用户名: 密码: 验证码:
空气源热泵机组设计与维护方法探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了模块化风冷热泵机组的设计、性能分析、安装维护注意事项。空调设备的广泛应用消耗了大部分电能,几个发达国家的空调所耗电能已占用电总量的30%左右。所以进一步提高空调器的效率、节能节材降耗十分重要。传统的经验设计方法效率低、投入高、开发周期长,远远不能适应现代企业的发展要求。研究空气源热泵系统机组尤其是小型中央空调设计新方法,具有重要现实意义与重大经济价值。
     在热泵型机组的空调系统的选型中应考虑空调负荷、机组类型数量、安装位置、附属设备、末端设备等多项因素,特别注意噪音和振动对周围环境的影响。空调系统为了节能应该考虑选用高能效比的热泵机组,根据机组部分负荷时的特点和效率确定合理的台数,水泵选取数量与热泵机组相同。末端设备的选择尽量选取小风量大焓差的设备。并且注意热泵设备的运行换热环境和恰当的运行措施。
     本论文中热泵机组设计制冷制热量分别选取为35kW和38kW,经过计算,空气流量为5.053m~3/s,传热面积154.56m~2,空冷冷凝器长3.09m,高0.8m深0.075m,3排管,两台轴流风机风量152m~3/min,静压47Pa,全压49.3Pa,选取阿伐拉伐板式换热器CB52-58HX,Bristol压缩机H25G144DB,水泵功率0.75kW,流量4m~3/h,扬程20m,并选择电磁阀、单向阀、压力控制器、干燥过滤器、视镜、流量计、分液器、轴向压力表等设备部件。
     电脑系统应设置自动温度控制、自动防冻控制、自动除霜控制,热过载、缺相、压缩机高低压保护,故障监测、显示和保护等相应的控制和保护措施。
     本文还进行了热泵机组变工况特性分析和计算。机组在实际工作时由于环境温度不同和空调末端装置设计的出水温度不同,机组的制冷量是变化的。制冷量是随冷水出水温度的增加而增加,并随环境进风温度的增加而减少,机组的功耗是随冷水的出水温度的增加而增加,并随环境温度的增加而增加。制热量随热水出水温度的增加而减少,随环境温度的降低而减少。输入功率是随着热水的出水温度增加而增加的,随环境温度的降低而减少。
     本文根据实际安装运行过程中的经验,提出了安装注意的问题和常见故障的分析与解决方法。
This article studies the design, performance analysis, installation and maintenance for the air-cooled heat pump unitary air conditioner.
    Air conditioning equipment consumes 30% of the total electricity consumption in a few developed countries. It is important to improve the efficiency of the air conditioning equipment, reduce the usage of material and low down the energy consumption. The traditional designing method is obsolete and not suitable for the present requirement.
    Air conditioning Load, unit numbers of the chiller, location of the equipment, accessory equipment, and terminal equipment should be considered when choosing the heat pump system, noise and vibration to the surroundings are important factors. To save energy, choose high efficiency chillers, and decide the unit number basing on the part-load condition. The number of water pumps should be synchronized with the chillers. Terminal equipment should have small entropy with large air volume. The good heat exchange environment and the suitable operation method can save energy greatly. For the Heat Pump Equipment Design with choosing Cooling Capacity: 35kW, Heating
    Capacity: 38kW, and get Air Volume: 5.053m3 Is, heat exchange area: 154.56m ,
    dimension for the air cooled condenser, length: 3.09m. height: 0.8m , width: 0.075m,
    3rows. 2 air fan 152 m3 /min.Statistic Pressure 47Pa, Total Pressure 49.3Pa, Select
    AfaLafa Flat Heat Exchanger CB52-58HX, Bristol Reciprocal Compressor H25G144DB, Water Pump 0.75kW, Volume4 m /h, Raising Head 20m, and choose the electric-magnetic valve, single-direction valve, pressure controller, dehumidification
    
    
    filter, barometer, etc. to put up the chiller.
