用户名: 密码: 验证码:
同步硝化反硝化过程中N_2O释放特征及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步硝化反硝化(SND)过程由于能耗低、处理效果好等优点,得到越来越多的关注。然而,同步硝化反硝化脱氮处理过程中有大量氧化亚氮(N20)的释放,会加剧温室效应、破坏臭氧层以及促进酸雨的形成。因此,积极地研究同步硝化反硝化过程脱氮机理和N20释放特征对于实现N20的减量排放具有重要的现实意义。
     本论文以溶解氧为控制参数,在缺氧-好氧SBR生物脱氮系统中实现了同步硝化反硝化,通过与传统顺序式硝化反硝化(SQND)过程对比,评价了SND过程污染物的去除效果,同时跟踪监测反应器中污染物迁移转化过程,系统研究了SND过程N20的释放规律和释放特征;明确了SND过程N20的主要释放途径,并对与N20释放相关的微生物种群结构进行分析,解析了SND过程N20释放的主要微生物种群;评价了进水中不同磷负荷和微量金属离子对SND过程脱氮除磷效果和N20释放特征的影响,并对其影响机制进行了分析。取得主要研究结论如下:
     (1)SND过程可大大地提高污水总氮去除能力,但同时也刺激了N20的产生。通过对SND和SQND过程污染物去除效果、迁移转化过程和N20释放特征进行分析,发现SND过程N20释放量约为SQND过程的4倍多,且主要发生在曝气阶段。N20的释放与微生物氧利用率(OUR)之间有着很大的相关性,OUR比溶解氧浓度更能反应出N20的释放趋势。低C/N比下,SND反应器中部分反硝化菌会利用胞内储存的有机物质作为碳源进行反硝化,引起反硝化酶之间对电子供体的竞争,造成N20的积累和大量释放。
     (2)氨氧化菌(AOB)的反硝化反应是SND过程N20释放的主要途径,SND反应器N20的产生主要是源于N. europaea和Nitrosomonas-like种的氨氧化菌。通过采用化学抑制方法,对SND过程不同途径N20的产生能力进行评估,并利用分子生物学技术分析与N20释放相关的微生物群落结构,发现AOB的反硝化过程N20产量为异养反硝化的二倍多。与SQND过程相比,SND过程低溶解氧条件对氨氧化菌群落结构的影响比较显著。低氧条件下,一些能够进行反硝化反应的氨氧化菌(如N. europaea和Nitrosomonas-like种)在SND反应器中得到富集,因此AOB的反硝化过程比较显著。低溶解氧条件对反硝化菌群落结构影响不大。
     (3)与中低负荷相比,高进水磷负荷下,TN和TP的去除率得到了显著提高,同时N20的释放量也逐渐降低。通过分析不同磷负荷下污染物迁移转化过程和N20释放过程,发现高进水磷负荷下,N20释放量比低负荷下减少了24.1%。N20释放量的降低主要是由于异养反硝化过程N20释放量的减少导致的。与低进水磷负荷条件下相比,高磷负荷条件能合成更多的聚-β-羟丁酸(PHB),从而有利于缓解反硝化酶之间对电子供体的竞争。高磷负荷下聚磷菌的富集也有利于降低N20的释放。
     (4)通过向反应器中投加不同浓度的金属离子(Cu2+和Fe3+),发现低浓度范围内,投加Cu2+能有效的提高总氮的去除率,同时降低N20的释放量;Fe3+的投加极大的提高了总磷的去除,同时低浓度的Fe3+能一定程度的提高总氮的去除,并且对N20释放的影响较小。高浓度的Cu2+和Fe3+均会对微生物活性产生一定抑制,从而降低系统脱氮效果,并产生较多的N20。
Simultaneous nitrification and denitrification (SND) technology has emerged as a promising process, due to its high nutrient removal efficiency and low energy consumption. However, a significant amount of N2O may be produced during biological nitrogen removal via SND process. N2O is an important greenhouse gas. It can also destroy the ozone layer and promote the formation of acid rain. Therefore, it is very important to study the mechanisms of bilogical nitrogen removal and characteristics of N2O emission during low-oxygen SND process.
