张丽萍,唐克丽,张平仓.片沙覆盖的黄土丘陵区土壤风蚀特征研究[J].土壤侵蚀与 水土保持学报,1997,3(4):8-12.
    张丽萍,唐克丽,张平仓.神府-东胜矿区人为泥石流的系统控制研究[J].水土保持通报,1999,19(2):1-6.
    张丽萍,杨达源,朱大奎.长江三峡坝区花岗岩风化壳化学元素迁移特征[J].地理学报,2001,56(5):515-522.
    张丽萍,张登荣,张锐波,等.小流域土壤侵蚀预测预报基本生态单元的和模型设计[J].水土保持学报,2005,19(1):101-104.
    章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析[J].北京师范大学学报(自然科学版),2001,37(3):402-408.
    张乃明,武雪萍,谷晓滨等.矿区复垦土壤养分变化趋势研究[J].土壤通报,2003,34(1):58-60.
    赵其国.我国土壤调查及土地分类工作的回顾与展望[J].土壤,1992,24(6):281-284,301.
    赵晓丽,张增祥,王长有,等.基于RS和GIS的西藏中部地区土壤侵蚀动态监测[J].土壤侵蚀与水土保持学报,1999,5(2):44-50.
    赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J].自然资源学报,2006,21(3):441-448.
    郑粉莉,王占礼,杨勤科.我国土壤侵蚀科学研究回顾和展望[J].自然杂志,2008,30(1):12-16.
    中国科学院、水利部西北水土保持研究所.黄土高原综合治理示范区专题地图集[M].北京:测绘出版社,1991.
    中国科学院遥感应用研究所,华东师范大学地理系.黄土高原水土保持林区遥感综合研究[M].北京:中国科学技术出版社,1990,379-386.
    周慧珍,J.A.Shied.1:100万土壤-土地图数据库及土壤退化信息解译[J].土壤学报,1991,28(4):395-402.
    周伟,白中科,袁春,等.东露天煤矿区采矿对土地利用与土壤侵蚀的影响预测[J].农业工程学报,2007,23(3):55-60.
    朱高洪,毛志锋.我国水土流失的经济影响评估[J].中国水土保持科学,2008,6(1):63-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700