用户名: 密码: 验证码:
桑树抗盐性研究及其在盐碱地中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在查阅大量文献的基础上,对盐碱地综合治理、植物抗盐性和抗盐机理等方面的国内外研究进展进行综述,并以黄河流域及西北地区常用的桑树砧木—实生桑为研究材料,采用盆栽加盐和大田试验等方式,进行桑树幼苗抗盐性试验,通过对桑树幼苗成活率、光合作用、叶绿素荧光及其他一些指标的测量,系统分析了实生桑的耐盐能力及其幼苗在盐胁迫环境下的生理生化变化过程,并分析其抗盐机理。主要结论如下:
     (1)实生桑不同阶段的耐盐能力表现为1年生幼苗>种子。种子对盐分的敏感性极强,NaCl浓度为0.1% (g / g﹒干土重),其种子成苗率为9.67%;而NaCl浓度为0.2%,则难以成苗,故在盐碱地的综合治理中难以采用直播的方式进行推广。通过综合评价分析,1年生幼苗NaCl浓度适宜值为0.13%,临界值为0.30%,极限值为0.52%。
     (2)盐胁迫对桑树幼苗生长发育具有明显的抑制作用,且不同器官对盐胁迫的敏感程度表现为根>茎>叶。实验期间,当NaCl浓度为0.5~0.7%时,桑树幼苗的根系生长下降81.33-92.35%,新梢生长下降70.94-84.62%,叶片生长下降56.18-75.97%。盐胁迫能够显著降低桑树幼苗根冠比,当根冠比低于0.067~0.071时,植株受害极其严重,80%以上的植物枯死。
     (3)盐胁迫下, 0.1%NaCl处理浓度对桑树幼苗叶片的净光合速率(Pn)具有一定的促进作用;而0.3%、0.5%和0.7%则对Pn具有明显的抑制作用,且造成桑树幼苗Pn降低的效应主要是由非气孔因素控制的。在一定范围内,PAR和CO2浓度的增大可提高Pn。此外,随着NaCl处理浓度增大,Gs、Tr、WUE、Ls下降,而Ci上升。盐胁迫对桑树幼苗叶片的叶绿素荧光参数具有显著影响。试验期间,随NaCl处理浓度增大,Fo呈下降的趋势,但处理之间Fo变化差异不明显;而Fv/Fm、Fv/Fo、Fm和ΦPSⅡ下降,NPQ则先升后降。分析表明,盐胁迫对桑树幼苗光合作用的影响是多方面的,一方面是通过阻碍光合电子传递、降低光化学效率和光能转化效率来抑制植物的光合作用;另一方面则通过破坏细胞膜系统的结构和功能,降低光合酶的活性,引发光合机构的异常。而叶片中Na +和Cl -离子在抑制桑树幼苗的光合作用起主要作用,且Cl -离子的效应大于Na +离子。
     (4)盐胁迫对桑树幼苗的危害包括离子毒害、营养失衡、产生渗透胁迫和破坏细胞膜结构和功能的完整性,主要表现出植物体内Na+、Cl-的大量累积;植物器官中Ca2+、K+、Mg2+含量下降;K+/ Na+、Ca2+/ Na+、Mg2+/ Na+值急剧减小;器官含水量下降、叶片萎焉;质膜透性增加、MDA含量增大。
     (5)桑树幼苗对盐胁迫的适应机理可能包括以下四个方面,即离子的区域化作用、离子稳态重建、渗透调节作用和抗氧化保护体系的调节作用,主要表现为:①在器官层次上,桑树幼苗具有明显的Na+区域化作用,且离子的区域化作用具有明显的阈值效应,实生桑1年生幼苗Na+在器官层次上的区域化作用极限值在0.3%~0.5%之间。②试验初期,盐分对根系Ca2+、K+、Mg2+离子的吸收具有一定的促进作用,各个器官Ca2+、K+、Mg2+离子含量的增加,在一定程度上缓解Na+离子毒害,维持一定的K+/ Na+、Ca2+/ Na+、Mg2+/ Na+值,保证代谢的正常进行和植物生存。③Na+和Cl-是桑树幼苗适应盐胁迫主要渗透调节物质,高盐浓度(0.5-0.7%)下,其占实测渗透势的32.53%~66.96%。渗透调节过程中脯氨酸也发挥了重要作用,此外,可能存在其他有机小分子物质来平衡细胞质与液泡之间的渗透。④SOD、CAT和POD活性先升后降,表明了抗氧化酶系统在一定程度上能减轻或缓解盐胁迫对桑树幼苗的迫害。
     (6)桑树种植后,盐碱地土壤容重下降、土壤砂粒和粘粒含量降低、粉粒含量升高增加,土壤含盐量明显降低,土壤pH值略微减小,这些现象充分说明了土壤理化性质有所改善,保水保墒能力增强。同时,土壤N、P、K,有机质和腐殖质含量、土壤微生物数量和土壤酶活性都呈增大趋势,可见,桑树在盐碱地土壤改良中具有一定的作用。
Based on the extensive available literature at home and abroad, this dissertation summarized the research advance on the saline-alkali soil comprehensive management, salt-resistance or salt tolerance and their salt-resistant or salt-tolerant mechanism. In this pot experiments treated with NaCl and the field experiments in the saline-alkali soils, with a common stock of Mulberry - Shishengsang(实生桑)(Morus alba),which adapted to the Yellow River valley and northwestern areas , as experimental materials, seedling emergences of seeds, the survival rate of seedlings, photosynthesis and chlorophyll fluorescence and other indicators were measured, and the physiological and biochemical process of mulberry seedlings in salt stress environment were systematically analyzed, moreover, their salt-resistant mechanism was researched . Main conclusions are as follows:
     (1) For Mulberry - Shishengsang(实生桑)(Morus alba)at different stages, it showed salt tolerance of 1 year-old seedlings was higher than that of its seeds. NaCl semi-lethal concentration for 1 year-old mulberry seedlings was 0.3% (g / g. DW) or so. Its seeds showed extremely sensitive to salt, and its Seedling emergences was 9.67 % under 0.1% NaCl concentration treatment , while 0 % under 0.2% NaCl concentration, so it is difficult to use and promote them in the saline-alkali soil Comprehensive Management by sowing.
     (2) Salinity significantly inhibited the growth and development of mulberry seedlings. During the experiments, Salinity significantly inhibited the growth of mulberry leaves, elongation of renewal branches and elongation and formation of lateral roots, and the sensitivity to salt of different organs performed lateral root> renewal branch> leaf. Under NaCl concentration of 0.5 to 0.7%, lateral root augment declined 81.33-92.35%, while that of renewal branches and leaves declined 70.94-84.62% and 56.18-75.97%, respectively. In addition, the root-shoot ratio of mulberry seedlings significantly decreased under salt stress, it showed that the plants suffered extremely seriously, and more than 80% of plants withered, when the root -shoot ratio would be below 0.071 to 0.067.
     (3) The net photosynthetic rate (Pn) of mulberry seedlings under 0.1% NaCl concentration was above that of control, but it was contrary when under 0.3%, 0.5% and 0.7% NaCl concentration treatments, moreover, net photosynthetic rate gradually decreased with NaCl concentration increasing. It denoted the main factor inhibiting Pn is non-stomatal control. In addition, salinity had significant effects on stomatal conductance(Gs), intercellular CO2 concentrations(Ci),and transpiration rate(Tr), water use efficiency (WUE)and stomatal limiting value (Ls) , and in which Gs, Tr, WUE and Ls dropped, but Ci rose with NaCl concentration increasing. To some extent, enhancing PAR or CO2 concentration may enhancing Pn .Salinity had significant impact on the chlorophyll fluorescence of mulberry seedling leaves. During the experiments, it showed a declining trend for Fo, but the differences of it between various treatments were not obvious with NaCl concentration increasing. Fv / Fm, Fv / Fo, Fm andΦPSⅡdeclined, but NPQ is first increased and then decreased. with NaCl concentration increasing .there may exist many accesses to photosynthesis inhibition of mulberry seedlings for salt stress, one was by hampering photosynthetic electron transfer, reducing the photochemical efficiency and energy conversion efficiency to curb the plant photosynthesis, the other, by destructing the membrane system structure and function, lowering photosynthetic synthase activity and triggering the photosynthesis Reaction Center abnormal. In the end, Na + and Cl - ions played a major role in to curb photosynthesis of mulberry seedlings, and the effect of Cl– ion on inhibiting photo- synthesis was greater than that of Na + ion.
