用户名: 密码: 验证码:
船用湿式多片摩擦离合器耦合分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船用湿式多片摩擦离合器在较高速度时容易发生滑摩或油膜剪切发热问题,这不仅与摩擦片内部温度场、位移场有关,还与润滑及冷却介质的流场有关。本文提出基于两方程湍流模型分析湿式多片摩擦离合器复杂油路流场的方法,以及基于流体能量守恒方程分析润滑油剪切作用下摩擦片副温度场的方法,开展离合器空转状态润滑油路流场分析、摩擦片副热-流和热-结构分析,接排过程摩擦片组瞬态热-结构耦合分析,并进行试验研究,揭示润滑油油路结构、摩擦片油槽结构及离合器使用工况等因素对摩擦离合器发热的影响规律,对低发热、高寿命、高可靠的离合器设计具有重要的理论意义及工程应用价值。
     本文项目来源于重庆市科技攻关计划项目“高性能船舶用齿轮箱系统关键技术及产业化”(CSTC:2007AB3030)及“船用湿式多片摩擦离合器关键技术及产业化”(CSTC:2008AC3102)。针对船用齿轮箱中的湿式多片摩擦离合器进行耦合分析及实验研究。主要研究工作如下:
     ①综合考虑离合器的结构和使用工况,基于原有结构建立了湿式多片摩擦离合器油路流场的参数化有限元分析模型,研究湿式多片摩擦离合器的油路结构对摩擦片间润滑油压力分布的影响,并提出了五种油路结构的改进方案;针对离合器的不同使用工况进行油路流场分析,研究入口流量和润滑油温度对摩擦片间润滑油压力分布的影响。
     ②基于流体能量守恒方程,建立摩擦片副中润滑油热-流耦合分析模型,研究离合器空转速度、油量、摩擦片油槽形式及片间间隙对润滑油温度的影响;而后对摩擦片进行热-结构耦合分析,以研究离合器空转时润滑油流量、油槽形式等对摩擦片变形的影响。
     ③针对船用湿式摩擦离合器调压阀的阀体结构及椭球形阀芯形状,建立调压阀内流道流体动力学有限元分析模型,对调压阀内流道的流场进行数值仿真,得出不同阀芯开口度下的压力云图、速度矢量图以及阀口油压曲线,同时分析了不同工作油温对阀件内流道流场的影响。
     ④构建带径向油槽和螺旋油槽的摩擦片三维实体模型和瞬态传热有限元模型,分析离合器接排过程中单片摩擦片的瞬态温度场,得出接排过程中摩擦片的温度云图及最高温度随时间变化曲线,并研究油槽宽度对摩擦片温度分布的影响;考虑摩擦片与摩擦片座、对偶片与离合器齿轮间花键副摩擦力作用,分析了摩擦片副间的正压力和花键齿间摩擦力的分布规律;而后建立多对摩擦片副的热弹接触有限元分析模型,通过瞬态热-结构耦合分析,得出接排过程中摩擦片组温度云图及分布规律,同时分析了摩擦片的热弹变形及片间接触压力。
     ⑤搭建了船用齿轮箱综合性能试验台,进行了二级调压阀压力试验研究,得出不同开口度的工作油压曲线;针对原始结构及五种改进油路结构、摩擦片不同间隙及油槽参数进行了试验研究,得出了不同油路结构、摩擦片间隙、油槽参数以及进油流量、温度等对入口压力、出油温度的影响规律。试验数据与分析结果吻合良好。
Slipping friction and overheating caused by shearing of oil film were common problems when wet multi-plate friction clutches were disengagement in high speed. The causes of these problems were about not only inner temperature of the clutch and displacement of the disks, but also the flow field of the lubricant. A method based on two-equation turbulence model to analyze the complex flow field of the clutch was proposed, associating with the analysis of temperature field of disks, which was based on the energy conservation of the flow field, the numerical simulation and experimental study of the flow field of lubricant, together with the thermal fluid and thermal structure of the disks in disengaged operation and the thermal structure of the friction disks in engaging process were carried out. After research the influence of the structure of the oil way, the shape of the oil groove and operating conditions on the heating problems of the disks were summarized. Therefore, it has great theory significance and important engineering values to design clutches with low-heat, long-life and high-reliability.
