用户名: 密码: 验证码:
毛竹光系统Ⅱ捕光色素结合蛋白基因的分离及其表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合作用是地球上最重要的化学反应,光能的捕获和传递过程将会直接影响整个生物体的光合作用表现。在高等植物中,光系统II捕光色素蛋白复合体LHC在光合作用过程中发挥着极其重要的作用。研究表明LHCII主要的功能有以下四个方面:捕获和传递光能、光保护和过剩能量耗散、调节光能在两个光系统中分配和维持类囊体膜的结构等。光合作用反应植物对外界物质的同化能力,是植物的重要生理活动指标,在一定程度上对植物的生长速度起着决定性的作用。竹子具有生长快、产量高等特点,意味着竹子具有较强的同化能力,本研究从竹子捕光色素结合蛋白基因的分离入手开展了工作,主要结论如下:
     1.通过RACE、RT-PCR等方法从毛竹克隆到了6个捕光色素结合蛋白基因cab-PhE3、cab-PhE1、cab-PhE5、cab-PhE8、cab-PhE10、cab-PhE11,分别属于光系统Ⅱ的lhcb1、lhcb2、lhcb3、lhcb4、lhcb5、lhcb6类基因家族。
     通过生物软件分析,该6个基因的CDS编码区均约在800~900 bp左右,其编码蛋白的分子量在28~30kD之间;与国际核酸和蛋白质数据库联网分析得知,6个基因与其它物种中的同类基因均有较高的相似性,其相似性多数在80%以上,特别是与水稻、玉米、大麦等亲缘关系较近的单子叶植物中该类基因的相似性更高,多数在90%以上;蛋白功能预测分析表明,该6个基因均含有典型的叶绿素a/b结合位点,推测其功能可能是与色素分子结合。对6个基因编码的蛋白质进行比较发现:Cab-PhE3与Cab-PhE1和Cab-PhE5之间的相似性分别为72.6%和65.7%,而与Cab-PhE8、Cab-PhE10、Cab-PhE11之间的相似性分别为29.4%、41.4%和24.8%。Cab-PhE1和Cab-PhE5之间的相似性为66.5%。毛竹捕光色素结合蛋白基因的分离,丰富了该基因家族成员,为进一步了解lhcb家族基因在不同植物尤其是在竹类植物中的结构、功能及表达情况奠定了基础。
     2.实现了毛竹cab-PhE3、cab-PhE1、cab-PhE5基因在大肠杆菌BI21(DE3)中高效表达。
     通过添加酶切位点的方法将cab-PhE3、cab-PhE1、cab-PhE5基因编码成熟蛋白的序列部分插入到原核表达载体pET-23a的相应位点,构建成原核表达载体pET- cab-PhE3 -mature、pET- cab-PhE1-mature和pET- cab-PhE5-mature。经IPTG诱导后,蛋白电泳结果显示重组质粒在大肠杆菌中能够高效表达,其诱导表达蛋白的分子量均与cab-PhE3、cab-PhE1、cab-PhE5基因编码的成熟蛋白分子量相接近,这为进一步研究捕光叶绿素a/b结合蛋白与色素的体外重组特性奠定基础。
     3.研究了毛竹cab-PhE3、cab-PhE1、cab-PhE5、cab-PhE8、cab-PhE10、cab-PhE11基因的时空表达。
     毛竹叶绿素荧光动力学研究结果显示,不同时间强光照射处理的Fv/Fm、qP、Yield、ETR值均随着光照时间的延长而降低,而F0、qN则随光照时间的延长而成上升趋势。实时定量PCR研究表明,cab-PhE3、cab-PhE1、cab-PhE5、cab-PhE8、cab-PhE10、cab-PhE11基因在不同光处理条件下表达明显不同。分别对强光照射2 hr、4 hr、6 hr的毛竹植株的lhcb基因的表达水平进行研究,发现cab-PhE3、cab-PhE1、cab-PhE5、cab-PhE8、cab-PhE10、cab-PhE11基因表达量呈现规律性变化,6个基因均随光照时间的延长而表达量减少。其中cab-PhE3和cab-PhE1基因表达情况变化较为明显。由此表明,毛竹捕光色素结合蛋白基因cab-PhE3、cab-PhE1、cab-PhE5、cab-PhE8、cab-PhE10、cab-PhE11在强光抑制的光保护过程中发挥着一定作用。
Photosynthesis, occured at the thylakoid in chloroplast, as the most important biochemical reaction in the world, affects directly the photosynthetic process by absorbing and transferring solar energy. The peripheral light-harvesting complex LHC of photosystemⅡ(LHCⅡ) plays a significant role in photosynthesis of higher plants. In addition to light-harvesting, photoprotection via heat dissipation, energy modulation and distribution, and maintenance of thylakoid are all the main functions of LHCⅡ. Photosynthesis, as the most physiological indicator, plays a decisive role in plant growth to some extent, which representing the assimilation capacity of plant.