     (4)The damages of salinity to mulberry (Morus alba) seedlings may attribute to ion toxicity, nutritional imbalance or deficiency, osmotic stress effects and destructible membrane structure and function, which were testified by the negative effects of salinity on mulberry morphology and ecophysiology, such as Na+ and Cl- ion mass cumulation in plants, a decline of Ca2+、K+、Mg2+ ion concentration in mulberry organs, a drop of K+/ Na+, Ca2+/ Na+and Mg2+/ Na+ ratio, a decrease of water moisture, fading mulberry leaves as well as an increase of MDA content and memberane permeability.
     (5) Adaptability mechanisms of mulberry seedling to salt stress can be included as below: ion compartmentalization, ion homeostasis regeneration, osmotic regulation and antioxidant protection systems self-defense, which could be suggested by the proofs such as①Na + compartmentalization at the organ level had impacts on the salt tolerance of mulberry seedlings, and for 1-year-old mulberry seedlings, its threshold may be between from 0.3% to 0.5%.②In the early-stage of experiments, salinity had a positive impact on Ca2+,K+ and Mg2+ ions uptake and distribution of mulberry seedlings, and K+/ Na+、Ca2+/ Na+、Mg2+/ Na+ ratio can be control to maintain life.③Na+ and Cl- in mulberry seedlings, which occupied 32.53%~66.96% in osmotic potential when treated with 0.5-0.7% NaCl concentrations, may take a major position in the osmotic regulation. For organic substances, proline was an important osmolyte under salt stress condition, and it may act as a mediator of osmotic adjustment. In addition, there may be other organic material to balance the osmotic potential between the cytoplasm and the vacuole.④antioxidant enzymes activity such as SOD, POD and CAT to perform at first increasing and then decreasing may be suggested that antioxidant enzyme system activities, to a certain extent, can reduce or mitigate salt damage to mulberry seedlings under salt stress.
     (6) After applied to saline-alkali soils, mulberry trees can improve the soil physicochemical properties, enhance soil nutrition contents, decrease salt concentratations, enhance enmyzes activities and multiple soil microbes.
引文
[1]赵可夫,范海,宋杰,等.中国盐生植物的种类、类型、植被及其经济潜势[A ].刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[C ].北京:气象出版社, 2002: 1~9.
    [2] Kovda V A. Loss of productive land due to salinazation. Ambio, 1983,X II(2) : 91~93
    [3]俞仁培.我国盐渍土资源及其开发利用[J].土壤通报,1999,30 (4):158~159, 177
    [4]赵可夫.植物抗盐生理[M].北京:科学技术出版社, 1993.149~160.
    [5]包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2001,(1):34~36
    [6]刘照光,包维楷.生态恢复重建的基本观点[J].世界科技研究与发展,2002,(1):34~36
    [7]孙书存,包维楷主编.恢复生态学[M].北京:化学工业出版社,2005,28~31
    [8]包维楷,陈庆恒,刘照光.岷江上游山地系统退化及其恢复与重建对策[J].长江流域资源与环境,1995,4(3):277~282
    [9]包维楷,陈庆恒.退化山地生态系统恢复与重建的有关问题探讨[J].山地学报,1999,17(1):22~28
    [10]包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36~42
    [11]古桑史话[J].湖南农业,1984,5
    [12]何雪梅,廖森泰,刘吉平.桑树资源综合利用进展及开发对策[J].蚕业科学,2005, 31 (1):4~7
    [13]宋沁,叶志毅.桑叶的综合利用和开发[J],蚕桑通报,2003,34(3):1~4
    [14]蔡文祥.开发桑枝造纸的前景[J].纸和造纸,1996,6:44
    [15]黎小萍,杨谱香,陈华玲,等.桑茶的药用与开发[J].北方蚕业,2001.22(1):4~50
    [16]于新.桑叶汁饮料工艺技术的改进[J].食品工业科技,2002,26 (3):44~46
    [17]赵永强,白坤伟,王钦举.利用桑蚕资源发展食用菌生产实现两个产业的生态循环与可持续发展[J].食用菌,2005,4:26~27
    [18]刘利,潘一乐.果桑资源研究利用现状与展望[J].植物遗传资源科学,2001,2(2):61~65
    [19]孟凡利.桑蚕业的综合开发利用[J].湖南农业,2005,9:18
    [20]胡卫民.果桑水土保持林的栽培技术[J].林业科技开发,2002,16(4):52~53
    [21]宋宝林等.防风固沙野生资源——蒙桑[J].内蒙古农业科技, 2002,4:22
    [22]张和禹.桑树砧木耐盐性比较[J].经济林研究,2005, 23 (3) : 46~48
    [23]苏兴国,洪法水.桑品种耐盐性的隶属函数法之评价[J].江苏农业学报, 2002, 18 (1) : 42~47.
    [24]苏国兴,陆小平.桑树抗盐机理初探[J].南京师范大学学报(自然科学版) , 1999, 22(3) :224~227.
    [25]苏国兴.盐胁迫下桑树活性氧代谢的变化与耐盐性的关系[J].苏州大学学报(自然科学版) , 1998, 14(1) :83~901
    [26]苏国兴,宋卫平,洪法水.盐胁迫对桑树NH4+同化和谷氨酰胺合成酶活性的影响[J].蚕业科学, 2003, 29 (1):90~94
    [27]苏国兴.盐胁迫下桑树器官和组织K+、Na +分布特点研究[J].蚕业科学, 2002, 28 (3):256~260
    [28]张国英,谈建中,刘美娟.盐胁迫对桑种子发芽及幼苗生理生化特性的影响[J].蚕业科学, 2004, 30 (2):191~194
    [29]张国英,等.外源甜菜碱对桑种子抗盐性效应的影响[J].蚕业科学, 2005, 31 (2) :199~202
    [30]中科院土壤研究所编译室编.盐渍土问题译文集[C] .北京:科学出版社,1964.
    [31] B. A.柯夫达(席承藩等译) .盐渍土的发生演化[M] .北京:科学出版社,1957.
    [32]中国植物生理学会秘书处.中国植物生理学会第五次全国会议论文摘要汇编[C].1990
    [33]祝寿泉.国外盐渍土研究工作简介[J] .土壤,1978.
    [34] I. Szaboles .盐渍土是个世界性的问题[A] .国际盐渍土改良学术讨论会论文集[C] .北京:北京农业大学出版社,1985
    [35] Bentley C F , et al. Agricultural Production : Research and Development Strategies for the 1980s . Conclusions and Recommendation of the Bonn Conference. New York. 1979 ,12~13.
    [36] Peck A J. Development and Reclamation of secondary salinity.University of Queensland Press ,1975 ,301 ~307.
    [37] Ashraf M, McNeilly T ,Bradshaw A D. Selection and heritability of tolerance to sodium chloride in four orage species . Crop Sci. ,1987 ,26 :232 ~234.
    [38]熊毅等.排水在华北平原防治土壤盐渍化中的重要意义[J].土壤,1962 , (3) : 65~68
    [39]蔡雨付.盐碱地综合治理开发利用技术研究[J].垦殖与稻作. 2006,(增刊):131
    [40]陈恩凤.有机质改良盐碱土的作用[J] .土壤通报,1984 ,15 (5) :193 ~196.
