用户名: 密码: 验证码:
湿式摩擦离合器调压阀流场仿真及结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调压阀是齿轮箱液压传动系统中重要的液压部件,主要有两方面的作用,一是为船用湿式摩擦离合器提供工作油压;二是为系统提供润滑油压。随着船用湿式摩擦离合器向高速大功率发展,调压阀的结构合理性及运行稳定性受到越来越多的关注,有必要对调压阀内流道结构及其流场特性进行分析,为设计高性能大型离合器用调压阀打下基础。
     本文研究课题来源于重庆市科技攻关计划项目。针对船用齿轮箱湿式摩擦离合器大型调压阀,开展内流道流场仿真及阀芯结构优化研究。本文的主要研究工作如下:
     ①综合考虑调压阀的结构和使用工况,以调压阀内流道阀芯形状、开口度大小、润滑油入口流速、润滑油温度等为可变参数,采用ANSYS二次开发语言APDL编写调压阀内流道流场的参数化有限元分析程序。
     ②基于调压阀内流道湍流模型,对不同开口度、润滑油温度和流量下的调压阀内流道流场进行数值仿真,得出内流道流体压力云图、流速矢量图以及湍流动能和湍流动能耗散情况。在船用齿轮箱综合性能试验台上进行调压阀油压试验,对比分析压力-开口度曲线,验证流场有限元计算模型的合理性。
     ③对不同阀芯的调压阀内流道进行流场分析,计算其流体压力和速度分布,研究不同阀芯结构对内流道流场特性的影响。
     ④以流体湍流动能耗散最小为优化目标,阀芯尺寸参数为设计变量,最大工作油压及最小滑油压力为约束函数,建立调压阀内流道流场优化模型;采用响应面法进行调压阀阀芯结构优化。
Pressure-regulating valve, an important hydraulic component in hydraulic transmission of gear box, has two main functions: one is to provide oil pressure for the operation of the marine wet friction clutch; the other is to provide oil pressure for lubricantion of the hydraulic system. As the development of wet friction clutches towards high speed and large power, rationality and operation stability of its structure has been drawing more and more attention. Therefore, a research on channel structure and flow field characterization of pressure-regulating valves is necessary to enlarge the power of clutches in design.
     The topic of this paper is supported by scientific and technological project of Chongqing. The flow field analysis and structural optimization of pressure-regulating valve are carried out so as to design suitable valve for large-scale wet friction clutches. The research work in this paper can be summarized as follows:
     ①Considering the structure of the pressure-regulating valve and working condition, taking spool shape, opening positions, lubricant velocity at the inlet and lubricant temperature as variables, the parameterized finite element analysis program for the oil in the channel of the valve is programmed with ANSYS re-development language-APDL to establish.
     ②Computational simulation of fluid in the pressure-regulating valves are carried out based on turbulence model to obtain pressure contours and velocity vectors of lubricant with different openings, lubricant temperature and flow for the valve, so as to study the kinetic energy and consumption energy of oil in the channel. Pressure test of the valve is carried out on the marine general performance test bench of gearbox for the comparison of experimental pressure-opening position curve with computational one to validate the finite element analysis results.
     ③Oil pressure and velocity distributions are discussed after an analysis of flow field characteristics in the channels of valves with different spools. Then the influence of spool structures to fluid field characterizations is concluded to reduce energy loss of fluid.
     ④Taking least consumption energy as the objective function, structure parameters of spool as design variables, and maximum working oil pressue and minimum lubricant pressure as the state variables, an optimization model of valve is established and then the spool structure is optimized by means of response surface optimization method.
引文
[1]周晓泉,瞿伦富,吴玉林.水轮机涡壳和固定导叶内部流动的数值模拟[J].清华大学学报(自然科学版), 2000, 40(8): 58-62.
    [2]王继宏,刘建军,崔永强,等.高压联合进汽阀门三维粘性流场数值分析[J].工程热物理学报, 2000, 21(5): 573-575.
    [3] Torre Jean-Philippe, Fletcher D F, Lasuye Thierry, et al. An experimental and CFD study of liquid jet injection into a partially baffled mixing vessel: Acontribution to process safety by improving the quenching of runaway reactions[J]. Chemical Engineering Science, 2008, 63(4): 924-942.
    [4] Ahuja G N, Patwardhan A W. CFD and experimental studies of solids hold-up distribution and circulation patterns in gas–solid fluidized beds[J]. Chemical Engineering Journal, 2008, 143(1-3): 147-160.
    [5] Alizadehdakhel Asghar, Rahimi Masoud, Alsairafi Ammar Abdulaziz. CFD and experimental studies on the effect of valve weight on performance of a valve tray column[J]. Computers and Chemical Engineering, 2010, 34(1): 1-8.