     Bamboo has great light assimilation capacity for fast growth and abundant output. It is significant to focus on the molecular mechanism of bamboo photosynthesis through bio-technology, and valuable for the development and utilization of bamboo resource. Isolation and expression of the light-harvesting chlorophyll a/b binding protein genes of bamboo were performed in this paper. The major results were described as follows:
     1. light-harvesting chlorophyll a/b binding protein genes (cab-PhE3, cab-PhE1, cab-PhE5, cab-PhE8, cab-PhE10 and cab-PhE11) ,which belong to lhcb1, lhcb2, lhcb3, lhcb4, lhcb5 and lhcb6 gene family respectively, were isolated from Moso (Ph. edulis) through RT-PCR and RACE technology.
     Results showed that, the CDS of 6 genes were all about 800~900 bp, and molecular weight of the deduced proteins were all between 28~30kD by bioinformatics analysis. According to International nucleic acid and protein databases, the deduced proteins were highly homologous to other CAB proteins, most of them more than 80%;especially to the monocotyledon plants, such as rice, maize, barely and so on, more than 90% respectively. The motifscan analysis indicated that, these proteins all had chlorophyll a/b binding domain which may bonding chlorophyll. The similar coefficient among Cab-PhE3 and Cab-PhE1, Cab-PhE5 were 72.6%, 65.7% respectively; and that of Cab-PhE8, Cab-PhE10, Cab-PhE11were 29.4%, 41.4% and 24.8% respectively; that between Cab-PhE1 and Cab-PhE5 was 66.5%. Isolation of the six light-harvesting chlorophyll a/b binding protein genes of LHCⅡfrom bamboo is very helpful to the further research on the structure and function of LHCⅡin different plants.
     2. The light harvesting chlorophyll a/b-binding protein genes (cab-PhE3, cab-PhE1 and cab-PhE5) of Phyllostachys edulis were highly expressed in Escherichia coli.
     The prokaryoti expression vector, pET- cab-PhE3 -mature, pET- cab-PhE1 -mature and pET- cab-PhE5-mature,were constructed by adding restriction enzyme sites to the sequence encoding mature protein of cab-PhE3, cab-PhE1 and cab-PhE5 and then ligating to the multiple clone sites of pET-23a. The protein electrophoresis revealed that mature proteins of cab-PhE3, cab-PhE1 and cab-PhE5 were highly expressed in E. coli induced by IPTG. Molecular weight of the inducible proteins were all approximate to that of the mature protein, which would be very important for further research on in vitro reconstitution of light-harvesting Chl a/b complexes.
     3. The space-time expression of cab-PhE3, cab-PhE1, cab-PhE5, cab-PhE8, cab-PhE10 and cab-PhE11 genes from Ph. edulis was studied.
     Chlorophyll fluorescence parameters of Ph. edulis were studied in this paper. The plant was illuminated by different time of strong light treatment (2 hr, 4 hr and 6 hr). All chlorophyll fluorescence parameters were changed: Fv/Fm, qP, Yield and ETR were decreasing, while Fo and qN were increasing with the time of strong light. The expression lever variance of cab-PhE3, cab-PhE1, cab-PhE5, cab-PhE8, cab-PhE10 and cab-PhE11 genes was displayed by Real time PCR. The expression level of the six genes all decreased, especially cab-PhE3 and cab-PhE1 changed obviously. It could be deduced that cab-PhE3, cab-PhE1, cab-PhE5, cab-PhE8, cab-PhE10 and cab-PhE11 genes may be related with photoinhibition.
