用户名: 密码: 验证码:
基于内积变换的机械故障特征提取原理与早期识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对关键机泵、燃气轮机、往复式压缩机风力透平等机械装备健康监控中的故障特征提取和早期识别问题,开展了理论、实验和工程应用研究。
     在理论研究方面,本文在前人总结的内积变换和机械故障诊断关系的基础上,基于泛函分析中的Riesz表示定理和振动力学中的Duhamel积分原理,阐明了以下观点:(1)当且仅当机械故障特征提取采用了线性变换时,特征提取可以归结为内积变换;(2)线性机械系统的响应可以视为故障激振力与其物理响应函数的内积。此外,赋予信号处理理论中基于内积变换的框架和对偶框架关系式以物理意义,可作为机械故障动态信号特征提取的统一数学模型——内积变换模型。该模型在振动信号压缩、冲击性振动故障特征提取、往复机示功图故障特征提取三种场合下有不同的具体形式。
     针对采油平台机泵和风力发电机组在线监测的大数据量——昂贵传输带宽的突出矛盾,研究了振动加速度信号压缩方法。提出了基于小波变换和最优稀疏表达的压缩方法。该方法可以视为内积变换模型在基于稀疏表达的加速度信号压缩情形下的具体形式。实验研究表明:基于sym8小波和匹配追踪(MP)的压缩方法具有相对最优的压缩效果。工程应用研究结果表明:该方法能够将振动加速度信号数据压缩至20%,且不丢失振动故障特征。为后续振动故障特征提取和早期识别打好了基础。
     针对风力发电机组齿轮箱故障、机泵和双转子燃气轮机滚动轴承故障特征提取和早期识别,研究了它们机理上共有的冲击性。提出两种最优化参数的冲击性振动故障特征提取方法—最优高通滤波包络解调方法、最优反对称实Laplace(ARLW)小波滤波包络解调方法;并指出两种方法均为内积变换模型在冲击性特征提取时的具体形式。实验和工程应用研究表明:这两种方法对早期或微弱冲击性故障特征提取与识别性能相较传统高通滤波包络解调有提升。
     针对往复式压缩机故障的示功图特征提取和早期识别,提出了基于Curvelet变换的往复压缩机故障示功图特征提取和基于支持向量机的故障识别方法。阐述了内积变换模型在该种情况下的具体物理意义。实验研究表明:Curvelet变换比一般小波变换能够更清晰地提取示功图特征,而结合支持向量机就能够自动检测不同往复机故障示功图间的差异;该结果可用于自动化示功图故障诊断,具有成为构建往复机故障诊断专家系统支撑技术的潜力。
In this paper, the faults feature extraction and early identification of keyfans and pumps, gas turbines, reciprocating compressors and wind turbines arestudied. Theoretical and application researches are made.
     Theoretical research is made following the relation between inner productand machine fault diagnosis which was summarized by the former researchers.Two main points are presented based on Riesz representation theorem andDuhamel integral. First, if and only if linear transform is adopted by faultfeature extraction, the feature extraction process can be taken as inner product.Second, the response of linear machine system excited by fault forces is theinner product of the forces and the system’s physical response function.Furthermore, by giving the physical meaning to frames and dual framesrelation proposed in signal processing field, this relation can be taken as ageneral machine fault feature extraction model termed inner product transform (IPT) model. Different concrete forms of this model are shown in thesituations of signal compression, impulsive vibration fault feature extractionand indicator diagram feature extraction of reciprocating compressors.
     The problem of huge amount of data and expensive bandwidth isencountered in the monitoring of key pumps on oil platforms and windturbines. Hence, vibration acceleration signal compression is researched.Compression approach based on wavelet transform and sparse representationis presented. This approach is a special form of the IPT model. Experimentaland application studies reveal that relatively optimal results are obtained bysym8wavelet and Matching Pursuit. Without loss of fault features,80%ofdata is compressed.
     The same mechanism—impulsive vibration of gearbox fault of windturbines and rolling bearing faults of fans, pumps, and double-rotor gasturbines is clarified and used in this work. Two envelope demodulationmethods based on optimal high-pass filter and optimal Antisymmetric RealLaplace Wavelet (ARLW) filter are proposed. These two methods share asame form of IPT model. More effective results of feature extraction andidentification of early or weak impulsive fault are obtained by experimentaland application study.