     In this study, the SND process was achieved in anaerobic-aerobic SBR biological nitrogen removal system by controling the dissolved oxygen concentration. By comparing with sequencing nitrification and denitrification (SQND) process, the contaminant transformation and N2O emission characteristics during SND process were systemically studied. The dominant N2O emission source during low-oxygen SND process was determined, and the changes of microbial community structure related to N2O emission during low-oxygen SND process were successfully tracked. The contributions of different microorganisms on N2O emission were figured out through the comparative analysis of changes between microbial community structure and system feature. Furthermore, the impacts of influent phosphorus load and metal ions (Cu2+and Fe3+) on N2O emission cahracteristics during SND process were evaluated to optimize the influent parameters of low-oxygen SND process. The main research conclusions are as follows:
     (1) The SND process enhanced the nitrogen removal greatly but also stimulate the N2O emission. By comparing with the SQND process, the contaminant removal performance and N2O emission characteristics during low-oxygen SND process was analysis and found that the N2O emission amount during SND process was about four-flod of that during tranditional nitrification-denitrification process, and the emission mainly occurred during aerobic stage. The N2O emission had significant correlation with oxygen uptake rate (OUR) of microbes, and the OUR could reflects the N2O emission trend more exactly than the DO concentration. In addition, some denitrifiers could used intracellular PHA as carbon source for denitrification under low C/N condition, causing the competion of denitrifying enzyme for electron and accumulation of N2O.
     (2) Denitrification of AOB was the dominant pathway of N2O emission during SND process, and the microbial soucre of N2O was mainly the AOB of JV. europaea and Nitrosomonas-liike. By using chemical inhibition method, the dominant source of N2O emission during low-oxygen SND process was determined. Meanwhile the microbial source was also analyzed through PCR-DGGE technique. The results showed that the N2O yield was about2times higher than that of heterotrophic denitrification. The community structure of AOB was significantly affected by the low-oxygen condition, and some AOB capable of denitrification (i.e. N. europaea and Nitrosomonas-liike) was enriched, resulting in the enhancement of nitrifier denitrification. The microbial community of denitrifiers was affected insignificantly by the low DO.
     (3) The impacts of influent phosphorus load on N2O emission was studied by analyzing the process of contaminant transformation and N2O emission under different phosphorus load. Results showed that:with the increasing of influent phosphorus load, the removal of TN and TP during low-oxygen SND process was enhanced. Meanhile the N2O yield was also decreased. The control of N2O emission under high phosporus load was due to the decrease of N2O produced bt heterotrophic denitrification. Compared with the low phosphorus load, high influent phosporus load could synthesize more PHB, thus easing the competion of denitrifying enzemys for electron donor. In addition, the enrichment of PAOs under high phosphorus load was favored to the N2O control.
     (4) The impacts of Cu2+and Fe3+on contaminant removal performance and N2O emission characteristics were studied. Results showed that:the addtion of certain amount of Cu2+could enhance the removal of TN and decrease the N2O yield. The addtion of Fe3+enhanced the removal of TP greatly. To some extent, a small amount of Fe3+could enhance the removal of TN and the impact on N2O emission was insignificant. However, high concentration of Cu2+and Fe3+could inhibit the activity of microbes, leading to low nutirent removal and high N2O yield.
引文
[1]胡振.缺氧-好氧生物脱氮系统中N2O的释放机理与减量化控制研究[D],济南:山东大学,2011.
    [2]侯金良,康勇.城市污水生物脱氮除磷技术的研究进展[J].化工进展,2007,26(3):366-370.
    [3]汤琪.生物脱氮除磷新技术[J].重庆大学学报(自然科学版),2006,29(9):138-143.
    [4]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [5]Ye, R.W., Averill, B.A. and Tiedje, J.M. Denitrification:production and consumption of nitric oxide [J]. Applied and Environmental Microbiology, 1994,60(4):1053-1058.
    [6]Rittmann, B.E. and Langeland, W.E. Simultaneous denitrification with nitrification in single-channel oxidation ditches [J]. Water Pollution Control Federation,1985,57(4):300-308.
    [7]Robertson, L.A., van Niel, E.W.J., Torremans, R.A.M., Kuenen, J.G. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha [J]. Applied and Environmental Microbiology,1988, 54(11):2812-2818.
    [8]Robertson, L.A., Cornelisse, R., Vos, P., Hadioetomo, R., Kuenen, J.G. Aerobic denitrification in various heterotrophic nitrifiers [J]. Antonie van Leeuwenhoek, 1989,56(4):289-299.
    [9]李飞,张雁秋,李晓红,崔炜,胡艳.同步硝化反硝化影响因素的研究[J].江苏环境科技,2006,19(4):16-18.