引文
[1]匡廷云.光合作用原初光能转化过程的原理与调控.江苏:江苏科学技术出版社,2004,111-120
    [2]江泽慧,世界竹藤,辽宁:辽宁科技出版社,2002,321
    [3] Tobin EM,Sdverthorne J,Light regulation of gene expression in higer plants.Plant physical,1985,38:569
    [4] Thompson WF,White MJ.Physiological and Molecular studies of light-regulated nuclear genes in higher plants.Plant Physiol.1991,42:123
    [5] Fluhr R, Chua NH. Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome response and blue-light induction.Proc Natl Acad Sci U S A. 1986 ,83(8):2358-2362
    [6] Chang Yun C.Walling LL. Absctsic acid negative regulates expression of cblorophyll a/b binding protein gene dueing soybean embryogeny.plant physical .1991,97:1260
    [7] Chang Yun C,Walling LL.Spatial and Temporal expression of cab mRNA in cotyledons of the developing soybean seedings.Planta,1992,186:262-272
    [8] Sheen JY, Bogorad L.Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types. Proc Natl Acad Sci U S A. 1986 ,83(20):7811-7815
    [9] Abdelghani M O, Chen J N ,Chen J N. Cytokinins modulate the steady-state levels of light-dependent and light independent proteins and mRNAs in tobacco cell suspensions . plant science 1991, 77: 29-40
    [10] Funckes Shippey CL. Levine AD.Cytokm in regulates the expression of nuclear genes regulatedfor photosynthesis.Steinbach KE,CJ .Molocular biology of the photosynthetic apparatus.NewYork:Cold Spring Harbor Laboratory,1985,407
    [11] Obya T.Suzuki H.The effects of benzyladenine on the acumulation of messenger RNAs that encodes the large and small subunits of ribulose -5- isphospbate light-harvesting chloro phyll a/b protein in excised cocumber cotyledons.Plant and cell physical,1991,32(4):57
    [12] Caffarri Stefano, Croce Roberta, Cattivelli Luigi, et al. A look within LHCⅡ: differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry, 2004.,43: 9467-9476
    [13] Kühlbrandt W,Wang D N,Fujiyoshhi Y.Atomi model of plant light harvesting complex by electron crystallography.Nature,1994,367:614-621
    [14]向太和,王利琳,庞基良.水稻(Oryza sativa L.)捕光叶绿素a/b结合蛋白基因全长cDNA的克隆和特性分析.作物学报, 2005,31(9):1227-1232
    [15] Allen KD and L. Andrew Staehelin L A. Biochemical Characterization of PhotosystemⅡAntenna Polypeptides in Grana and Stroma Membranes of Spinach. Plant physiology, 1992,100:1517-1526
    [16] Bassi R,Croce R,Cugini D.et al.Mutational ananlysis of a higher plant antenna protein providesidentification of chromophores bound into multiple site.Proc.Natl.Acad.Sci.USA, 1999,96:10056-10061
    [17] Pichersky E,Jansson S. The light-harvesting chlorophyll alb-binding polypeptides and their genes in angiosperm and gymnosperm species.Ort,D.R.and Yocum,C.F.(eds): Oxygenic Photosynthesis: The Light Reactions, Kluwer Academic Publishers, Printeed in the Netherlands,1996.507-521
    [18] Larsson U K, Anderson J M, Andersson B. Variations in the relative content of the peripheral and tightly bound LHCBⅡsubpopulations during thylakoid light adaptation and development. Biochem. Biophvs,1987,Actor, 894: 69-75
    [19] Michael A,Harrison A M,Anastasios M.Organization and stability of polypeptide associated with the chlorophyll a/b light-harvesting complex of photosystem-Ⅱ.Plant Cell Physiol,1992,33(5):627-631
    [20] Michael Hippler Jens Klein,Andreas Fink,Tanjia Allinger,et al.Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtⅡ.The Plant Joural,2001,28(5),595-606
    [21] Maenpaa P,Andersson B.PhotosystemⅡheterogeneity and long-term acclimation of light-harvesting.Z Naturforsch, 1989.44C:403-406
    [22] Melis A,Donald R,Ort, et al.Oxygenic Photosynthesis :The light Reaction,Kluwer Academic Publishers,Netherlands,1996,523-538
    [23] Arvidsson P O,Bratt C E,Andreasson L E, et al.The 28n Kda apoprotein of CP-26 in PS-Ⅱbinds copper.Photosynth Res, 1993.37:217-225
    [24] Jansson S,The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta, 1994,1184(1):1-19
    [25] Liu Zhenfeng, Yan Hanchi, Wang Kebin, et al.Crystal structure of spinach major light harvesting complex at 2.72A°resolution. Nature, 2004, 428(18): 287-292
    [26] Pagano A,Cinque G, and Bassi R. In vitro reconstitution of the recombinant photosystem II light-harvesting complex CP24 and its spectroscopic characterization.The Journal of Biological Chemistry,1998,273(27):17154-17165
    [27] Paulsen H,Ruler U,Ruiger W.Reconstitution of pigment containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia col. Planta, .1990181: 204-211
    [28] Paulsen H, Hobe S. Pigment-binding properties of mutant light-harvesting chlorophyll a/b binding protein. Eur J Biochem. 1992 ,205(1):71-76