    [41]王德超,姜军祥.东营市河口区盐渍土的改良治理方法及效果分析[J].山东国土资源, 2005,21 (5):36~38
    [42]王建丕等.利用盐碱地综合开发鱼农果[J].山西水利科技,1995,(2):86~88
    [43]王继平等.干旱区盐渍化土地综合治理技术研究[J].中国生态农业学报,2001,9(1):64~66
    [44]杨自辉等.河西走廊盐渍化沙区综合治理模式研究[J].水土保持学报,2004,18(5):171~173
    [45]赵可夫等.盐生植物在盐渍土壤改良中的作用[J].应用与环境生物学报,2002,8(1):31~35
    [46]邢尚军等.白刺造林对重盐碱地的改良效果[J].东北林业大学学报,2003,31 (6): 96~98
    [47]任崴等.新疆生物改良盐碱地效益研究[J].干旱地区农业研究,2004,22(4):211~214
    [48]郭晔红等.种植中药材对盐碱地的改良效果研究[J].甘肃农业大学学报,2005,40(6):757~762
    [49]王玉珍等.6种盐生植物对盐碱地土壤改良情况的研究[J].安徽农业科学, 2006,34(5) : 951~952,957
    [50]刘玉新.中亚滨藜的耐盐性及其对滨海盐渍土的改良效果研究[J].山东农业大学学报(自然科学版), 2006,37 (2):167~171
    [51]罗廷彬等.北疆盐碱地采用生物措施后的土壤盐分变化[J].土壤通报,2005,36(3) : 304~308
    [52]王秀红,胡双熙.柴达木盆地农田土壤盐渍化特征及其防治对策研究[J].干旱区资源与环境, 1998 , 12 (4) . 74~84
    [53]魏俊梅,阿腾格,翟志忠.巴盟河套灌区盐碱地的综合治理[J].内蒙古林业科技,2001,1:32~35
    [54]张建锋等.盐碱地改良利用研究进展[J].山东林业科技,1997,3:5~8
    [55]张克强等.大同盆地金沙滩盐碱地综合治理技术开发研究[J].农业工程学报,2005,21(增刊): 136~141
    [56]张永宏.盐碱地种植耐盐植物的脱盐效果[J].甘肃农业科技,2005,(3):48~49
    [57]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999 :28 ~33.
    [58]赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J].应用与环境生物学报, 2000,6:99~105
    [59]赵可夫.植物抗盐细胞及其生理基础[A].利容干,王建波主编,植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002, l88~222
    [60] Zhang HY,Zhao KF. Study on the osmotic adjustment of Suaeda salsa under salt and water stress.Acta Botanica Sinica,1998, 40:56~61
    [61]马焕成.植物抗盐生理研究[J].西南林学院学报,1995,15(1):59~63
    [62]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[A].见:余叔文,汤章城主编.植物生理学与分子生物学[M].第二版.北京:科学出版社,1998, 752~769
    [63] Yildirim E, Taylor A G. Effect of biological treatments on bean plants under salt stress. Annual Report of the Bean Improvement Cooperative, 2005, 48: 174~175
    [64]刘友良,毛才良,汪良驹,等.植物耐盐性研究进展[J].植物生理学通讯,1987,(4):1~7
    [65] Khan M A, Sheith K H. Effects of different levels of salinity on seed germination and growth of Capsicum annuum.. Biologia ,1996 ,22 :15~16
    [66]罗庆云,於丙军.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001, 20 (3) : 177~182
    [67]解秀娟,胡晋.沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响[J].种子,2003,(130):5~6
    [68] Khan M A, Ungar I A . Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd. Bot.Gaz. 1984,145: 487~494.
    [69] Zekri M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 1991, 47:305~315.
    [70]李海云,赵可夫,王秀峰.盐对盐生植物种子萌发的抑制[J].山东农业大学学报(自然科学版) , 2002 , 33 (2) :170~173
    [71] Ungar I A. Halophyte seed germination. Bot . Rev., 1982 ,44 :233~264
    [72] Salman Gulzar , Ajmal Khan M. Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 2001, 87 : 319~324
    [73]段德玉,刘小京,李存桢.不同盐分与水分胁迫对灰绿藜种子萌发效应研究[J].中国生态农业学报, 2005,13(2):79~81
    [74]程大友,张义,陈丽.氯化钠胁迫下甜菜种子的萌发[J].中国糖料,1996,(2):21~23.
    [75]谢德意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花,2000,27(9):12~13.
    [76]卢静君,李强,多立安.盐胁迫对金牌美达丽和猎狗种子萌发的影响[J].植物研究,2002,22(3):328~332。
    [77]王庆亚,刘敏,张守栋,等.盐胁迫对盐角草种子萌发与幼苗生长效应的研究[J].江苏农业科学,2002,(2):69~71.
    [78]梁云媚,李燕,多立安,等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学,1998,15(6):21~25.
    [79]安守芹,于卓,孙丽娟,等.花棒等四种豆科植物种子萌发及苗期耐盐性的研究[J].中国草地,1995,(6);29~32
    [80] Strogonov B P. Physiological basis of salt tolerance of plants. Akad. Nauk. USSR. (translation by Israel Progr. Sci. Trans., Jerusalem). 1964,135~140
    [81] Ungar I A. Germination ecology of halophytes In Contributions to the Ecology of Halophytes. Eds. D N Sen and K Rajpurohit. Junk, The Hague, 1982,4:143~~154.
    [82] Ungar I A. Eco~physiology of vascular halophytes. CRC Press, Boca Raton, FL. 1991,67~71
    [83] Nanawati G L, Maliwal G L . Note on the effect of salts on the growth, mineral nutrition and quality of tomato( Lycopersicone sculentum Mill).Indian J .Agric. 1974,Sci.43:612~614
    [84] Papadopoulos L, Rendig V V . Tomato plant response to salinity. J. Agric. 1983,75 :696~700
    [85] Snapp S S, Sherman C. Salinity effects on root growth and senescence in tomato and the consequences for severity of phytophthora root rot infection. J .Am. Soc .Hort. Sci. 1994,119:458~463
    [86] Tattini M, Bertoni P, Caselli S. Genotypic responses of olive plant to sodium chloride. J. Plant. Nutr. 1992, 15:1465~1485
    [87] Storey E. Salt tolerance, ion relations and the effects of root medium on the response of Citrus to salinity. Austral. J. Plant Physiol., 1995, 22:101一114
    [88] Therios l N, Misopolinos N D. Genotypic response to sodium chloride salinity of four major olive cultivars (Olea europaea L .).Plant Soil, 1988,106:105~111
    [89] Bongi G., F.Loreto. Gas~exchange properties of salt stressed olive ( Olea europaea L. ) leaves. Plant Physiol., 1989,90: 533~545
    [90] Bartolini G, Mazuelos C, Troncoso A. Influence of Na2SO4 and NaCl salts on survival, growth and mineral composition of young olive plants in inert sound culture. Adv. Hort. Sci., 1991,5 :73~76
    [91] Tattini M. et al. 1995.Growth, gas exchange and ion content in Olea europaea plant during salinity stress and subsequent relief. Physiol .Plant, 95:203~210
    [92] Van Ieperen W. Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J. Hort.Sci., 1996,7 1:99~111
    [93] Franco J A, et al. Relationship between the effects of salinity on seedling leaf area and fruit of six muskmelons cultivars. Hort. Sci., 1997, 32 :642~647
    [94] Yeo A R, et al. Short and long~term effects of salinity on leaf growth in rice (Oryza sativa L .). J.Exp.Bot., 1991,42: 881~889
    [95] Jarrell W M, Virginia R A. Response of mesquite to nitrate and salinity in a simulated phreatic environment: water use, dry matter and mineral nutrient accumulation. Plant Soil, 1990,125:185~~196.