     The topic of this thesis was drawn from scientific and technological project --- key technologies and industrialization of high-performance marine gearbox of Chongqing (CSTC: 2007AB3030) and key technologies and industrialization of marine wet multi-plate friction clutch (CSTC: 2008AC3102). The research work of numerical analysis and experimental study of the coupled of the wet multi-plate friction clutches could be summarized as follows:
     (1) With comprehensive consideration of the structure and operating conditions of the clutch, the parameterized finite model of original oil way was established and the influence of the structure of oil way on the lubricant pressure distribution in the clearances of the disks was studied, five modified structures were presented, and then the flow field analysis with different import velocity and oil temperature of lubricant in different operating conditions were analyzed.
     (2) The thermal analysis of lubricant of clutch was analyzed based on the energy conservation of flow. The influence of disengagement speed, inlet flow rate, type of oil grooves and width of the clearances between the disks on the lubricant temperature and after that the deformation of the disks was presented.
     (3) According to the structure of pressure-regulating vale in marine wet multi-plate friction clutch and the shape of its ellipsoidal spool, the oil way model of pressure-regulating valve was established and analyzed. Then after numerical simulation of the oil way, the pressure isograms at three different opening positions, the velocity vector diagram and lubricant pressure in the inlet of the vale could be displayed, and the influence of different lubricant temperature on the flow field were specified.
     (4) The friction plate solid and transient heat transfer finite model with spiral and radial oil groove was established, and the transient thermal field in the engaging process of single clutch was analyzed. The temperature contour and the curves of maximum temperature-time history of friction plate were displayed. After comparison the influence of groove width on the temperature distribution was specified. Considering the friction factor on the spline of the friction disks and disk blocks, the steel disks and clutch gear, the friction force distribution between the disks and the gears of spline could be analyzed. According to the establishment the thermal-elastic model of all disks and transient analysis of thermal structure of the disks, the temperature contour and distribution between the disks in engaging process was displayed, together with the thermal-elastic deformation and contact pressure.
     (5) The general performance test bench of gearbox was established, and the experiment of the two-stage pressure-regulating valve was done, the lubricant pressure curves at different opening positions were recorded. According to the original structure and five modified structures, width of the clearances between the disks and parameter of oil grooves, the experimental study was carried out, and the influences of different oil structure, clearances between the disks, parameter of oil grooves, inlet flow rate and temperature on inlet pressure and outlet temperature were got. The result of test and analysis show good agreement.
引文
[1]周明衡.离合器、制动器选用手册[M].北京:化学工业出版社, 2003.
    [2]贾云海.多盘湿式摩擦离合器的设计与性能研究[J].矿山机械, 2007, 35(3):51-54.
    [3]仲侗之.湿式多片摩擦离合器的设计[J].摩托车技术, 1995, 5:4-7.
    [4]蔡丹,魏宸官,宋文悦.湿式摩擦离合器片翘曲变形研究[J].北京理工大学学报, 2000, 20(4):449-451.
    [5] Jen Tien-Chen, Nemecek Daniel James. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement[J]. International Journal of Heat and Mass Transfer, 2008, 51(7-8):1757-1769.
    [6]薛殿伦,冯显武,郑联珠,等.基于最优理论的CTV多片湿式离合器片间压力的确定[J].汽车技术, 2007, (10): 17-20.
    [7]薛殿伦,冯显武,郑联珠,等.基于最优压力的CVT多片湿式离合器模糊自适应PID控制[J].汽车工程, 2008, 30(5): 424-428.
    [8]周建钊,张辅荃.离合器摩擦片的温升分析[J].机械设计与研究, 1998, 1:50-52.
    [9]王营,曹献坤,姚安佑,等.盘式制动器摩擦片的温度场研究[J].武汉理工大学学报, 2001, 23(7):22-24.
    [10] L. Afferrante, M. Ciavarellab, P. Decuzzia, etc.. Transient analysis of frictionally excited thermoelastic instability in multi-disk clutches and brakes [J]. Wear, 2003, 254: 136–146.
    [11]李非雪,张文明,方湄.测量湿式多片制动器摩擦表面的温度分布[J].矿山机械, 2000, (12): 56-58.