    [29] Paulsen H, Finkenzeller B, Kühlein N. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem. 1993 Aug 1;215(3):809-16
    [30]孙钦秒,李良璧,毛大璋等.豌豆Lhcb2基因在大肠杆菌中的高效表达及其表达产物色素的重组.中国科学, 2000,30(4):363-369
    [31] Remelli R, Varodio C,Sandona D,et al. Chlorophyll binding to monomeric light-harvesting complex.The Journal of Biological Chemistry, 1999,274(47):33510-33512
    [32] Rogl H, Schodel R, Lokstein H. et al.Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHCⅡ.Biochemistry, 2002,41:2281-2287
    [33] Yang C, Kosemund K, Cornet C. et al.Exchmge of pigment-binding amino acids in light-harvestingchlorophyll a/b protein. Biochemistry, 1999,38: 16205-16213
    [34] Yang C, Boggasch S, Haase W, Paulsen H.Thermal stability of trimeric light-harvesting chlorophyll a/b complex (LHCIIb) in liposomes of thylakoid lipids. Biochim Biophys Acta. 2006,1757(12):1642-16428
    [35] Giuffra E, Cugini D, Croce R, et al. Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem. 1996 ,238(1):112-120
    [36] Klimmek Frank, Sj?din Andreas, Noutsos Christos, et al. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiology, 2006,140(3):793-804
    [37] Luciński Robert,Jackowski Grzegorz. The structure, functions and degradation of pigment-binding proteins of photosystemⅡ. Acta Biochimica Polonica,2006,53 (4): 693-708
    [38] Liu Cheng, Zhang Yajie, Cao Derong, et al. Structural and functional analysis of the antiparallel strandsin the lumenal loop of the major light-harvesting chlorophyll a/b complex of photosystemⅡ(LHCⅡb) by site-directed mutagenesis. Journal of Biological Chemistry, 2008,283(4):487-15
    [39] Teramoto H, Ono T, Minagawa J. Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Cell Physiol. 2001 ,42(8):849-56
    [40] Tokutsu R, Teramoto H, Takahashi Y, et al. The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications. Plant Cell Physiol. 2004,45(2):138-145
    [41] Hozwarth A R. In:photosynthesis:from light to biosphere.(Mathis P eds). 1995,1,35-40 Kluwer Academic Pub.Dordrecht
    [42] Visser H M,Kleima FJ,van Stokkum I H M,et al. Probing the many energy-transfer processes in the photosynthetic light-harvesting complexⅡat 77k using energy-selective sub-picosecond transient absorption spectroscopy.Chem.Phys, 1996,210:297-312
    [43] Gradinaru C C,?zdemir S,Gülen D.et al.The flow of excitation energy in LHCBⅡmonomers:Implication for the structural role of the major plant antenna.Biophysical Journal, 1998,75:3064-3077
    [44] Croce R,Muller MG,Bassi R,et al. Carotenoid-to-chlorophyll energy transfer in recombinant major light–harvesting complex of higher plant.I.Femtosecond transient absorption measurements.Biophysical Journal, 2001,80:901-915
    [45] Connelly J P,Müller M G,Bassi R.et al. Femtosecong transient abaorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complexII of photosystem II. Biochemistry, 1997,36:281-287
    [46] Gradinaru C C,van Stokkum I H M,Pascal A A.et al.Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29.A multicolor,femtosecond pump-probe study.The Journal of Physical Chemistry B, 2000,104:9930-9342
    [47] Yamamoto H Y,Bassi R. Carotenoids: Location and function. In: Qxygenic Photosynthesis: The Light Reactions (Ort DR and Yocum CF, eds). 1996, 539-563, Kluwer Academic Publishers, Dordrecht, The Netherlands
    [48] Walters RG, Ruban AV, Horton P.Light harvesting complexes bound by dicyclohexyl carbodiimide during inhibition of protective energy dissipation. Eur J Biochem . 1994,226: 1063-1069
    [49] Walters RG, Ruban AV, Horton P.Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation.Eur J Biochem. 1994 15;226(3):1063-9
    [50] Pesaresi P, SandonàD, Giuffra E, et al.A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett. 1997 402:151-6
    [51] Horton P, Ruban AV.The role of LHCII in energy quenching. In: Photoinhibition of photosynthesis - from molecular mechanisms to the field. N.R. Baker and J.R, Bowyer, eds. 1994, 111-128, Bios Sci Pubs, Oxford
    [52] Gingell D, Owens N, Hodge P, et al.Adsorption of a novel fluorescent derivative of a poly(ethylene oxide)/poly(butylene oxide) block copolymer on octadecyl glass studied by total internal reflection fluorescence and interferometry.J Biomed Mater Res. 1994,28(4):505-13
    [53] Ruban AV, Walters RG, Horton P.The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes. Inhibition of delta pH-dependent quenching of chlorophyll fluorescence by dicyclohexylcarbodiimide.FEBS Lett. 1992 ,7;309(2):175-179.