    [96] Chartzoulakis K S. Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Scientia Horticulturae, 1994,59 :27~35
    [97] Fung L E , Wang S S , Altman A , et al . Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. Forest Ecology and Management , 1998,107 : 135~146
    [98]汪贵斌,曹福亮.土壤盐分及水分含量对落羽杉幼苗生长的影响[J].应用生态学报. 2004 ,15 (12)∶2396~2400
    [99]杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较研究[J].生态学报,2003,23 (2) :271~278
    [100] Chartzoulakis K, Loupassaki M, Bertaki M, et al. . Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. ScientiaHorticulturae , 2002,96 : 235~247
    [101] Garcia~Sanchez F , Jifon J L , Carvajal M. Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl~accumulation in‘Sunburst’mandarin grafted on different rootstocks. Plant Science , 2002,162 : 705~712
    [102] Seemann J R , Critchley C. Effects of salt stress on the growth , ion content , stomatal behaviour and photosynthetic capacity of salt~sensitive species Phaseohs vulgaris L. Planta , 1985,164 :151~162
    [103]牟永花,张德威. NaCl胁迫下番茄苗的生长和营养元素积累[J].植物生理学通讯, 1998, 34 (1) : 14~16
    [104]杨秀玲,郁继华,李雅佳等. NaCl胁迫对黄瓜种子萌发及幼苗生长的影响[J].甘肃农业大学学报, 2004, 39 (1) : 6~17
    [105]陶晶等.东北西部主要杨树品种对盐碱胁迫的生长反应[J].吉林林业科技,2004,33(4):13~16 31
    [106] Munns R, Greenway H, Kirst G 0. Halotolerant eukaryotes, In: Lange O L, Nobel P S, Osmond C B, Zeigler H.( eds), Physiological Plant EcologyⅡ: Responses to the Chemical and Biological Environment, Encyclopedia of Plant Physiology, New Series. Springer, Berlin, 1983, 12:59~135
    [107] Munns R. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell and Environment, 1993, 16, 15~24.
    [108] Kuiper D, Schuit J, Kuiper P J C. Actual cytokine in concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil, 1990, 123:243~250
    [109]章文华和刘友良,1991,盐胁迫对小麦种子萌发的两种酶活性的影响[J].南京农业大学学报,14(4):18~22
    [110] Neumann P M. Salinity resistance and plant growth revisited。Plant Cell and Environ., 1997,20: 1193~1198
    [111]张福锁.环境胁迫与植物育种[M].北京:农业出版社,1993
    [112]赵建平,谢虎.佛手瓜耐盐性的研究[J].中国蔬菜, 1995 (2) : 19–21
    [113]王新伟.不同盐浓度对马铃薯试管苗的胁迫效应[J].马铃薯杂志, 1998, 12 (4) : 203–207
    [114]戴伟民,蔡润,潘俊松等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报, 2002, 18 (1) : 58~62
    [115]魏国强,朱祝军,方学智等. NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学, 2004, 37(11) : 1754~1759
    [116]张教方,刘小东,刘宏伟等.毛百合繁殖生物学研究(Ⅳ):种子萌发的动态形态解剖[J].东北林业大学学报,1994,22 (5) : 49~58
    [117] Bressan R A, Nelson D E, Iraki N M, et al.. Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl. In: Katterman F ( ed),1 990, Environmental Injury to Plants. San Diego : Academic Press Inc. 1990, 137~171
    [118]龚明,丁念诚,贺子义和刘友良.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11): 841~846
    [119] Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+ by Na+ from the plasmalemma of root cell. Plant Physiol, 1985, 79: 207~211
    [120] Pareek A S, Singla L, Grover A. Short~term salinity and high temperature stress–associated ultras~tructural alterations in young leaf cells of Oryza sativa L ..Ann.But.,1997,8 0( 5) :6 29~639
    [121] Chang P F I,et al.. Alterations in cell membrane structure and expression of a membrane~associated protein after adaptation to osmotic~stress. Physiol. Plant, 1996, 98 (3):505~516
    [122] Keiper F J,Chen D M, Filippis L F. Respiratory, photosynthetic and ultra~structural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J .Plant Physiol. 1998,152(4~5):564~573
    [123]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报, 1999,25(3):229~233
    [124] Piqueras A, Olmos E, Hellin E. Cytological changes related with salt tolerance in embryogenic callus of Citrus Iimon. Plant Cell Tissue Organ. Culture,1994,39(1):13~18
    [125] Morales M A, Sanchez~Blanco M J, Olmos E, et al.. Changes in the growth, leaf water relations and cell ultra~structure in Argyranthemum coronopifoium plants under saline conditions. J .Plant Physiol. 1998, 153(1~2):174~180
    [126]张立桢等.棉花根系生长和空间分布特征研究[J].植物生态学报.2005, 29 (2) :266~273
    [127]苏鹏,方小英.土壤盐碱含量对葡萄根系分布的影响[J].新疆农垦科技,2002,2:21
    [128]罗长寿等.遗传算法在盐分胁迫下冬小麦根系分布预报中的应用[J].中国农学通报,2006,22( 2):107~109
    [129]冯立田,赵可夫,邓振旭. NaCl对菜豆叶片光合CO2和水分交换效应的研究[J].山东师范大学学
    [115]魏国强,朱祝军,方学智等. NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学, 2004, 37(11) : 1754~1759
    [116]张教方,刘小东,刘宏伟等.毛百合繁殖生物学研究(Ⅳ):种子萌发的动态形态解剖[J].东北林业大学学报,1994,22 (5) : 49~58
    [117] Bressan R A, Nelson D E, Iraki N M, et al.. Reduced cell expansion and changes in cell walls of plant cells adapted to NaCl. In: Katterman F ( ed),1 990, Environmental Injury to Plants. San Diego : Academic Press Inc. 1990, 137~171
    [118]龚明,丁念诚,贺子义和刘友良.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11): 841~846
    [119] Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+ by Na+ from the plasmalemma of root cell. Plant Physiol, 1985, 79: 207~211
    [120] Pareek A S, Singla L, Grover A. Short~term salinity and high temperature stress–associated ultras~tructural alterations in young leaf cells of Oryza sativa L ..Ann.But.,1997,8 0( 5) :6 29~639
    [121] Chang P F I,et al.. Alterations in cell membrane structure and expression of a membrane~associated protein after adaptation to osmotic~stress. Physiol. Plant, 1996, 98 (3):505~516
    [122] Keiper F J,Chen D M, Filippis L F. Respiratory, photosynthetic and ultra~structural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J .Plant Physiol. 1998,152(4~5):564~573
    [123]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报, 1999,25(3):229~233
    [124] Piqueras A, Olmos E, Hellin E. Cytological changes related with salt tolerance in embryogenic callus of Citrus Iimon. Plant Cell Tissue Organ. Culture,1994,39(1):13~18
    [125] Morales M A, Sanchez~Blanco M J, Olmos E, et al.. Changes in the growth, leaf water relations and cell ultra~structure in Argyranthemum coronopifoium plants under saline conditions. J .Plant Physiol. 1998, 153(1~2):174~180
    [126]张立桢等.棉花根系生长和空间分布特征研究[J].植物生态学报.2005, 29 (2) :266~273
    [127]苏鹏,方小英.土壤盐碱含量对葡萄根系分布的影响[J].新疆农垦科技,2002,2:21
    [128]罗长寿等.遗传算法在盐分胁迫下冬小麦根系分布预报中的应用[J].中国农学通报,2006,22( 2):107~109
    [129]冯立田,赵可夫,邓振旭. NaCl对菜豆叶片光合CO2和水分交换效应的研究[J].山东师范大学学
    [143] Mansour MM F, Salama K H A. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany, 2004, 52 : 113~122
    [144] Parida A K, Das A B. Salt tolerance and salinity effects on plants : a review. Ecotoxicology and Environmental Safety, 2005, 60 : 324~349
    [145]张川红,沈应柏,尹伟伦,等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学, 2002,138 (2) :27~31
    [146] Kozlowaki T T. Responses of woody plants to flooding and salinity. Tree Physiology Monograph, 1997, 1:1~29
    [147]王艳青,蒋湘宁,李悦.盐胁迫对刺槐不同组织及细胞离子吸收和分配的变化[J].北京林业大学学报,2001,23 (1) :19~23
    [148] Hansen E H, Munns D N. Effect of CaSO4 and NaCl on mineral content of leucaena leucocephala . Plant and Soil, 1988,107 : 101~105
    [149] Ashraf M. Salt tolerance of cotton: Some new advances. Critical Review in Plant Sciences, 2002,21: 1~30.
    [150] Mehmet A D. Comparative response of two olive(Olea europaea L.) cultivars to salinity. Turk J Agric. 2005,29:267~274
    [151] Rabie G H, Almadini A M. Role of bioinoculants in development of salt~tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology,2005,4 (3):210~222
    [152]石德成,等. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J] .草业学报, 1997, 6(2):51~61
    [153] Niu X M, Bressan R A, Hasegawa P M, et al.. Ion homeostasis in NaCl stress environments. Plant Physiology, 1995, 109: 735~742
    [154]陈秀兰.提高棉花耐盐性的途径[J].棉花学报, 1998, 10 (2) : 64~68.