    [10]叶建锋.废水生物脱氮除磷新技术[M].北京:化学工业出版社,2006.
    [11]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6-9.
    [12]van Niel, E.W.J. Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification [D], Delft:Delft University of Technology,1991.
    [13]Robertson, L. and Kuenen, J.G. Aerobic denitrification:a controversy revived [J]. Archives of Microbiology,1984,139(4):351-354.
    [14]Hanaki, K., Hong, Z. and Matsuo, T. Production of nitrous oxide gas during denitrification of wastewater [J]. Water Science and Technology,1992,26(5-6): 1027-1036.
    [15]Ketchum Jr, L.H. Design and physical features of sequencing batch reactors [J]. Water Science and Technology,1997,35(1):11-18.
    [16]Seifi, M. and Fazaelipoor, M.H. Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor [J]. Applied Mathematical Modelling,2012,36(11):5603-5613.
    [17]Munch, E.V., Lant, P. and Keller, J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors [J]. Water Research, 1996,30(2):277-284.
    [18]Sen, P. and Dentel, S.K. Simultaneous nitrification-denitrification in a fluidized bed reactor [J]. Water Science and Technology,1998,38(1):247-254.
    [19]Watanabe, Y., Okabe, S., Hirata, K., Masuda, S. Simultaneous removal of organic materials and nitrogen by micro-aerobic biofilms [J]. Water Science and Technology,1995,31(1):195-203.
    [20]Yoo, H., Ahn, K.H., Lee, H.J., Lee, K.H., Kwak, Y.J., Song, K.G. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Water Research,1999,33(1):145-154.
    [21]Pochana, K. and Keller, J. Study of factors affecting simultaneous nitrification and denitrification (SND) [J]. Water Science and Technology,1999,39(6): 61-68.
    [22]王少彬.大气中氧化亚氮的源、汇和环境效应[J].环境保护,1994,4:23-27.
    [23]IPCC. Climate change 2007:The physical science basis. Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change [M]. Cambridge:Cambridge University Press,2007.
    [24]Crutzen, P. J. The influence of nitrogen oxides on the atmospheric ozone content [J]. Quarterly Journal of the Royal Meteorological Society,1970,96(408): 320-325.
    [25]高素华,潘亚茹.温室效应对气候和农业的影响[J].环境科学,1991,12(2):73-76.
    [26]Dolfing, J. Nitrous oxide formation in the colne estuary in england:the central role of nitrite [J]. Applied and Environmental Microbiology,2002,68(10): 5202-5204.
    [27]Bange, H.W., Rapsomanikis, S. and Andreae, M.O. Nitrous oxide in coastal waters [J]. Global Biogeochemical Cycles,1996,10(1):197-207.
    [28]张静蓉,王淑莹,尚会来,彭永臻.污水短程硝化反硝化和同步硝化反硝化生物脱氮中N20释放量及控制策略[J].环境科学,2009,30(12):3624-3629.
    [29]Khalil, M.A.K. and Rasmussen, R.A. The global sources of nitrous oxide [J]. Journal of Geophysical Research:Atmospheres,1992,97(D13):14651-14660.
    [30]Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., vanLoosdrecht, M.C.M. Nitrous oxide emission during wastewater treatment [J]. Water Research,2009,43(17):4093-4103.
    [31]Czepiel, P., Crill, P. and Harriss, R. Nitrous oxide emissions from municipal wastewater treatment [J]. Environmental Science and Technology,1995,29(9): 2352-2356.
    [32]刘秀红,杨庆,吴昌永,彭永臻,周利,尚会来.不同污水生物脱氮工艺中N20释放量及影响因素[J].环境科学学报,2006,12(8):1940-1947.
    [33]Wang, J., Zhang, J., Xie, H., Qi, P., Ren, Y., Hu, Z. Methane emissions from a full-scale A/A/O wastewater treatment plant [J]. Bioresource Technology,2011, 102(9):5479-5485.
    [34]吴娟.人工湿地污水处理系统N20的释放与相关微生物研究[D],济南:山东大学,2009.
    [35]Poth, M. and Focht, D.D.15N kinetic analysis of N2O production by Nitrosomonas europaea:an examination of nitrifier denitrification [J]. Applied and Environmental Microbiology,1985,49(5):1134-1141.