    [12]李非雪,张文明,方湄.湿式多片制动器摩擦片温度分布规律[J].北京科技大学学报, 2001, 23(6): 539-542.
    [13] Yubo Yang, Robert C. Lam. Theoretical and experimental studies on the interface phenomena during the engagement of automatic transmission clutch [J]. Tribology Letters, 1998, 5: 57–67.
    [14]刘宝运,洪跃,金士良.沟槽对湿式离合器摩擦副啮合性能的影响[J].润滑与密封, 2008, 33(2): 90-93.
    [15] A. Khamlichi, M. Bezzazi, M.A. Parrón Vera. Optimizing the thermal properties of clutch facings [J]. Journal of Materials Processing Technology, 2003, 142: 634–642.
    [16]孟永钢,王东华.通过激光纹理加工改善湿式摩擦离合器的摩擦特性[J].中国机械工程, 2008, 19(8): 883-885.
    [17]孟庆睿,侯友夫.摩擦片表面沟槽对调速起动影响的数值模拟[J].润滑与密封, 2008, 33(8): 36-40.
    [18] Ho S C, Chern Lin J H, Ju C P.. Effect of fiber addition on mechanical and tribological properties of a copper/phenolic-based friction material[J]. Wear, 2005, 258(5-6): 861-869.
    [19] Ho S C, Chern Lin J H, Ju C P.. Effect of carbonization on mechanical and tribological behavior of carbonized copper-phenolic based friction material friction material[J]. Carbon, 2005, 258(11-12): 1764-1774.
    [20]林腾蛟,李润方,杨成云,等.湿式摩擦离合器瞬态热传导过程数值仿真[J].机械科学与技术, 2003, 22(1): 39-41.
    [21]郭志英,李德群,注塑制品翘曲变形的研究[J].朔料科技, 2001, 141: 22-25.
    [22]庄山光,王成国,王海庆,等.盘形制动摩擦表面温升研究[J].机械工程学报, 2003, 39(2): 150-154.
    [23]王立勇,马彪,李和言,等.湿式换挡离合器摩擦片磨损规律研究[J].北京理工大学学报, 2008, 28(4): 324-328.
    [24] Rong-Fang Lu, Jaw-Ren Lin. A theoretical study of combined effects of non-Newtonian rheology and viscosity-pressure dependence in the sphere-plate squeeze-film system [J]. Tribology International, 2007, 40: 125–131.
    [25] Shen-Chun Wu. A PIV study of co-rotating disks flow in a fixed cylindrical enclosure[J]. Experimental Thermal and Fluid Science, 2009, 33: 875–882.
    [26] Zhaosheng Yu. Anthony Wachs, Yannick Peysson, Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 136: 126-139.
    [27] SELEZNEV V.. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators [J]. Zhejiang Univ Sci A, 2007, 8(5): 755-765.
    [28]赵海燕,贾雪松,杨士梅,等.突扩管分离流场的数值模拟[J].科学技术与工程, 2009, 9(17):5238-5240.
    [29] ZHANG Xiaobin, GAN Zhihua, QIU Limin.. Computational fluid dynamic simulation of an inter-phasing pulse tube cooler[J]. Journal of Zhejiang University SCIENCE A, 2008, 9(1): 93-98.
    [30] Jong-Yeon Hwang, Kyung-Soo Yang, Dong-Hyeog Yoon, etc.. Flow field characterization of a rotating cylinder [J]. International Journal of Heat and Fluid Flow 29 2008, 29: 1268–1278.
    [31]杜爱民,段亮,田永祥.四气门汽油机进气道流动特性的CFD分析[J].同济大学学报(自然科学版), 2009, 37(2): 249-252.
    [32]周艳荣,谢振华. 90°方截面弯管内气固两相流场的数值模拟[J].西安科技大学学报, 2008, 28(1): 46-50.
    [33]谢振华,周艳荣. 90°方截面弯管内加装导流板的优化研究[J].应用基础与工程科学学报,2009, 17(4):566-572.
    [34]文俊,刁明军,李斌华,等. 90°圆形弯管三维紊流数值模拟[J].四川水力发电,2008, 27, (2): 111-112.