    [155]武维华.植物生理学[M].北京:科学出版社,2003,448—455.
    [156] Taiz L, Zeiger E. Plant physiology, 3rd Edition. Sinauer Assoc., Sunderland., 2002
    [157] Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora, 2004, 199:361–376
    [158] Ashraf M, Bashir A. Salt stress induced changesin some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 2003,198: 486– 498.
    [159]赵可夫.植物对盐渍逆境的适应[J].生物学通报, 2002, 37(6):7~10
    [160] Ueda A, Kanechi M, Uno Y, et al.. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J. Plant Res., 2003, 116: 65– 70.
    [161]许兴,郑国琦.宁夏枸杞耐盐性与生理生化特征研究[J].中国农业生态学报,2002 ,10 (3) :70~731
    [162] Abraham E, Rigo G, Szekely G, et al.. Light~dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol., 2003, 51: 363–372.
    [163] Mohanty A, Kathuria H, Ferjani A, et al.. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 2002, 106: 51– 57.
    [164] Yang W~J, Rich P J, Axtell J D, et al.. Genotypic variation for glycinebetaine in sorghum. Crop Sci., 2003, 43: 162– 169
    [165] KhatkarD, KuhadM S. Short~term salinity induced changes in two wheat cultivars at different growth stages. Biol. Plant, 2000, 43: 629~632.
    [166] Zhang H Y, Fan Z F. Comparative Study on the Content of Inorganic and Organic Solutes in Ten Salt tolerant Plants in Yuncheng Saltlake. Acta Ecologica Sinica, 2002, 22 (3) : 352~358.
    [167] Murakeozy E P, Nagy Z, Duhaze C, et al.. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J. Plant Physiol., 2003, 160 :395~401
    [168] Zhifang G, Loescher W H. Expression of acelery mannose 6~phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and aglucosyl mannitol dimmer. Plant Cell Environ. , 2003, 26: 275~283.
    [169] Abd El, Baki G K, Siefritz F, et al.. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ., 2000, 23: 15~521.
    [170] Elshintinawy F, Elshourbagy M N. Alleviation of changes in protein metabolism in NaCl stressed wheat seedlings by thiamine. Biol. Plant, 2001,44: 541~545.
    [171] Humphrey A. Partitioning in chiodium ion in the germination seed of two forage legumees under varied salinity and temperature regimes[J ] . Commu Soil Sci Plant Anal ,1995 , (26) : 3357~3370
    [172]谈健康,安树青,王铮锋等. NaCL、Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,1998 , (15) : 82~86
    [173]寥祥儒,贺普超,朱新产.玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响[J].植物学报, 1997 , 39 (7) : 641~646
    [174]戚乐磊,陈阳,贾恢先.盐胁迫下有机及无机硅对水稻种子萌发的影响[J ] .甘肃农业大学学报,2002,(3) :272~278
    [175] Michael C. Shannon. Adaptation of plants to salinity.Advances in Agronomy, 1998,60:75~114
    [176]Rana Munns, Shazia Husain, Anna Rita Rivelli, et al..Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil, 2002,247: 93–105
    [177] Adams P, Thomas J C, Vernon D M, et al.. Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. ,1992, 33: 1215 1223.
    [178]John M Ward, Kendal D Hirschi, Heven Sze. Plant pass the salt. Trends in Plant Sci.,2003, 8(5): 200~201
    [179] Rus A, et al.. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots.Proc Natl Acad Sci USA, 2001, 98:14150~14155.
    [180] Maser P, Eckelman B, Vaidyanathan R, et al.. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 2002, 531:157~161.
    [181] Amtmann A, Sanders D. Mechanisms of Na+ uptake by plant cells. Adv Bot Res 1999, 29:75~112.
    [182] Yeo AR, Flowers SA, Rao G, et al..Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reductionin the transpirational bypass flow. Plant Cell Environ 1999, 22:559~565.
    [183] Tester M, Davenport R. NaR tolerance and Na+ transport in higher plants. Ann Bot (Lond) 2003, 91:503~527.
    [184] Niu X, Zhu JK, Narasimham ML, et al..Plasma membrane H+-ATPase gene expression is regulated by NaCl in halophyte (Atriplex nummularia L.) cell cultures. Planta 1993, 190:433~438.
    [185] Vitart V, Baxter I, Doerner P, et al.. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. J Plant, 2001, 27:191~201.
    [186] Blumwald E. Sodium transport and salt tolerance in plant cells. Curr. Opin. Cell Biol., 2000, 12, 431–434.
    [187] Shi H, Ishitani M, Kim C, et al..The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative NaR/HR antiporter. Proc Natl Acad Sci USA 2000, 97:6896~6901.
    [188] Qiu QS, Guo Y, Dietrich MA, et al..Regulation of SOS1, a plasma membrane NaR/HR exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 2002, 99:8436~8441.
    [189] Quintero FJ, Ohta M, Shi H, et al..Reconstitution in yeast of the Arabidopsis SOS signaling pathwayfor Na+ homeostasis. Proc Natl Acad Sci USA 2002, 99:9061~9066.
    [190] Dietz KJ, Tavakoli N, Kluge C, et al.. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 2001, 52:1969~1980.
    [191] Maeshima M. Tonop last transporters: organization and function. Ann Rev Plant Physiol, 2001, 52: 469 497.
    [192] Yokoi S, Quintero FJ, Cubero B, et al.. Differential expression and function of Arabidopsis thaliana NHX NaR/HR antiporters in the salt stress response. Plant J 2002, 30:529~539.
    [193] Apse MP, Blumwald E. Engineering salt tolerance in plants. Curr. Opin. Biotechnol., 2002, 13: 146~150.
    [194] Gaxiola RA, Li J, Undurraga S, et al.. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA,2001, 98:11444~11449.
    [195] Salin M L.Toxic oxygen species and protective systems of the chlorplast.Physiol plant,1987,72:681~689.
    [196] Steiger H M, Beck E, Beck R. Oxygen concentration in isolated chloroplasts during photosynthesis. Plant Physiol., 1977, 60: 903~906.
    [197] Asada K, TakahashiM. Production and scavenging of active oxygen radicals in photosynthesis. In: Kyle D J, Osmond C B, Arntzen C J (eds. )Photoinhibition, vol. 9. Elsivier, Amsterdam, 1987, 227~288.
    [198] Hernandez J, Jimenez A, Mullineaux P, et al.. Tolerance of pea plants ( Pisum sativum ) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Environ., 2000, 23: 853~862.
    [199] Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L. ) . Plant Physiol.,2001, 158: 737~745.
    [200]李国旗,安树青,张纪林,等.盐胁迫对杨树形成层过氧化物酶活性及其效应的影响[J].应用生态学报, 2003, 14 (6) : 871~874
    [201] Mittova V, Tal M, Volokita M, Guy M. Upregulation of the leafmitochondrial and peroxisomal antioxidative systems in response to salt induced oxidative stress in the wild salt tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. , 2003, 26: 845~856.
    [202]贺学礼,赵丽莉,李英鹏. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J].生态学报, 2005, 25 (1) : 188~193.
    [203] Conklin P L, Williams E H, Last R L. Environmental stress sensitivity of an ascorbic acid deficientArabidop sismutant. Proc. Natl. Acad. Sci.USA, 1996, 93: 9970~9974.
    [204] Allen R D, Webb R P, Schake S A. Use of transgenic plants to study antioxidant defenses. Free Radic. Biol. Med. , 1997, 23: 473~479.
    [205] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. PlantMol. Biol., 1998, 49:249~279.
    [206] Smirnoff N. Plant resistance to environmental stress. Curr. Opin. Biotechnol., 1998, 9: 214~219.
    [207] Gupta A S, Heinen J L, Holaday A S, et al.. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu /Zn~superoxide dismutase. Proc. Natl. Acad. Sci. USA, 1993, 90: 1629~1633.