    [6] Shah K V, Vuthaluru R, Vuthaluru H B. CFD based investigations into optimization of coal pulveriser performance: Effect of classifier vane settings[J]. Fuel Processing Technology, 2009, 90(9): 1135-1141.
    [7] Li Xingang, Liu Dexin, Xu Shimin, et al. CFD simulation of hydrodynamics of valve tray[J]. Fuel Processing Technology, 2009, 48(1): 145-151.
    [8] Wang Y P, Wilkinson G B, Drallmeier J A. Parametric study on the fuel film breakup of a cold start PFI engine[J]. Experiments in Fluids, 2004, 37(3): 385-398.
    [9]高殿荣,王益群.液压控制锥阀内流场的数值模拟与试验可视化研究[J].机械工程学报,2002, 4(4): 66-70.
    [10]高红,傅新,杨华勇.锥阀阀口气穴流场进行数值模拟和实验研究[J].机械工程学报, 2002, 38(8): 27-30.
    [11] Oshima S, Leino T, Linjama M. Experimental study on cavitation in water hydraulic poppet valve[J]. Transactions of the Japan Fluid Power System Society. 2002, 33(2): 29-35.
    [12]郑淑娟,权龙,陈青.阀芯运动过程液压锥阀流场的CFD计算与分析[J].北京理工大学学报, 2007, 38(1): 168-172.
    [13]李辉,柯坚,刘晓红.基于CFD的液压锥阀结构特性分析[J].流体机械,2009, 37(9):33-36.
    [14]刘智强,王笑,鲁聪达,等.液压阀内高速流场仿真与实验分析[J].液压与气动, 2007,(11): 76-78.
    [15] Liu Y S, Huang Y, Li Z Y. Experimental investigation of flow and cavitation characteristics of a two-step throttle in water hydraulic valves[J]. Procesdings of the institution of mechanical engineers. 2002, 216(1): 105-111.
    [16]杜学文,邹俊,傅新,等.节流槽结构对气穴噪声的影响[J].浙江大学学报(工学版), 2007, 41(3): 456-460.
    [17]魏存祥,滕龙,王勇刚,等.固定节流阀流场数值模拟研究[J].石油矿场机械, 2008, 37(5): 47-49.
    [18]冀宏,王东升,刘小平,等.滑阀节流槽阀口的流量控制特性[J].农业机械学报,2009, 40(1): 198-202.
    [19]石娟,姚征,马明轩.调节阀内三维流动与启闭过程的数值模拟及分析[J].上海理工大学学报, 2005, 27(6): 498-502.
    [20]马玉山,傅卫平,相海军,等.调节阀运动阀芯动态不平衡力分析[J].西安理工大学学报, 2009, 25(2): 212-216.
    [21]徐宏海,杨丽,詹宁.基于Fluent的调节阀内部流场数值模拟[J].机械设计与制造, 2009, 8(8): 1-3.
    [22] Li Z, Wei Z J, Zhang P. Internal flow field numerical calculation and dynamic characteristic study of pressure-regulating valve[J]. Transaction of Beijing Institute of Technology, 2007, 5(5): 390-394.
    [23]张建辉,黎毅力,刘菊银,等. "Y"形流管无阀压电泵流场分析[J].北京工业大学学报, 2008, 34(2): 126-131.
    [24]关炎芳,张国贤,金健,等.无阀微泵锯齿形流道仿真模拟[J].上海大学学报(自然科学版), 2008, 14(4): 355-358.
    [25]刘健,李福堂.大口径蝶阀三维流动的数值模拟及分析[J].流体机械, 2008, 39(9): 30-32.
    [26]付文智,李明哲,蔡中义,等.滑阀式换向阀三维流体速度场的数值模拟[J].哈尔滨工业大学学报, 2007, 39(1): 149-152.
    [27]高殿荣,王益群.锥形螺旋轴流血泵流场三维数值模拟与分析[J].机械工程学报, 2007, 43(9): 47-50.
    [28] Saito Sumio, Shibata Masahiro, Fukae Hideo, et al. Computational cavitation flows at inception and light stages on an axial-flow pump blade and in a cage-guided control valve[J]. Fuel Processing Technology, 2007, 16(4): 337-345.
    [29]陈青,许惠,权龙.三级同心液压溢流阀噪声特性的CFD分析[J].振动、测试与诊断, 2009, 21(1): 71-73.
    [30] Gao H, Lin W L, Fu X, et al. Suppression of a cavitation near the orifice of a relief valve[J].Chinese Journal of Mechanical Engineering, 2005, 1(8):149-155.