    [35]李盛元,刘宁宁,李勇,流体流经垂直弯管时内部流场的数值模拟[J].东北电力大学学报, 2009, 29(1):67-70.
    [36]杨桂秋,直接空冷系统主管道两相流的数值模拟[J].应用能源技术, 2009, (134):49-51.
    [37]刘华,梁川,莫政宇,等.低流速孔板流量系数的分析[J].水力发电学报, 2008, 27 (3): 105-109.
    [38]谢安桓,高院安,袁周华.高压气体系统管道流动研究与实验分析[J].液压与气动, 2008, (9):67-69.
    [39]丛茜,封云,三角形沟槽表面流场的数值模拟[J].船舶力学, 2006, 10(5):11-16.
    [40]戴光,付冰,龙飞飞,均匀流中悬空管道横向共振的数值分析[J].设计计算, 2007, 124(3): 31-34.
    [41] G.L. Kuipera, A.V. Metrikine. Experimental investigation of dynamic stability of a cantilever pipe aspirating fluid[J]. Journal of Fluids and Structures, 2008, 24: 541–558.
    [42]龙飞飞,姚嘉,付冰.均匀流中悬空管道横向振动的数值分析[J].大庆石油学院学报, 2008, 32(1): 61-62.
    [43]余熙,刘梅,魏宏远,应用大涡模拟对水平管道进行流场分析[J].天津大学学报, 2007, 40(3):342-345.
    [44]应展烽,陈志华,范宝春,等.三维方管中柱体可压绕流的大涡模拟[J].南京理工大学学报, 2008, 32 (2):154-159.
    [45]徐尚龙,李涤尘,卢秉恒.基于细胞沉积的人工骨微管设计及三维流场分析[J].机械工程学报, 2005, 41(4): 154-157.
    [46]王鹰鹏,宋新伟,应纯同.基于传统轴流泵设计理论的人工心脏泵及其数值模拟[J].北京生物医学工程, 2007, 26(2): 113-116.
    [47] R. Fattal, R. Kupferman. Time-dependent simulation of viscielastic flows at high Werssenberg number using the log-conformation represention[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 126: 23-37.
    [48] O.M. Coronado, D. Arora, M. Behr, etc. A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 147: 189-199.
    [49] R. Guenette, A. Fortin, A. Kane, etc.. An adaptive remeshing strategy for viscoelastic fluid flow simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 153: 34-45.
    [50] A. Kane, R. Guenette, A.Fortin. A comparison of four implementations of the log-conformationformulation for viscoelastic fluid flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 164: 45-50.
    [51]张力,赖建永,黄伟,等.压水堆核电厂稳压器波动管热分层现象数值分析[J].核动力工程, 2009,30(4):91-94.
    [52]孙鑫,范世峰,邱秀云,等.两种流道形式三通内部流场数值模拟[J].中国农村水利水电, 2009, (3):59-62.
    [53]谢安桓,高院安,袁周华.高压气体系统管道流动研究与实验分析[J].液压与气动, 2008, (9):67-69.
    [54] L. ?trubelja, I. Tiselja, and B. Mavko. Simulations of free surface flows with implementation of surface tension and interface sharpening in the two- fluid model[J]. International Journal of Heat and Fluid Flow, 2009, 30(4):741-750.
    [55] Roger E. Khayat. Transient free-surface flow inside thin cavities of viscoelastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 160: 15-29.
    [56] P.C. Sousa, P.M. Coelho, M.S.N. Oliveira, etc.. Three-dimensional flow of Newtonian and Boger fluids in square-square contractions[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 160: 122-139.
    [57] A.S. Lubansky, D.V.Boger, C. Servais, etc.. An approximate solution to flow through a contraction for high Trouton ratio fluids. Journal of Non-Newtonian Fluid Mechanics[J]. 2007, 160: 87-97.
    [58]赵云,曾新吾,调制气流声源流场声场特性的实验研究[J].科技导报, 2009, 27(18):47-54.
    [59]袁新明,贺治国,毛根海.用RNG k ?ε紊流模型对截止阀三维紊流流动的数值模拟[J].流体机械, 2006, 34(2): 34-38.
    [60]傅新,杜学文.阀口高速流动中的气穴观测与流场分析[J].液压与气动, 2006, (7): 29-31.