    [208] Gupta A S, Webb R P, Holaday A S, et al.. Overex pression of superoxide dismutase protects plants from oxidative stress: induction of ascorbate peroxidase in superoxide dismutase overexp ressing plants. Plant Physiol., 1993, 103: 1067~1073.
    [209] Van Camp W, Cap iau K, Van Montagu M, et al.. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe~superoxide dismutase in chlorop lasts. Plant Physiol., 1996, 112: 1703~1714.
    [210] Shikanai T, Takeda T, Yamauchi H, et al.. Inhibition of asorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chlorop lasts. FEBS Lett., 1998, 428: 47~51.
    [211] RoxasV P, Lodhi S A, Garrett D K, et al.. Stress tolerance in transgenic tobacco seedlings that overexp ress glutathione S~transferase /glutathione peroxidase. Plant Cell Physiol., 2000, 41: 1229~1234.
    [212] Takemura T, Hanagata N, Dubinsky Z, et al.. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu /Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees Struct. Funct., 2002, 16: 94~99.
    [213]智慧等.人工盐胁迫法鉴定谷子及狗尾草物种耐盐基因型[J].河北农业科学, 2004,8(4):15~18
    [214]刘旭,史娟,张学勇,等.小麦耐盐种质的筛选鉴定和耐盐基因的标记[J].植物学报,2001,43(9):948~954.
    [215]平俊爱,张福耀,程庆军,等.高粱耐盐性鉴定及其应用[J].山西农业科学,1998,26(2):l2~l4.
    [216]韩朝红,孙谷畴,林植芳.NaC1对吸胀后水稻的种子发芽和幼苗生长的影响[J].植物生理学通讯,1998,34(5):339~342.
    [217] Michael C. Shannon. Adaptation of plants to salinity.Advances in Agronomy, 1998,60:75~114
    [218]万贤崇、宋永俊.盐胁迫及其钙调节对竹子根系活力和丙二醛含量的影响[J].南京林业大学学报, 1995, 19(3):16~20
    [219]李磊,赵檀方,胡延吉.大麦苗期耐盐性鉴定指标的研究[J].莱阳农学院学报,1998,15(4):253~257
    [220]苗海霞等.盐胁迫对苦楝根系活力的影响[J].山东农业大学学报(自然科学版),2005,36 (1):9~12
    [221]张润花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜,2006,2:47~49
    [222]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999,16(4):444~448
    [223] Lioyd J. et al.. Citrus leaf fluorescence :Water and salt effects. Acta. Hort ,1986 ,175 :333~337.
    [224]刘家尧,衣艳君,张承德,等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J] .曲阜师范大学学报,1997,24(3):830~831
    [225]刘家尧,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导活动力学的影响[J].植物学通报, 1998, 15(2):46~49
    [226] Abdel~Aziz S M, Reda M M A. Osmotic adjustment for two wheat varieties. Egypt. J. Agric. Res., 2000, 78: 993–1004.
    [227] Xingyu J, Junxia D, Zhengqiu W. Comparison of regulation of NaCl for photosynthetic and osmotic adjustment ability of maize and cotton. Plant Physiol. Commun.,2001,37: 303– 305.
    [228] Ueda A, Kanechi M, Uno Y, et al.. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J. Plant Res., 2003,116: 65– 70.
    [229]孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J] .中国农业科学,1997 ,30 (4) :9.
    [230] Sabu A ,Sheeja T E ,Nambison P , et al.. Comparison of proline accumulation in callus and seedlings of two cultivation of Oryza Sativa L differing in salt tolerance. Indian J Exp Biol ,1995 ,33 (2) :139.
    [231]傅秀云,崔光泉.冬小麦耐盐力与脯氨酸含量的关系[J ] .山东农业科学,1988 , (2) :5~9
    [232]陶晶等.盐碱胁迫对杨树各品种丙二醛及保护酶活性的影响[J].东北林业大学学报,2005, 33(3):13~15,37
    [233]王瑞刚等.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J].北京林业大学学报, 2005, 27 (3) :46~52
    [234]周兴元,曹福亮.土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响[J].林业科学研究, 2005,18(3):336~341
    [235] Rengel Z. The role of calcium in salt toxicity. Plant Cell Environ, 1992,15: 625~632
    [236]张宝译.盐胁迫下不同的钙盐对小麦幼苗耐盐性的影响[J].植物学通报,1997,14(4):48~50.
    [237] Soussi M, Ocana A, Lluch C. Growth, nitrogen fixation and ion accumulation in two chickpea cultivars under salt stress. Agricoltura Mediterranea, 2001,131:1~8.
    [238] Unno H, Maeda Y, Yamamoto S, et al.. Relationship between salt tolerance and Ca2+ retention among plant species. Japan. J. Soil Sci. Plant Nutr.,2002,73: 715~718.
    [239] Subbarao G V, Johansen C, Jana M K, et al.. Effects of the sodium/calcium ratio in modifying salinity response of pigeonpea (Cajanus cajan L.). J Plant Physiol.,1990, 136: 439~443.
    [240] Foolad M R. Genetic basis of physiological traitsrelated to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed.,1997,116: 53~58.
    [241] Gorham J,Bridges J, Dubcovsky J, et al.. Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytol., 1997, 137: 109~116.
    [242] He T., Cramer G. R. Salt tolerance of rapid cycling Brassica species, in relation to potassium/sodium ratio and selectivity at the whole plant and callus level. J. Plant Nutr., 1993a,16: 1263~1277.
    [244]Munns R, James R A. Screening methods for salinity tolerance : a case study with tetraploid wheat. Plant Soil, 2003, 253: 201~218.
    [246] Chander P K, Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Mol. Biol., 1994 ,4 :113.
    [247] Tsang E W, Bowler C, Herouart D, et al.. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell ,1991 ,3 :783.
    [248] Kavi-Kishor P B, Hong Z,Miao G H, et al..Over expression of△-pyrroline-5-carboxylate synthetase increases proline production and confers osmo~tolerance intrans~genic plants.Plant Physiol,1995,108:1387~1394.
    [249]沈义国,杜保兴,张劲松,陈受宜.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J].生物工程学报,2001,17(1):1~6
    [250]刘风华,郭岩.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J] .遗传学报,1997 ,24 (1) :54~59
    [251]蒯本科,顾红雅.渗透胁迫诱导的植物体内信号及相关基因克隆研究[J ] .资源科学,1999 ,21 (9) :42~45
    [252]郭北海,张艳敏.甜菜碱醛脱氢酶BADH基因转化小麦及其表达[J] .植物学报,2000 ,42 (3) :279
    [253]王淑芳,王峻岭,赵彦修,张慧.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J].植物生理学报,2001,27(3):248~252
    [254] Ericson M C,Alfinito S H.Proteins produced during salt stress in tobacco cell culture.Plant Physiol., 1987, 74: 506~509
    [255] Verbruggen N, Hua X J, May M, et al.. Environmental and developmental signals modulate proline homeostasis:evidence for a negative transcriptional regulator.Proc Nat. Acad Sci USA,1996,93( 1):8787~8791
    [256]杨明峰,韩宁,陈敏,王宝山.植物盐胁迫响应基因表达的器官组织特异性[J].植物生理学通讯, 2002, 38(4):394~398
    [257]任仲海,马秀灵,赵彦修,张慧.Na+/H+逆向转运蛋白和植物耐盐性[J].生物工程学报,2002,18(1):16~19
    [258] Zhang Hx, Blumwald E.Transgenic salt:tolerant tomato plants accumnlate salt in foliage but not in fruit.Nat. Biotechnol,2001,19:765~768
    [259] Weig A,Deswarte C,Chrispeels M J.The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group.Plant Physiol, 1997, 114:1347~1357
    [260] Fukuhara T,Kirch H H, Bohnert H J.Expression of Vp lanel water channel proteins during seed germination.Plant Cell Environ., 1999,22:417~424
    [261] Yamada S, Katsuhara M, Kelly W B, et al..A family of transcripts encoding water channel proteins: tissue~specific expression in the commonice plant. Plant Cell, 1995, 7:1129~1142
    [262] Aukerman M J,Schmidt R J,Burr B,et al..An arginine to lysine substitution in the bZIP domain of an opaque-mutant in maize abolishes specific DNA binding.Genes Dev,1991.5:310~320
    [263] Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors.J Cell Biochem,1994,55:32~58
    [264] Lyck R.Harmening U ,Hohfeld I.Intracellular distribution and identification of the nuclear location signals of two plant heat-stress transcription factors.Planta,1997,202:117~125
    [265]刘强,张贯友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465~1474
    [266] Okamuro J K,Caster B,Villarroel R. The AP2 domain of APETALA2 defines a large new family of DNA binding proreins in Arabidopsis.Proc Natl Acad Sci USA,1997,94:7076—7081.