    [36]Kim, J.K., Park, K.J., Cho, K.S., Nam, S.W., Park, T.J., Bajpai, R. Aerobic nitrification-denitrification by heterotrophic Bacillus strains [J]. Bioresource Technology,2005,96(17):1897-1906.
    [37]Brown, K., Tegoni, M., Prudencio, M., Pereira, A.S., Besson, S., Moura, J.J., Moura, I., Cambillau, C. A novel type of catalytic copper cluster in nitrous oxide reductase [J]. Nature Structural and Molecular Biology,2000,7(3): 191-195.
    [38]Bonin, P., Tamburini, C. and Michotey, V. Determination of the bacterial processes which are sources of nitrous oxide production in marine samples [J]. Water Research,2002,36(3):722-732.
    [39]Schalk-Otte, S., Seviour, R.J., Kuenen, J.G., Jetten, M.S.M. Nitrous oxide (N2O) production by Alcaligenes Faecalis during feast and famine regimes [J]. Water Research,2000,34(7):2080-2088..
    [40]Shiba, T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a [J]. Systematic and Applied Microbiology,1991,14(2): 140-145.
    [41]Greenberg, E.P. and Becker, G.E. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads [J]. Canadian Journal of Microbiology, 1977,23(7):903-907.
    [42]Takaya, N., Catalan-Sakairi, M.A.B., Sakaguchi, Y., Kato, I., Zhou, Z., Shoun, H. Aerobic denitrifying bacteria that produce low levels of nitrous oxide [J]. Applied and Environmental Microbiology,2003,69(6):3152-3157.
    [43]Robertson, L.A. and Kuenen, J.G. Physiology of nitrifying and denitrifying bacteria [A], In:Rogers, J.E. and Whitman, W.B., (Eds). Microbial production and consumption of greenhouse gases:methane, nitrogen oxides and halomethanes [M]. Washington:American Society for Microbiology,1991.
    [44]van Cleemput, O. Subsoils:chemo-and biological denitrification, N2O and N2 emissions [J]. Nutrient Cycling in Agroecosystems,1998,52(2-3):187-194.
    [45]Kampschreur, M.J., Tan, N.C.G., Kleerebezem, R., Picioreanu, C., Jetten, M.S.M., vanLoosdrecht, M.C.M. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture [J]. Environmental Science and Technology,2007,42(2):429-435.
    [46]Tallec, G., Gamier, J., Billen, G., Gousailles, M. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants:Effect of oxygenation level [J]. Water Research,2006,40(15): 2972-2980.
    [47]Noda, N., Kaneko, N., Mikami, M., Kimochi, Y, Tsuneda, S., Hirata, A., Mizuochi, M., Inamori, Y. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system [J]. Water Science and Technology, 2003,48(11-12):363-370.
    [48]Otte, S., Grobben, N.G, Robertson, L.A., Jetten, M.S., Kuenen, J.G. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions [J]. Applied and Environmental Microbiology,1996, 62(7):2421-6.
    [49]Colliver, B.B. and Stephenson, T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers [J]. Biotechnology Advances,2000,18(3): 219-232.
    [50]Schulthess, R.V, Kuhni, M. and Gujer, W. Release of nitric and nitrous oxides from denitrifying activated sludge [J]. Water Research,1995,29(1):215-226.
    [51]Chung, Y.C. and Chung, M.S. BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification [J]. Water Science and Technology,2000,42(3-4):23-27.
    [52]Schulthess, R.V. and Gujer, W. Release of nitrous oxide (N2O) from denitrifying activated sludge:Verification and application of a mathematical model [J]. Water Research,1996,30(3):521-530.
    [53]Itokawa, H., Hanaki, K. and Matsuo, T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research,2001,35(3):657-64.
    [54]Wu, J., Zhang, J., Jia, W., Xie, H., Gu, R.R., Li, C., Gao, B. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater [J]. Bioresource Technology,2009,100(12):2910-2917.
    [55]Hynes, R.K. and Knowles, R. Production of nitrous oxide by Nitrosomonas europaea:effects of acetylene, pH, and oxygen [J]. Canadian Journal of Microbiology,1984,30(11):1397-1404.
    [56]Thorn, M. and Sorensson, F. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal [J]. Water Research,1996,30(6):1543-1547.
    [57]Zhu, X. and Chen, Y. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid [J]. Environmental Science and Technology,2011,45(6):2137-2143.
    [58]Lemaire, R., Meyer, R., Taske, A., Crocetti, G.R., Keller, J., Yuan, Z. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal [J]. Journal of Biotechnology,2006,122(1):62-72.