    [61]吴石,张文平.阀门流场的数值模拟及流噪声的实验研究[J].阀门, 2005, 1:7-10.
    [62] T.H. Alber, B.M. Gibbs, H.M. Fischer. Characterisation of valves as sound sources: Structure-borne sound[J]. Applied Acoustics, 2009, 70: 661–673.
    [63]姜健,王振峰,内凹型阀碟调节阀流场三维数值模拟研究[J].科学技术与工程, 2009, 9(13):3781-3784.
    [64]刘健,李福堂,基于Fluent的蝶阀三维流动的数值模拟及分析[J].辽宁科技大学学报, 2008, 31(3-4):277-280.
    [65] Xue Guan Song, Lin Wang, Seok Heum Baek, etc.. Multidisciplinary optimization of a butterfly valve[J]. ISA Transactions, 2009, 48: 370–377.
    [66]唐兵,卢堃,郝燕文,等.水压锥阀内流场的数值模拟[J].兰州理工大学学报, 2007, 33(4):54-58.
    [67]李辉,柯坚,刘晓红.基于CFD的液压锥阀结构特性分析[J].流体机械, 2009, 37(9):33-36.
    [68]朱万胜,张作龙,张彦廷,等.基于CFD方法的钻井液锥阀流场模拟及结构分析[J].液压气动与密封, 2008, (6):24-26.
    [69]郑淑娟,权龙,陈青.阀芯运动过程液压锥阀流场的CFD计算与分析[J].农业机械学报, 2007, 38(1):168-172.
    [70]陈云富,水压锥阀阀口流场的仿真研究[J].科学技术与工程, 2008, 8(9):2431-2434.
    [71]陈帅,吴张永,王小丽,等.一种纯水锥阀流场CFD仿真[J].流体传动与控制, 2009, 35, 29-31.
    [72]叶献华.王传礼.纯水三用阀阀口流场仿真分析[J].机床与液压, 2008, 36(6):91-92).
    [73]白学敏,廉自生.基于CFD的电液控制阀流场的数值模拟[J].科学之友, 2009, 8:16-17.
    [74] Ye Qifang, Chen Jiangping. Dynamic analysis of a pilot-operated two-stage solenoid valve used in pneumatic system[J]. Simulation Modelling Practice and Theory, 2009, 17: 794–816.
    [75]冯卫民,肖光宇,宋立.特大口径水轮机进水球阀最优动水关闭规律及数值模拟[J].武汉大学学报, 2009, 42(3):287-290.
    [76] R. Bansevicius, J.A. Virbalis. Two-dimensional Braille readers based on electrorheological fluid valves controlled by electric field[J]. Mechatronics, 2007, 17: 570–577.
    [77] Zdenak Travnicek, Alexander I. Fedorchenko, An-Bang Wang. Enhancement of synthetic jets by means of an integrated valve-less pump Part I. Design of the actuator[J]. Sensors and Actuators A, 2005, 120: 232–240.
    [78] Zdenak Travnicek, Vaclav Tesar, An-Bang Wang. Enhancement of synthetic jets by means of an integrated valve-less pump Part II. Numerical and experimental studies[J]. Sensors and Actuators A, 2005, 125: 50–58.
    [79]江山,张京伟,吴崇健,等.通海阀内流场的三维数值模拟[J].中国舰船研究, 2009, 4(2):37-41.
    [80]李哲,魏志军,张平,调压阀内流场数值模拟及动态特性分析[J].北京理工大学学报, 2007, 27(5):390-394.
    [81] Gertzos K P, Nikolakopoulos P G, Papadopoulos C A.. CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant[J]. Tribology International, 2008, 41(12): 1190-1204.
    [82]彭娅玲,张志国,陈汝刚,等. CFD辅助船舶艉部水润滑轴承设计的研究[J]. 2008, 33(5): 72-76.
    [83] Hong Yue, Liu Jin. Thermal Analysis of Frictional Disk in Speeding Wet Clutch [J]. Chinese Journal of Mechanical Engineering, 2004, 17(1): 102–106.
    [84] Jiayin Li, J.R. Barberb. Solution of transient thermoelastic contact problems by the fast speedexpansion method [J]. Wear, 2008, 265: 402–410.