     Indicator diagram feature extraction based on Curvelet transform which isalso a special form of IPT model is proposed in the last part of this work. AndSVM is used to reciprocating compressors fault recognition. More clear features can be extracted by Curvelet transform than wavelet transform in theexperimental study. Combination of Curvelet transform and SVM can be usedto construct fault diagnosis expert system.
引文
[1]屈梁生,史东锋.全息谱十年:回顾与展望[J].振动测试与诊断,1998,18(4):235-242
    [2]韩捷,石来德.全谱分析技术及其在故障诊断中的应用[J].郑州大学学报:工学版,2002,23(3):44-47
    [3]何正嘉.内积变换原理与机械故障诊断[J].振动工程学报,2007,20(5):528-533
    [4]程军圣,于德介,杨宇.基于SVM和EMD包络谱的滚动轴承故障诊断方法[J].系统工程理论与实践,2005,25(9):131-136
    [5]高斌.基于希尔伯特-黄变换的航空发动机整机振动故障诊断[D].南京:南京航空航天大学,2009
    [6]何威,江志农.时延自相关解调频原理及其在齿轮故障诊断中的应用[J].振动与冲击,2009,28(9):195-199
    [7] Q. Qin, Z. J, W. He. Timedelay-based All-Frequency Correction Method for DiscreteSpectrum[J]. High Technology Letters,2010, Accepted
    [8]杨叔子,吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991.125-168
    [9] J. Tropp,A. Gilbert. Signal recovery from random measurements via orthogonal matchingpursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655
    [10] E. J. Candès,J. Romberg. Sparsity and incoherence in compressive sampling[J]. InverseProblems,2007,23(3):969-986
    [11] E. J. Candès. Compressive sampling[A]. In Proceedings of the International Congress ofMathematicians[C], Madrid:ICM,2006.
    [12] B. S. Yang, W. W. Hwang, D. J. Kim. Condition classification of small reciprocatingcompressor for refrigerators using artificial neural networks and support vectormachines[J]. Mechanical Systems and Signal Processing,2005,19(2):371-390
    [13]赵冲冲,廖明夫,于潇.基于支持向量机的旋转机械故障诊断[J].振动测试与诊断,2006,26(1):53-57
    [14]何正嘉.基于数据分布的故障分类器核函数参数优化[J].振动测试与诊断,2006(1):117-121
    [15] R. Fujimaki, T. Yairi,K. Machida. An anomaly detection method for spacecraft usingrelevance vector learning[J]. Advances in Knowledge Discovery and Data Mining,2005:785-790
    [16] V. Purushotham, S. Narayanan,S. A. N. Prasad. Multi-fault diagnosis of rolling bearingelements using wavelet analysis and hidden Markov model based fault recognition[J].NDT&E International,2005,38(8):654-664
    [17] H. Ocak, K. A. Loparo,F. M. Discenzo. Online tracking of bearing wear using waveletpacket decomposition and probabilistic modeling: A method for bearing prognostics[J].Journal of Sound and Vibration,2007,302(4-5):951-961
    [18] J. Lin,L. Qu. Feature extraction based on morlet wavelet and its applicatoin formechanical fault diagnosis[J]. Journal of Sound and Vibration,2000,234(1):135-148
    [19] J. Lin. Feature extraction of machine sound using wavelet and its application in faultdiagnosis[J]. NDT&E International,2001,34(1):25-30
    [20] Z. Peng,F. Chu. Application of the wavelet transform in machine condition monitoringand fault diagnostics: a review with bibliography[J]. Mechanical Systems and SignalProcessing,2004,18(2):199-221
    [21]虞和济.机械设备故障诊断的人工神经网络识别法[J].机械强度.1995,17(2):48-54
    [22]徐小力,许宝杰,张森.机械设备趋势预测与神经网络预测方法的研究[J].现代机械,2000,4(1):62-64
    [23]丁康,张晓飞.频谱校正理论的发展[J].振动工程学报,2000,13(1):14-32
    [24] A. Widodo,B.-S. Yang. Application of nonlinear feature extraction and support vectormachines for fault diagnosis of induction motors[J]. Expert Systems with Applications,2007,33(1):241-250
    [25]郑兆昌.机械振动学[M].北京:机械工业出版社1998.104-105
    [26] S. Li,D. Yan. Frame fundamental sensor modeling and stability of one-sided frameperturbation[J]. Acta applicandae mathematicae,2009,107(1):91-103
    [27]张恭庆,林源渠,郭懋正.泛函分析讲义[M].北京:北京大学出版社,1990.83-84
    [28]胡广书.数字信号处理:理论,算法与应用[M].北京:清华大学出版社,2003.221-223
    [29] S. Mallat. A wavelet tour of signal processing, The Sparse Way[M].3rd ed. NewYork:Academic press,2009.105-106
    [30]高金吉.高速涡轮机械振动故障机理及诊断方法研究[D].北京:清华大学,1993.