    [267] Shinzaki K, Yamaguchi-Shinozaki K.Gene expressing and signal transduction in water—stressresponse.Plant Physiol.1997, l15:327~334.
    [268] M achida Y, Nishihama R, Kitakura S.Progress in studies of plant homologs of mitgen-activated protein (MAP) kinase and potential upstream components in kinase cascades.Critical review in Plant Science.1997,16(6):481~496
    [269] Krysan P J,Jester P J,Gottwald J R,et al..An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis.Plant Cell,2002,14:1109~1120
    [270] M izoguchi T, Hayashida N, Yamaguchi-Shinozaki K.ATM PKs:a gene family of plant MAP kinases in Aradopsis thaliana.FEBS Letters,1993,336:440~444
    [271] Mizoguchi T, Irie K, Hirayama T. A gene encoding a mitogen-activated protein kinase kmase kmase is induced simuhaneously with genes for a mitogen~activated protein kmase and an S6 ribosomal protein kinase by touch cold and waterstress in Arabdopsis thaliana.Proc Natl Acad Sci USA,1996,93:765~769
    [272] Urao T,Katagiri T, Mizoguchi T.Two genes that encode Ca2+-dependent protein kinases are induced by drought and high~salt stress in Arabdopsis thaliana.Mol Gen Gent,1994,244:33~340
    [273] Tarczynski M C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco by production of the osmolytemannitol. Science,1993,259:509~510
    [274]王慧中,黄大年等.转mtlD / gutD双价基因水稻的耐盐性[J].科学通报,2000, 45(7):724~729
    [275] McKersie B D, Bowley S R, Jones K S. Winter survival of transgenic alfalfa overexposing superoxide dismutase. Plant Physiol., 1999, 119:839~847.
    [276] Van Camp W, Wilekens H et al.. Elected levels of superoxide dismutase protect transgenic plants against ozone damage. Biology Technology,1994,12:165~168.
    [277] Kasuga M, Liu Q, Yamaguchi-Shinozaki K, et al.. Improving plant duought, salt and freezing tolerance by gene transfer of a single stress~inducible transcription factor. Nature Biotechnol, 1999,17:287~291.
    [278] Tao R ,Uratsu S L ,Dandekar A M, et al.. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP dependent sorbitol-6-phosphate dehydrogenase. Plant CellPhysiol ,1995 ,366 :525.
    [279]侯玉慧,韩晓日,杨家佳,姜琳琳.硅对盐胁迫下黄瓜幼苗细胞膜伤害及其保护酶活性的影响[J].中国农学通报, 2005, 21(9):252~254
    [280] Zhu ZJ, Wei GQ, Li J, et al.. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt~stressed cucumber (Cucumis sativus L.). Plant Science, 2004, 167(3):527~533
    [281] Al Aghabary K, Zhu ZhuJun, Shi QinHua. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 2004, 27(12):2101~2115
    [282] Bonilla I, El Hamdaoui A, Bolanos L. Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil, 2004,267(1~2):97~107
    [283] RUAN Hai-Hua, SHEN Wen-Biao, XU Lang-Lai. Nitric Oxide Involved in the Abscisic Acid Induced Proline Accumulation in Wheat Seedling Leaves Under Salt Stress. Acta botanica sinica , 2004, 46(11): 1307~1315
    [284] Ruan Hai-Hua, Shen Wen-Biao, Xu Lang-Lai. Nitric oxide modulates the activities of plasma membrane H+-ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress. Acta botanica sinica, 2004, 46(4):415~421
    [285]张乃华等. Ca2+缓解NaC1胁迫引起的玉米光合能力下降的作用[J].植物生态学报,2005,29(2): 324~330
    [286]梁洁等.Ca(NO3)2对NaCI胁迫下木麻黄扦插苗生理特征的调控[J].生态学报,2004,24(4): 1073~1077
    [287] Li Ping-Hua , Chen Min , Wang Bao-Shan. Effect of K+ nutrition on growth and activity of leaf tonoplast V-H+-ATPase and V-H+- PPase of Suaeda salsa under NaCl stress. Acta Botanica Sinica, 2002 , 44 (4) : 433~440
    [288] Gomathi R,Thandapani V. Impact of salt stress on sett germination and subsequent seedling growth of sugarcane: influence of GA3 on imparting salt tolerance. Indian Sugar, 2005,55(2):113~119
    [289] Renu Munjial C L, Goswami S K, Banerje B. Effect of gibbcrellic acid and salt stress on translocation pattern of photosynthates in Gossypium arboreum during cotyledonary leaf development. J cotton research and development,1996,10(1):36~43
    [290] Cachorro P, Martinez R, Ortiz A, et al.. Abscisic~acid and osmotic relations in Phaseolus vulgaris L shoots under salt stress. J. Plant Growth Regulation, 1995,14(2):99~104
    [291] Moons A, Vanmontagu M, Dekeyser A. A group 3 LEA cDNA of rice, responsive to Abscisic~acid, but not to jasmonic~acid differences in salt stress response. Gene ,1997,191(2):197~204
    [292] Moons A, Vandekerckhove J, Vanderstraeten D, et al.. An Abscisic-acid and salt-stress-responsive rice cDNA from a novel plant gene family. Planta, 1997, 202(4): 443~454
    [293] Sun Cheng , Liu You-Liang, Zhang Wen-Hua. Mechanism of the effect of polyamines on the activityof tonoplasts of barley roots under salt stress. Acta Botanica Sinica, 2002 , 44 (10) : 1167~1172
    [294]陈竹生,聂华堂,计玉,等.柑橘种质的耐盐性鉴定[J].园艺学报,1992, 19 (4): 289~295
    [295]周玉梅等.不同CO2浓度下长白山3种树木幼苗的光合特性[J].应用生态学报,2002 ,13(1) :41~44
    [296]西北农业大学植物生理教研室编.植物生理学实验指导[M].西安:陕西科技出版社,1987,1~4
    [297]郑炳松等.现代植物生理生化研究技术[M].北京:气象出版社, 2006
    [298] Khan M S A , Hamid A. Karim M A. Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L. ). J Agron & Crop Sci, 1997, 179: 163~169.
    [299]李昀,沈禹颖,阎顺国.NaCI胁迫下5种牧草种子萌发的比较研究[J].草业科学,1997,14(2):50~53.
    [300]沈禹颖,王锁民,陈亚明.盐胁迫对牧草种子萌发及其恢复的影响[J].草业学报,1999,8(3):54~60
    [301] Khan M A, Ungar I A. Germination of salt tolerant shrub Suaeda frutieosa from Pakistan :salinity and temperature response. Seed Sciences and Technology, 1998,26 :657~667
    [302] Hsu J L, Sung J M. Antioxidant role of glutathione associated with accelerated aging and hydration of triploid watermelon seeds. Physiologia Plantarum,1997, 100, 967~974
    [303]吕芳德等. 5种红山茶叶绿素荧光特性的比较研究[J] .经济林研究, 2003, 21 (4) : 4~7
    [304] Herppich W B, Herppich M, Tuffers A. Photosynthetic responses to CO2 concentration and photon fluency rates in the CAM cycling plant Delosperma tradescantioides (Mesembryanthemaceae) . New Phytologist , 1998 , 138 : 433~440
    [305] Schreiber U, Armond P A. Heat induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat damage at the pigment level. Biochim Biophys Acta ,1978 ,502 :138~151
    [306] Demming B, Winter K, Krüger A, et al.. Photoinhibition and zeaxanth information in intact leaves. Plant physiol, 1997, 84 (2) : 218~224.