    [85] Zagrodzki P, Samuel A T.. Generation of Hot Spots in a Wet Multi-disk Clutch during Short-Term Engagement[J]. Wear, 2003, 254(5-6):474-491.
    [86] Ji-Hoon Choi, In Lee. Finite element analysis of transient thermoelastic behaviors in disk brakes [J]. Wear, 2004, 257: 47–58.
    [87] Yong Hoon Jang, Seong-ho Ahn. Frictionally-excited thermoelastic instability in functionally graded material [J]. Wear, 2007, 262: 1102–1112.
    [88] Josef Voldrich. Frictionally excited thermoelastic instability in disc brakes—Transient problem in the full contact regime [J]. International Journal of Mechanical Sciences, 2007, 49: 129–137.
    [89]陈遥飞,杨亚联,秦大同.湿式多片离合器整体热传导过程分析[J].重庆工学院学报, 2009, 23(5):11-14.
    [90]刘振军,王颖颖,秦大同. DCT离合器热负荷仿真研究[J].中国机械工程, 2009, 20 (14): 1753-1757.
    [91]陈国金,殷小亮,龚友平,等.离合器摩擦片的热应力耦合分析[J].机电工程, 2008, 25(12): 100-102.
    [92]孙华琴,董建福摩擦片温度场的研究[J]工程机械1992 10: 18-21
    [93]周建钊,高亚明主离合器摩擦片温度场的数值解法[J]解放军理工大学学报2003, 4(1): 58-62
    [94]高耀东,李新利,离合器摩擦片温度场的有限元分析[J].煤矿机械, 2007, 28(6): 73-75.
    [95]黄健萌,高诚辉,唐旭晟,等.盘式制动器热-结构耦合的数值建模与分析[J].机械工程学报, 2008, 44(2):145-151.
    [96]华林,向上升.汽车气压盘式制动器瞬时温度场研究[J].润滑与密封, 2007, 32(5):8-11.
    [97]阙洪波,钱坤才,金文伟.高速列车制动盘温度及热应力仿真分析[J].机车车辆工艺, 2009, (4):9-11.
    [98]辛舟,刘志敏.带有ABS系统的汽车制动效能的研究[J].科学技术与工程, 2009, 9(16): 4859-4861.
    [99]邢预恩,高耀东,张根保,等.换档离合器摩擦片温升分析[J].现代制造技术与装备现代制造技术与装备现代制造技术与装备, 2007, (5):17-19.
    [100]尹明,钟毅芳.换挡离合器瞬态温度数值模拟[J].机械研究与应用, 2007, 20(2):65-66.
    [101]霍晓强,刘安.湿式换挡离合器摩擦副瞬态温度场的仿真研究[J].机械工程, 2006, 3:23-27.
    [102]胡宏伟,周晓军,庞茂,等.基于B样条小波的离合器温度场有限元分析[J].浙江大学学报, 2009, 43(1): 143-147.
    [103]刘传波,李明,莫易敏,等.基于ANSYS的汽车起步工况离合器压盘热力学分析[J].机械制造, 2009, 47(541):11-13.
    [104]曲艳阳,黄继雄,莫易敏,等.基于有限元法的微车离合器温度场的研究[J].机械研究与应用, 2008, 21(5):75-77.
    [105]胡甫才,向阳,杨建国.锚绞机带式制动器热-结构耦合分析[J].船舶工程, 2009, 31(3):27-30.
    [106]赵韩,李露,王勇.单片电磁摩擦离合器加速时间、结合功、热-流密度的计算[J].机械传动, 2008, 32(1): 68-69.
    [107] Przemyslaw Zagrodzki. Thermoelastic instability in friction clutches and brakes– Transient modal analysis revealing mechanisms of excitation of unsTable modes[J]. International Journal of Solids and Structures, 2009, 46: 2463–2476.
    [108] Shuangmei Zhao, Gregory E. Hilmas, Lokeswarappa R. Dharani. Behavior of a composite multidisk clutch subjected to mechanical and frictionally excited thermal load[J]. Wear, 2008, 264: 1059–1068.