    [59]Zeng, R.J., Lemaire, R., Yuan, Z., Keller, J. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor [J]. Biotechnology and Bioengineering,2003,84(2):170-178.
    [60]Rasmussen, T., Berks, B.C., Sanders-Loehr, J., Dooley, D.M., Zumft, W.G., Thomson, A.J. The catalytic center in nitrous oxide reductase, CuZ, is a copper-sulfide cluster [J]. Biochemistry,2000,39(42):12753-6.
    [61]尹军,谭学军,任南琪.用TTC与INT电子传递体系活性表征重金属对污泥活性的影响[J].环境科学,2005,26(1):56-62.
    [62]王秀蘅,任南琪,王爱杰,马放.铁锰离子对硝化反应的影响效应研究[J].哈尔滨工业大学学报,2003,35(1):122-125.
    [63]Kampschreur, M.J., Kleerebezem, R., de Vet, W.W.J.M., vanLoosdrecht, M.C.M. Reduced iron induced nitric oxide and nitrous oxide emission [J]. Water Research,2011,45(18):5945-5952.
    [64]Schonharting, B., Rehner, R., Metzger, J.W., Krauth, K., Rizzi, M. Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S-containing wastewater:Quantification and application of a new mathematical model [J]. Water Science and Technology,1998,38(1):237-246.
    [65]Garrido, J.M., Moreno, J., Mendez-Pampn, R., Lema, J.M. Nitrous oxide production under toxic conditions in a denitrifying anoxic filter [J]. Water Research,1998,32(8):2550-2552.
    [66]Gejlsbjerg, B., Frette, L. and Westermann, P. Dynamics of N2O production from activated sludge [J]. Water Research,1998,32(7):2113-2121.
    [67]Tsuneda, S., Mikami, M., Kimochi, Y., Hirata, A. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater [J]. Journal of Hazardous Materials,2005,119(1-3):93-8.
    [68]Kim, J.S., Kim, S.J. and Lee, B.H. Effect of Alcaligenes faecalis on nitrous oxide emission and nitrogen removal in three phase fluidized bed process [J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering,2004,39(7):1791-804.
    [69]王爱杰,任南琪.环境中的分子生物学诊断技术[M].北京:化学工业出版社,2004.
    [70]Stoeck, T., Zuendorf, A., Breiner, H.W., Behnke, A. A molecular approach to identify active microbes in environmental eukaryote clone libraries [J]. Microbial Ecology,2007,53(2):328-339.
    [71]Ouellette, A.J., Handy, S.M. and Wilhelm, S.W. Toxic Microcystis is widespread in Lake Erie:PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities [J]. Microbial Ecology,2006,51(2):154-165.
    [72]Eiler, A. and Bertilsson, S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes [J]. Environmental Microbiology,2004,6(12):1228-1243.
    [73]Trusova, M.Y. and Gladyshev, M.I. Phylogenetic diversity of winter bacterioplankton of eutrophic siberian reservoirs as revealed by 16S rRNA gene sequence [J]. Microbial Ecology,2002,44(3):252-259.
    [74]Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K., Harayama, S. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities [J]. Applied and Environmental Microbiology,2000,66(11):4803-4809.
    [75]Fischer, S.G. and Lerman, L.S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory [J]. Proceedings of the National Academy of Sciences of the United States of America,1983,80(6):1579-1583.
    [76]Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl. Environ. Microbiol.,1993,59(3):695-700.
    [77]Muyzer, G. and Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie van Leeuwenhoek,1998,73(1):127-141.
    [78]Amann, R., Fuchs, B.M. and Behrens, S. The identification of microorganisms by fluorescence in situ hybridisation [J]. Current Opinion in Biotechnology, 2001,12(3):231-236.
    [79]Moter, A. and Gobel, U.B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms [J]. Journal of Microbiological Methods,2000, 41(2):85-112.
    [80]Feris, K.P., Ramsey, P.W., Frazar, C., Rillig, M., Moore, J.N., Gannon, J.E., Holben, W.E. Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient [J]. Applied and Environmental Microbiology,2004,70(4):2323-2331.
    [81]Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L., Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR [J]. Environmental Microbiology,2003,5(9): 787-97.
    [82]Meyer, R.L., Zeng, R.J., Giugliano, V., Blackall, L.L. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates:Mass transfer limitation and nitrous oxide production [J]. FEMS Microbiology Ecology,2005,52(3):329-338.