    [54] Hager A,Holocher K,Localization of xanthophyll-cycil enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent)pH decrease.Planta,192:581-589
    [55] Michel HP,Bennett J.Identification of the phosphorylation site of an 8.3 kDa protein from photosystemⅡof spinch.FEBS Lett,1987,212:103-108
    [56] Arntzen C J.In:Current Topics in Bioenergytics(Sanadi,DR and Vernon,LP.Eds) Academic Press,London,New York. 1987,Vol.7:111-160,
    [57] Zhou Peizhen, Li Liangbi, Zhai Xiaojing, et al.The relationship between cation-induced fluorescence and membrane stacking in isolated spinach chloroplasts. Photosynthesis Research, 1982,3:123-130
    [58] Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence .Biochimica Biophysica Acta,1989,990:87-92
    [59] Schreiber U,Bilger W,Neubauer C.Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis .Ecological Studies,1994,100:49-70
    [60] Niinemets U , Kull O. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Tree Physiol. 2001, 21(12-13):899-914.
    [61]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展.西北植物学报,2006,26(10):2186-2196
    [62]黄启民,杨迪蝶,高爱新等.不同条件下毛竹光合作用的研究.竹类研究,1989,2:8-17
    [63]陈存及,邱尔发,梁一池等.毛竹不同种源光合特性研究.林业科学,2001,37(6):15-19
    [64]邱尔发,洪伟,郑郁善等.麻竹山地笋用林笋期叶片光合及呼吸性状研究.林业科学,2001,37(专刊1):148-453
    [65]黄承才,葛滢.中亚热带东部毛竹叶片光合及呼吸的研究.浙江林业科技.2000,20(5) 46
    [66]金爱武,郑炳松,陶金星.雷竹光合速率日变化及其影响因子.浙江林学院学报,2000,17(3):271-275.
    [67]金爱武,胡超宗,郑炳松.雷竹笋期鞭侧芽吲哚乙酸氧化酶与过氧化物酶的变化.竹子研究汇刊,1998,17(2):33-36
    [68]王俊刚,宋新青.不同竹龄雷竹若干光合特性的比较研究.浙江林业科技.2002,22(1) 11-13
    [69]苏智先.慈竹无性系种群生长发育规律初探.四川师院生物系应用生态学报.1992,3(3):289-291
    [70] Gao Zhimin,Li Xueping,Li Lubin,et al.An effective method for total RNA isolation from bamboo. Chinese forestry science and technology, 2006,5(3):52-54
    [71]孙启祥竹子光抑制特征研究,中国林业科学研究院博士后出站报告,2004,1-50
    [72]张亚杰高等植物光系统Ⅱ大量捕光色素蛋白复合体的稳定性研究,中科院植物研究所博士学位论文,2006,1-53
    [73] Standfuss J, Kühlbrandt W. The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles. J Biol Chem. 2004 27;279(35):36884-91
    [74] Jansson S,Pichersky E.A nomenclature for the genes encoding the chlorophyll a/b–binding proteins of higher plants.Plant Molecular Biology Reporloer, 1992,10(3):242-253
    [75]高志民,李雪平,彭镇华等.竹子捕光叶绿素a/b结合蛋白基因全长的克隆和序列分析.林业科学,2007,43(3):34-38
    [76] Liu Yingli, Gao Zhimin, Peng Zhenhua, et al.Cloning and sequence analysis of a full-length cDNA encoding light-harvesting complexes of PSII in Phyllostachys edulis.Chinese forestry science and technology,2007,6(4),47-52
    [77] Schmidt G W, Bartlett S G,Grossman A R.et al. Biosynthetic pathways of two polypeptide subunits of the light-harvesting chlorophyll a/n-protein complex.Cell.Biol, 1982,91:468-478
    [78] Zer H, Vink M, Paulsen H, et al. Regulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II. Proc Natl Acad Sci U S A. 1999 ,96(14):8277-8282
    [79] Murchie E H.Interaction between senescence and leaf orientation determine in situpattems of photosynthesis and hotoinhabitation in field-grown rice.Plant Physiol, 1999,119:553-563