    [307] Dodd IC, Critchley C, Woodall GS, et al.. Photo inhibition in different tlycolorded juvenile leaves of Syzygium species. J. Exper. Bot, 1998, 49: 1437~1445.
    [308]林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报, 1992, 9 (1) : 1~16
    [309]冯建灿等.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究, 2002,20 (4) :14~18,30
    [310] Neumann P M. Salinity resistance and plant growth revisited Plant. Cell and En Neumann viron.,1997,20: 1193~1198
    [311] Bethke P C, Drew M C. Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol. , 1992, 99: 219~226.
    [312] Dunn GM, Neales T F. Are the effects of salinity on growth and leaf gas exchange related?. Photosynthetica, 1993, 29: 33~42.
    [313] Javis P G. Global change and plant water relations. In: Borghetti MJ eds. water transport in plant under climatic stress. Cambridge: Cambridge University Press, 1993,1~13
    [314] Richard J N. Issues and perspectives for investigating root response to elevated carbon dioxide. Plant and Soil, 1994,165:9~20
    [315] Sage R F, Sharkey T D, Seeman J R. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol., 1989,89:590~596。
    [316]林伟宏.植物光合作用对大气CO2浓度升高的反应.生态学报,1998,18(5):529~538
    [317]张其德.盐胁迫对植物及其光合作用的影响[A].盐碱地绿化技术[M].北京:中国林业出版社,2004,137~143
    [318]陈平平.大气二氧化碳浓度升高对植物的影响[J].生物学通报, 2002, 37(3): 20~22
    [319]蒋高明,林光辉,Bruno DV Marino.美国生物圈二号内生长在高CO2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化[J].植物学报.1997,39(6):546~553.
    [320]Bunce J. Stomatal conductance photosynthetic and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant cell environ., 1992, 15:541~549
    [321] Cramer G R, Bowman D C. Short-term leaf elongation kinetics of muize in response to salinity are independent of the root. Plant Physiol. 1991,95:965~967
    [322] Greenway H, Munns R. Mechanisms of Salt tolerance in non-halophytes . Ann. Rev. Plant Physiol , 1980 ,37 :149~190.
    [323] López-Aguilar R, Ordu?o-Cruz A, Lucero-Arce A, et al.. Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Sci Plant Nutr,2003,49 (3): 329~336
    [324] Blumwald E. Sodium transport and salt tolerance in plants . Current Opinion in Cell Biology, 2000, 12: 431~434.
    [325]戴松香,陈少良.植物根细胞离子通道研究进展[J].北京林业大学学报, 2005, 27 (3) : 98~103.
    [326]陈菊培.盐胁迫下植物细胞吸收Na +的可能途径[J].海南大学学报自然科学版, 2005, 23 (4) : 383~390
    [327] Evans D E, S A Briars, L E Williams. Active calcium transport by plant cell membrane. J . Exp. Bet., 1991, 42: 285~330
    [328]李美如等.盐或低温胁迫对花生幼苗下胚轴ATP酶和质膜中PIP2含量的影响[J].西北植物学报,1996,16(1):17~22
    [329]陈亚华,沈振国,刘友良,等. NaCl胁迫下棉花幼苗的离子平衡[J] .棉花学报,2001 ,13(4) :225~229
    [330]王宝山,邹琦,赵可夫. NaCl胁迫对高粱不同器官离子浓度的影响[J].作物学报,2000 ,26(6) :845– 851
    [331]Hansen E H , Munns D N. Effect of CaSO4 and NaCl on mineral content of Lucaena leucocephala. Plant and Soil , 1988 , 107 : 101~105
    [332] Bernstein L.Effect of salinity on plant growth.Ann.Rev.Plant Physio1.,1975,(26):295~312.
    [333]李平华,张慧,王宝山.盐胁迫下植物细胞离子稳态重建机制[J].西北植物学报, 2003, 23 (10) : 1810~1817.
    [334]王景艳,张高华,苏乔,等.植物跨膜离子转运蛋白与其耐盐性关系研究进展[J].西北植物学报, 2006, 26 (3) : 635~640.
    [335] Ramon S, Alonso R N. ion homeostasis during salt stress in plants. Current Op inion in Cell Biology, 2001, 13: 399~404.
    [336] Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6: 441~445.
    [337] Cramer G R, Epstein E, Lauchli A. Effect of sodium potassium and calcium on salt stressed barley (Ⅱ) . Elemental analysis. Physiol. Plant, 1991, 81: 197~202.
    [338]李孟收.植物体内的钠及其营养功能[J].甘肃农业科技, 2000,(3) : 10~11.
    [339]刘祖琪,张士城.植物抗性生理学[M].北京:中国农业出版社, 1994. 222~285.
    [340]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报, 2000, 20 (5) : 818~820. [341 ]张福锁.植物营养生态生理学和遗传学[M] .北京:中国科技出版社,1993,237~245
    [342]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报, 1998 , 40(1) : 56~61
    [343]杨立飞等. NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响[J].西北植物学报, 2006, 26 (6) : 1195—1200
    [344]汪贵斌,曹福亮.盐胁迫对落羽杉生理及生长的影响[J ] .南京林业大学学报,2003 ,27 (3) ;11~14
    [345]孙方行等.NaC1处理对海棠渗透调节的影响[J].西北林学院学报,2005,20(3):62—64
    [346]王宝山,姚郭义.盐胁迫对沙枣愈伤组织膜透性、膜脂过氧化物和SOD活性的影响[J].河北农业大学学报, 1993 , 16(3) :20~24.
    [347]廖祥儒,朱新广.活性氧代谢与植物抗盐性[J].生命的化学,1996 ,16(6) :19~23.
    [348]周兴元等.土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响[J].林业科学研究,2OO5,18(3):336~341
    [349]任文伟,罗山泉,郑师章.不同种源羊草的SOD ,POD的活性及丙二醛含量的比较[J].植物生态学报,1997 ,21(1) :77~82.〕
    [350]樊怀福等.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].生态学报,2007,27(2):546~553
    [351]史跃林,罗庆熙,刘佩瑛.Ca2+对盐胁迫下黄瓜幼苗中CaM、MDA含量和质膜透性的影响[J].植物生理学通讯,1995, 31(5): 347~349
    [352]华春,王仁雷,刘友良.外源AsA对盐胁迫下水稻叶绿体活性氧清除系统的影响[J].作物学报, 2004,30(7): 692~696
    [353]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫枸杞生长及膜脂过氧化的影响[J].西北农林科技大学学报(自然科学版), 2004, 32(7):77~80
    [354]张士功,高吉寅,宋景芝.甜菜碱对NaCI胁迫下小麦细胞保护酶活性的影响[J].植物学通报,1999,16(4):429~432
    [355] Carter D R , Cheeseman J M. The effect of external NaCl on thylakoid stacking in lettuce plants. Plant Cell Environ, 1993 , 16 :215~223
    [356] Jeanjean R , Mattijs H C P. Exposure of Cyanobacterium synechocystis PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant and Cell physiol, 1993 ,34 :1073~1079
    [357] Liliana TM, Yulizanev , Maslenkova L T , et al.. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. J Plant Physiol , 1993 ,142 :629~634
    [358] Walker R R, Blackmore D H, Sun Qing. Carbon dioxide assimilition and folia ion concentration in leaves of Leamon ( Citrulimon L. ) trees irrigated with NaCl and Na2SO4. Aust J Plant Physiol , 1993 , 20 :173~185
    [359] Marrilyn C B, Jan M A. Sensitivity of PSII to NaCl in relation to salinity tolerance. Comparative studies with thylakoids of the salt-tolerant Mangrove , Avicennia marina , and the salt~sensitive Pea , Pisum sativum. Aust J Plant Physiol, 1986, 13 :689~698
    [360] Robison S P, Graham P J. Estimate of solutes accumulation in plants by Hnuclear magnetic resonance spectroscopy. Aust J Plant Physiol , 1986, 13 :659~668
    [361] Muns R. Physiological process limitting plant growth in saline soils. Plant Cell environ,1993,16:15~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700