    [83]Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions [J]. Water Research,2012,46(4):1027-1037.
    [84]Hu, Z., Zhang, J., Xie, H., Li, S., Zhang, T., Wang, J. Identifying sources of nitrous oxide emission in anoxic/aerobic sequencing batch reactors (A/O SBRs) acclimated in different aeration rates [J]. Enzyme and Microbial Technology, 2011,49(2):237-245.
    [85]Tallec, G, Gamier, J., Billen, G, Gousailles, M. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation [J]. Bioresource Technology,2008,99(7): 2200-2209.
    [86]Fu, B., Liao, X., Ding, L., Ren, H. Characterization of microbial community in an aerobic moving bed biofilm reactor applied for simultaneous nitrification and denitrification [J]. World Journal of Microbiology and Biotechnology 2010, 26(11):1981-1990.
    [87]Chuang, S.H., Chang, W.C., Huang, Y.H., Tseng, C.C., Tai, C.C. Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater [J]. Bioresource Technology,2011,102(9):5461-5465.
    [88]Thomas, M., Wright, P., Blackall, L., Urbain, V., Keller, J. Optimisation of Noosa BNR plant to improve performance and reduce operating costs [J]. Water Science and Technology,2003,47(12):141-148.
    [89]Mino, T., van Loosdrecht, M.C.M. and Heijnen, J.J. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Research,1998,32(11):3193-3207.
    [90]Hyman, M.R. and Wood, P.M. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene [J]. Biochemical Journal,1985,227(3):719-25.
    [91]Arciero, D.M. and Hooper, A.B. Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit[J]. Journal of Biological Chemistry,1993,268(20):14645-54.
    [92]Stouthamer, A.H. and Van't Riet, J.A. Respiration with nitrate as acceptor [A], In:Knowles, C.J., Editor. Diversity in bacterial respiratory systems [M]. CRC Press,1980.
    [93]Huang, B., Yu, K. and Gambrell, R.P. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil [J]. Chemosphere,2009,74(4):481-486.
    [94]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [95]de-Bashan, L.E. and Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003) [J]. Water Research, 2004,38(19):4222-4246.
    [96]高宇.SBR 生物除磷的研究进展[J].重庆工商大学学报(自然科学版)2005,22(1):30-34.
    [97]Kuba, T., Smolders, G., van Loosdrecht, M.C.M., Heijnen, J.J. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor [J]. Water Science and Technology,1993,27(5-6):241-252.
    [98]Tsuneda, S., Ohno, T., Soejima, K., Hirata, A. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor [J]. Biochemical Engineering Journal,2006,27(3): 191-196.
    [99]Third, K.A., Burnett, N. and Cord-Ruwisch, R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. [J]. Biotechnology and Bioengineering 2003,83(6):706-720.
    [100]Rajagopal, R. and Beline, F. Nitrogen removal via nitrite pathway and the related nitrous oxide emission during piggery wastewater treatment [J]. Bioresource Technology,2011,102(5):4042-4046.
    [101]Beline, F., Martinez, J., Marol, C., Guiraud, G. Application of the 15N technique to determine the contributions of nitrification and denitrification to the flux of nitrous oxide from aerated pig slurry [J]. Water Research,2001, 35(11):2774-2778.
    [102]Hu, Z., Zhang, J., Li, S., Xie, H., Wang, J., Zhang, T., Li, Y., Zhang, H. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs) [J]. Journal of Bioscience and Bioengineering,2010, 109(5):487-491.
    [103]Liu, X., Peng, Y., Wu, C., Akio, T., Peng, Y. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor[J]. Journal of Environmental Sciences,2008,20(6):641-645.
    [104]Park, K.Y., Inamori, Y., Mizuochi, M., Ahn, K.H. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration [J]. Journal of Bioscience and Bioengineering,2000,90(3):247-252.
    [105]Wrage, N., Velthof, GL., van Beusichem, M.L., Oenema, O. Role of nitrifer denitrification in the production of nitrous oxide [J]. Soil Biology and Biochemistry 2001,33:1723-1732.
    [106]王薇,蔡祖聪,钟文辉,王国祥.好氧反硝化菌的研究进展[J].应用生态学报,2007,18(11):2618-2625.