    [31] Brosten Tyler R, Park Jong M, Evans Allan T, et al. A numerical flow model and experimental results of a cryogenic micro-valve for distributed cooling applications[J]. Cryogenics, 2007, 47(9-10): 501-509.
    [32]冯卫民,韩宁.大口径环喷式流量调节阀数值模拟优化[J].武汉大学学报(工学板), 2006, 39(1): 76-79.
    [33]李哲,魏志军,张平.阀芯型面对燃气阀性能的影响[J].北京理工大学学报, 2007, 27(10): 855-858.
    [34]张宏,廉自生,熊晓燕,等.基于CFD和两相流技术的高水基液压阀结构设计研究[J].煤矿机电, 2007, 5: 1-3.
    [35]关炎芳,张国贤,金健.基于仿真和正交试验的锯齿形流道结构优化[J].上海大学学报(自然科学版), 2009, 15(4): 358-363.
    [36] Sarlej.M, Petr Pavel, Hajek J, et al. Computational support in experimental burner design optimization[J]. Applied Thermal Engineering, 2007, 27(16): 2727-2731.
    [37] Lei Yon-Gang, He Ya-Ling, Chu Pan,et al. Design and optimization of heat exchangers with helical baffles[J]. Chemical Engineering Science, 2008, 63(17): 4386-4396.
    [38]. Schiffmann J. Favrat D. Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications[J]. Energy, 2010, 35(1): 436-450.
    [39] Liu Wei, Yang Canju. Design of novel high pressure resistant hydrothermal fluid sample valve [J]. Chinese Journal of Mechannical Eengineering, 2008, 21(1): 72-76.
    [40]雷恒,程亚威,谢宁,等.节流阀阀芯型面优化设计[J].火箭推进, 2009, 35(4):26-29.
    [41]俞树荣,宋伟,霍炬,等.大口径闸阀阀体强度分析与结构优化[J].兰州理工大学学报, 2007, 33(5): 64-66.
    [42] Chong Dao-Tong, Yan Jun-Jie, Wu Ge-Sheng, et al. Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas[J]. Applied Thermal Engineering, 2009, 29(14-15): 2799-2807.
    [43] Seleznev Vadim. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators[J]. Zhejiang University Sci A, 2007, 8(5): 755-765.
    [44] ZHANG Xiaobin, GAN Zhihua, QIU Limin. Computational fluid dynamic simulation of an inter-phasing pulse tube cooler[J]. Journal of Zhejiang University: Science A, 2008, 9(1): 93-98.
    [45]杜爱民,段亮,田永祥.四气门汽油机进气道流动特性的CFD分析[J].同济大学学报(自然科学版), 2009, 37(2): 249-252.
    [46]徐尚龙,李涤尘,卢秉恒.基于细胞沉积的人工骨微管设计及三维流场分析[J].机械工程学报, 2005, 41(4):154-157.
    [47]王鹰鹏,宋新伟,应纯同.基于传统轴流泵设计理论的人工心脏泵及其数值模拟[J].北京生物医学工程, 2007, 26(2):113-116.
    [48]袁新明,贺治国,毛根海.用RNG k ?ε湍流模型对截止阀三维湍流流动的数值模拟[J].流体机械, 2006, 34(2):34-38.
    [49]傅新,杜学文.阀口高速流动中的气穴观测与流场分析[J].液压与气动, 2006, (7):29-31.
    [50] Gertzos K P, Nikolakopoulos P G, Papadopoulos C A. CFD analysis of journal bearing hydrodynamic lubrication by bingham lubricant[J]. Tribology International, 2008, 41(12): 1190-1204.
    [51]彭娅玲,张志国,陈汝刚,等. CFD辅助船舶艉部水润滑轴承设计的研究[J]. 2008, 33(5): 72-76.
    [52]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [53]王凤岐.现代设计方法及其应用[M].天津:天津大学出版社, 2008.
    [54]中国船级社.钢质海船入级规范, 2006.
    [55]覃鉴文,钟良. GW系列船用齿轮箱离合器接合过程动态分析[J].传动技术, 1991, (2): 17-21.
    [56]张成成,姚卫星.基于响应面的结构抗疲劳优化设计方法[J].南京航空航天大学学报, 2007, 39(1):37-40.
    [57] ANSYS Inc.利用试验设计法建立翼型气动特性的人工神经网络模型[J].航空学报, 2010, 31(5):895-898.
    [58]钟毅芳,陈柏鸿,王周宏.多学科综合优化设计原理与方法[M].武汉:华中理工大学出版社, 2006.
    [59] ANSYS Inc. Release 10.0 documentation for ANSYS [M]. USA, ANSYS Inc, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700