    [109] Hasan Sofuoglua, Alaettin Ozer. Thermomechanical analysis of elastoplastic medium in sliding contact with fractal surface[J]. Tribology International, 2008, 41: 783–796.
    [110] Muhammad M. Rahman, Jorge C. Lallave, Ashok Kuma. Heat transfer from a spinning disk during semi-confined axial impingement from a rotating nozzle [J]. International Journal of Heat and Mass Transfer, 2008, 51: 4400–4414.
    [111] Hung-Yi Li, Kuan-Ying Chen, Ming-Hung Chiang. Thermal-fluid characteristics of plate-fin heat sinks cooled by impingement jet [J]. Energy Conversion and Management, 2009, 50: 2738–2746.
    [112] Noor Afzal. Momentum and thermal boundary layers over a two-dimensional or axisymmetric non-linear stretching surface in a stationary fluid [J]. International Journal of Heat and Mass Transfer, 2010, 53: 540–547.
    [113]刘汉涛,仝志辉,安康,等.溶解与热对流对固体颗粒运动影响的直接数值模拟[J].物理学报, 2009, 58(9):6369-6375.
    [114]杨桂秋.直接空冷系统主管道两相流的数值模拟[J].应用能源技术, 2009, (134):49-51.
    [115]祝效华,余志祥. ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社, 2004.
    [116]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社, 2003.
    [117]张毅雄,杨宇稳压器波动管热分层分析[J]核动力工程, 2006 27(6): 13-17.
    [118]张力,赖建永,黄伟,等.压水堆核电厂稳压器波动管热分层现象数值分析[J].核动力工程, 2009,30(4):91-94.
    [119]王夺,纪威,张传龙,等柴油机排气管道系统的内流模拟[J]小型内燃机与摩托车200635(3): 23-25.
    [120]刘斌,徐江荣.柴油机排气管恒温进气的内流场数值模拟[J].杭州电子科技大学学报, 2009, 29(1):92-95.
    [121]李国栋,石祥彬,刘学,等直接空冷机组大直径排汽管道的结构稳定性分析[J]热力发电2007, 4: 38-43.
    [122]刘学,王忠会,石磊,等.超临界直接空冷排汽管道系统内流场的数值模拟[J].汽轮机技术, 2008, 50(6):428-430.
    [123]吴牮.一类凸形截面管道对流换热能力估计的复分析方法[J].重庆工学院学报, 2007,21(7): 57-59.
    [124] R. Fattal, R. Kupferman. Time-dependent simulation of viscielastic flows at high Werssenberg number using the log-conformation represention[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 126: 23-37.
    [125] O.M. Coronado, D. Arora, M. Behr, etc.. A simple method for simulating general viscoelastic fluid flows with an alternate log-conformation formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 147: 189-199.
    [126]庄山光,王成国,王海庆,等.盘形制动摩擦表面温升研究[J].机械工程学报, 2003, 39(2): 150-154.
    [127] Par Marklund, Roland Larsson. Wet clutch friction characteristics obtained from simplified pin on disc test[J]. Tribology International, 2008, 41(9-10): 824–830.
    [128] Par Marklund, Rikard Ma ki, Roland Larsson, etc.. Thermal influence on torque transfer of wet clutches in limited slip differential applications[J]. Tribology International, 2007, 40(5): 876–884.
    [129]王立勇,马彪,李和言,等.湿式换挡离合器摩擦片磨损规律研究[J].北京理工大学学报, 2008, 28(4): 324-328.
    [130]高晓敏,张协平,吴凡,等.摩擦片表面沟槽对离合器动态特性影响的研究[J].传动技术, 2001, (3):10-13.
    [131]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [132]张昭顺,崔桂香.流体力学[M].北京:清华大学出版社, 1999.
    [133] ANSYS Inc. Release 10.0 documentation for ANSYS [M]. USA, ANSYS Inc., 2005
    [134]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社, 2001.
    [135]徐灏.机械设计手册(第二版)[M].北京:机械工业出版社, 2000.
    [136]李洁明,祁新娥.统计学原理[M].上海:复旦大学出版社, 2007.
    [137]杨世铭,陶文铨.传热学(第4版)[M].北京:高等教育出版社, 2006
    [138] .李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998:130-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700