    Automatic control system includes the auto-temperature control, auto anti-freezing control, auto-defrost control, anti-overload protection, voltage-over range protection, diagnose, display systems.
    The cooling capacity varies with the changes of the environment temperature, flowing out temperature of the cooling water. Cooling capacity increases with the raising of the flowing out temperature, and decreases with the raising up of the air temperature. The energy consumption increases with the increasing of the temperature of the water flowing out of the evaporator, and the environment air temperature. At the heating mode, the heating capacity of the chiller decreases with the heated water temperature increasing or environmental temperature. The consumed power increases with the increasing of heated water temperature, and decreases with the decreasing of the environmental temperature.
    The article discusses problems for the maintenance and installation, and the ways to solve the common issues.
引文
[1] 俞炳丰,王军,项卫中等,制冷压缩机工作过程的计算模拟,西安交通大学学报,1995,Vol.29(No.11):64-70
    [2] (日本)Etsuo Morishita,涡旋式压缩机的分析模拟,制冷技术,1985,No.4:1-12
    [3] (日本)Teruo Nomura,回转式压缩机效率的提高,制冷技术,1985,No.4:44-53
    [4] (朝)Sung-tai Kim,小型全封闭压缩机的计算机模拟,制冷技术,1985,No.4:19-26
    [5] 吴业正,往复式压缩机数学模型应用,西安:西安交通大学出版社,1989
    [6] S. M. Sami, A. Dahmani, Numerical prediction of dynamic performance of vapour compressor heat pump using new HFC alternatives to HCFC-22. Applied Thermal Engineering, 1996, Vol. 16, Nos 8/9: PP. 691-705
    [7] 林高平,顾兆林,郁永章,气体临界状态附近压缩机级吸气系数的计算与分析,西安交通大学学报,1998年1月,第32卷第一期:68-71
    [8] P. Domanski, D. Didion, Computer modeling of the vapor compression cycle with constant flow area expansion device, Nation Bureau of standards. Building Science, 1983, series No. 155
    [9] MacArthur JW, Transient heat pump behavior: a theoretical investigation, International journal of Refrigeration, 1984, No. 7: 123-132
    [10] Machrthur JW, Grald EW, Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experiment data, International Journal of Refrigeration, 1989, No12: 29-41
    [11] P. Mithraratne, Dynamic simulation of a thermostatically controlled counter-flow evaporator, International Journal of Refrigeration, 23(2000): 174-189
    [12] J.F. Hamilton, J.F. Miller, A simulation program for modeling an air-conditioning system, ASHRAE Trans, 1990, patt1: 213-221
    [13] 葛云亭,彦启森,冷凝器动态参数数学模型的建立与理论计算,制冷学报,1995.3:17-26
    [14] 李学迅,田怀璋,杨晓光等,家用热泵空调的系统模拟和实验研究,制冷,2000.6,第19卷第2期:1-4
    [15] 夏清,周兴禧,翅片管式蒸发器结霜问题的数值分析和实验研究,上海交通大学学报,1998.7,第32卷第7期:28-31
    [16] P.H. Cross, The use of plate heat exchanger for energy economy, Chem. Engr., 1982,378: 87-90
    
    
    [17] G.W. McKnight, C.W. Worley, Dynamic analysis of plate heat exchanger system, ISA Proc., Paper: No. 53-68(1953)
    [18] HITTUR CHANDRASEKHARAN LAKSHMANAN, Dynamic simulation of plate heat exchangers, Int. J. Heat Mass Transfer, 1990, Vol. 33 , No. 5: pp. 995-1002