    [107]Jia, W., Zhang, J., Xie, H., Yan, Y, Wang, J., Zhao, Y, Xu, X. Effect of PHB and oxygen uptake rate on nitrous oxide emission during simultaneous nitrification denitrification process [J]. Bioresource Technology,2012,113(0): 232-238.
    [108]Yang, Q., Liu, X., Peng, C., Wang, S., Sun, H., Peng, Y. N2O production during nitrogen removal via nitrite from domestic wastewater:Main sources and control method [J]. Environmental Scicence and Technology,2009,43(24): 9400-9406.
    [109]Hall, G. Measurement of nitrification rates in lake sediments:Comparison of the nitrification inhibitors nitrapyrin and allylthiourea [J]. Microbial Ecology, 1984,10(1):25-36.
    [110]Haider, S., Svardal, K., Vanrolleghem, P.A., Kroiss, H. The effect of low sludge age on wastewater fractionation (SS, SI) [J]. Water Science and Technology,2003,47(11):203-209.
    [111]Tallec, G Nitrous oxide emissions during nitrogen treatment in wastewater treatment plants-Paris conurbation [D], Cite Descartes:Ecole Nationale des Ponts et Chaussees,2005.
    [112]董莲华,杨金水,袁红莉.氨氧化细菌的分子生态学研究进展[J].应用生态学报,2008,19(6):1381-1388.
    [113]Shrestha, N.K., Hadano, S., Kamachi, T., Okura, I. Dinitrogen production from ammonia by Nitrosomonas europaea [J]. Applied Catalysis A:General,2002, 237(1-2):33-39.
    [114]Ahn, K.H., Yoo, H., Lee, J.W., Maeng, S.K., Park, K.Y., Song, K.G Acetate injection into anaerobic settled sludge for biological P-removal in an intermittently aerated reactor [J]. Water Science and Technology,2001,44(1): 77-85.
    [115]Wang, Y., Peng, Y. and Stephenson, T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process [J]. Bioresource Technology,2009,100(14):3506-3512.
    [116]Kapagiannidis, A.G., Zafiriadis, I. and Aivasidis, A. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic-anoxic activated sludge system [J]. Bioprocess and Biosystems Engineering,2012,35(3):371-382.
    [117]Liu, W.T., Nakamura, K., Matsuo, M.T., Mino, M.T. Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors--effect of P/C feeding ratio [J]. Water Research,1997,31(6):1430-1438.
    [118]Seviour, R.J., Mino, T. and Onuki, M. The microbiology of biological phosphorus removal in activated sludge systems [J]. FEMS Microbiology Reviews,2003,27(1):99-127.
    [119]伏小勇,许生辉,杨柳,陈学民.城市污泥中重金属消解方法的比较试验研究[J].中国给水排水,2008,24(15):97-99.
    [120]Zhu, X., Chen, Y., Chen, H., Li, X., Peng, Y., Wang, S. Minimizing nitrous oxide in biological nutrient removal from municipal wastewater by controlling copper ion concentrations [J]. Applied Microbiology and Biotechnology,2013, 97(3):1325-1334.
    [121]Mokhele, K., Tang, Y.J., Clark, M.A., Ingraham, J.L. A Pseudomonas stutzeri outer membrane protein inserts copper into N2O reductase [J]. Journal of Bacteriology,1987,169(12):5721-6.
    [122]Granger, J. and Ward, B.B. Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria [J]. Limnology and Oceanography,2003,48(1): 313-318.
    [123]Zumft, W.G. Cell biology and molecular basis of denitrification [J]. Microbiology and Molecular Biology Reviews,1997,61(4):533-616.
    [124]樊杰,胡晗.化学铁盐辅助除磷对生物除磷的影响研究[J].环境科学与技术,2013,36(2):41-45.
    [125]任雪锋,毕学军,程丽华,祝征圣,常功法.复合铁酶促活性污泥强化生物脱氮除磷研究[J].中国给水排水,2011,27(3):24-28.
    [126]黄灿,邬红东,何清明,彭绪亚.异化Fe(Ⅲ)还原酶促反应及调控机制的研究进展[J].生态学杂志,2009,28(7):1381-1387.
    [127]Weber, K.A., Achenbach, L.A. and Coates, J.D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction [J]. Nature Reviews Microbiology,2006,4(10):752-64.
    [128]Nielsen, J.L. and Nielsen, P.H. Microbial nitrate-dependent oxidation of ferrous iron in activated sludge [J]. Environmental Science and Technology, 1998,32(22):3556-3561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700