    [81] Powles S B. Photoinhabitation of photosynthesis induced by visible light.Annu Rev Plant Phys, 1984,35:15-44
    [82] Havaux M,Eyeletters M.Is the in vivo photosystem I function resistant to photoinhabitation? An answer from photoacoustic and far-red absorbance measurements in intact leaves.Z Naturforsch, ,1991,46:1038-1044
    [83] Anderson J M,Park Y I,Chow W S.Unifying model for the photoinactivation of photosystemⅡin vivo under steady-state photosynthesis .Photosynth Res, ,1998,56:1-13
    [84] Baroli L,Melis A.Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystemⅡlight-harvesting chlorophyll antenna size.Planta, 1998205:288-296
    [85] Sugiyama N,Izawa T,Oikawa T,Shimamoto K.Light regulation of circadian clock-controlled gene expression in rice.Plant J,2001,66(6):607-615
    [86] Humbeck K,Krupinska K.The abundance of minor chlorophyll a/b–binding proteins CP29 and LHCI of barley during leaf senescence is controlled by light.J Exp Bot,2003,54(381):375-383
    [87]孙钦秒,匡廷云.高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新近展.植物学通报,2000, 17(4):289-301
    [88] Cammarata K V& Schmidt G W. 1992. In vitro reconstitution of a light-harvesting gene product: Deletion mutageuesis and analysis of pigment binding.Biochemistyy, 31:2779-2789
    [89] Hobe S, Prytulla S, Kühlbrandt W. et al. Trimerization and crystallisation of reconstituted liglit-barvestilig cliloropliyll a/b complex. Tlie EMBO Journal. 1994.13: 3423-3429
    [90] Pascal A, Gastaldelli M, Ceoldo S, et al.Pigment conformation and pigment-protein interactions in the reconstituted Lhcb4 antenna protein.FEBS Lett. 2001 ,492(1-2):54-57
    [91] Giuffra E, Cugini D, Croce R, et al.Reconstitution and pigment-binding properties of recombinant CP29.Eur J Biochem. 1996,238(1):112-120
    [92] Croce R, Canino G, Ros F,et al. Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry. 2002 ,41(23):7334-7343
    [93] Giuffra E, Cugini D, Croce R, et al. Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem. 1996,;238(1):112-20
    [94] Zhang Y, Liu C, Liu S, et al. Structural stability and properties of three isoforms of the major light-harvesting chlorophyll a/b complexes of photosystem II. Biochim Biophys Acta. 2008,15
    [95] Caffarri S, Croce R, Cattivelli L, et al.A look within LHCII: differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry. 2004,43(29):9467-76.
    [96] Jackowski G, Kacprzak K, Jansson S.Identification of Lhcb1/Lhcb2/Lhcb3 heterotrimers of the main light-harvesting chlorophyll a/b-protein complex of Photosystem II (LHC II).Biochim Biophys Acta. 2001,1504(2-3):340-5
    [97]魏爱丽,王志敏.高等植物PSⅡ的光抑制与光破坏研究进展.西北植物学报.2004,24(7):1342-1347
    [98]贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展.植物学通报.2000,17(3):218-224
    [99]裴凌鹏,刘振娅,印莉萍.蛋白质组浅谈.首都师范大学学报(自然科学版).2002,23(3):57-62
    [100]高建,刘颖丽,彭镇华等.竹子光合作用研究进展.世界竹藤通讯.2006,4(3) 13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700