    [19] 刘宪英,陈延林,孙纯武等,板式换热器设计选型计算方法,空调设计,1997,No 1:82-117
    [20] 王列科,杨强生,板式换热器中蒸汽凝结换热特性,上海交通大学学报,第32卷 第4期,1998.4:18-22
    [21] ZHONG-ZHENG WANG, ZHEN-NAN ZHAO, Analysis of performance of steam condensation heat transfer and pressure drop in plate condensers, heat transfer engineering, 1993, Vol 14, No 4: 32-41
    [22] Olaf Strelow, A general calculation method for plate heat exchangers, int. J. Therm. SCI. (2000)39: 645-658
    [23] Yi-Yie Yan, Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. International Journal of heat and mass transfer 42(1999): 993-1006
    [24] 沈希,压缩机制冷量测试系统的动态分布模型的研究,压缩机技术,1991年第1期:12-16
    [25] 陈芝久,HFC134a汽车空调系统动态仿真,制冷学报,1994.3:1-5
    [26] J.W. MacArthur, Transient heat pump behavior: a theoretical investigation. international journal of refrigeration, Volume 7, No 2 ,Mars 1984: 123-131
    [27] Zhi-jiu Chen, Dynamic simulation and optimal matching of a small scale refrigeratoin system, Int J Refrig., November , 1991, Vol 14,
    [28] P. Domanakl, D. Didion, mathematical model of an air to air heat pump equipped with a capillary tube, Int. J. Refrig., Vol 7, No 4, July 1984
    [29] 葛云亭,制冷空调系统仿真数学模型的理论与实验研究,制冷学报,1995,No.4
    [30]. Senshu, Heat pump performance under frosting conolitions, ASHRAE Transactions, V96 ,pt1, 1990, p324
    [31] F. R. Ameen, Study of frosting of heat pump evaporators, ASHRAE Transactions, V99, pt1 ,1993, p36
    [32] 赵兆颐译,[西德]E.斯米特,U.格丽吉尔,国际单位制的水和水蒸气性质,北京:水利电力出版社,1983
    [33] C.K. Rice, The effect of void fraction correlation and heat flux assumption
    
    on refrigerant charge inventory predictions, ASHRAE Trans., Vol. (93),Pt.1, 1987
    [34] 战泰文,别墅建筑的几种空调设计方案,暖通空调(HV&AC),1998年第28卷第4期:47-48
    [35] 周子成,全封闭滚动转子式制冷压缩机性能分析,西安交通大学
    [36] C. Apreal, F. de Rossi, A. Greco, Experimental evaluation of R22 and R407c evaporative heat transfer coefficient in a vapor compression plant, Int. J. Refrig., 2000, Vol. 23(No. 4): 366-377
    [37] S.A. Said, N.I. Azer, Heat transfer and pressure drop during condensation inside horizontal finned tubes, ASHRAE Trans., 1983, part1: 1086~1097
    [38] Dobson MK, Chato Jc, Condensation in smooth horizontal tubes, Journal of Heat Transfer, Transactions of ASME 1998, Vo1.120: 193~213
    [39] 杨世铭,传热学,北京:高等教育出版社,1987
    [40] Pierre, Flow resistance with boiling refrigerants, ASHRAE J., Sept, 1964
    [41] D.S. Jung, Prediction of heat transfer coefficients of various refrigerants during evaporation, ASHRAE Trans, 1991, part1: 48-52
    [42] 张祉佑,制冷原理与设备,西安交通大学,北京:机械工业出版社,1986
    [43] J. Marriot, Where and how to use plate heat exchanger, Chemical Engineering, April, 1971:pp127-134
    [44] J.G.科利尔著,对流沸腾和凝结,北京:科学出版社,1982
    [45] 尾花英朗,热交换器设计手册,北京:北京石油工业出版社,1982
    [46] Kumar. H. Condendation Duties in Plate Heat exchangers, Symposium on Condenser:Theory and Channel. 1983
    [47] 蒋能照.空调用热泵技术及应用.机械工业出版社.1997
    [48] 陈汝东.结霜对热交换器特性的影响建筑热能通风空调 1999.3,p16-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700