    [31] M. Brown,N. Costen. Exploratory basis pursuit classification[J]. Pattern RecognitionLetters,2005,26(12):1907-1915
    [32] S. S. Chen, D. L. Donoho,M. A. Saunders. Atomic decomposition by basis pursuit[J].SIAM review,2001,43(1):129-159
    [33] D. Donoho,M. Elad. On the stability of the basis pursuit in the presence of noise[J].Signal processing,2006,86(3):511-532
    [34] A. Cohen, W. Dahmen,R. DeVore. Compressed sensing and best k-term approximation[J].American Mathematical Society,2009,22(1):211-231
    [35] S. Mallat,Z. Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEETransactions on signal processing.1993,41(12):3397-3415
    [36] R. Coifman,M. Wickerhauser. Entropy-based algorithms for best basis selection[J]. IEEETransactions on Information Theory.1992,38(2):713-718
    [37] M. Tanaka, M. Sakawa, M. Abe. Application of wavelet transforms to compression ofmechanical vibration data[J]. Cybernetics and Systems.1997,28(3):225-244
    [38] S. P. Boyd,L. Vandenberghe. Convex optimization[M]. Cambridge Univ Pr,2004.211-236
    [39] Kun Feng, Qiang Qin,Z. Jiang. Compression Techniques of Mechanical Vibration SignalsBased on Optimal Sparse Representations[J]. High Technology Letters,2011,4
    [40]李君宝.基于冲击响应信号分析的气阀故障诊断方法研究[D].杭州:杭州大学,2004.
    [41] W. He, Z.-N. Jiang,K. Feng. Bearing fault detection based on optimal wavelet filter andsparse code shrinkage[J]. Measurement,2009,42(7):1092-1102
    [42] S. McInerny,Y. Dai. Basic vibration signal processing for bearing fault detection[J].Education, IEEE Transactions on,2003,46(1):149-156
    [43] R. A. Entek. Enpac Portable Data Collectors[EB/OL].2011
    [44] X. Lou,K. A. K. A. Loparo. Bearing fault diagnosis based on wavelet transform and fuzzyinference[J]. Mechanical Systems and Signal Processing,2004,18(5):1077-1095
    [45] S. Prabhakar, A. R. Mohanty,A. S. Sekhar. Application of discrete wavelet transform fordetection of ball bearing race faults[J]. Tribology International,2002,35(12):793-800
    [46] K. Feng, Z. Jiang, W. He. Rolling element bearing fault detection based on optimalantisymmetric real Laplace wavelet[J]. Measurement,2011,44(9):1582-15891
    [47] J. Lin,M. Zuo. Gearbox fault diagnosis using adaptive wavelet filter[J]. MechanicalSystems and Signal Processing,2003,17(6):1259-1269
    [48] W. Su, F. Wang, H. Zhu. Rolling element bearing faults diagnosis based on optimalMorlet wavelet filter and autocorrelation enhancement[J]. Mechanical Systems and SignalProcessing,2010,24(5):1458-1472
    [49] H. Qiu, J. Lee, J. Lin. Wavelet filter-based weak signature detection method and itsapplication on rolling element bearing prognostics[J]. Journal of Sound and Vibration,2006,289(4-5):1066-1090
    [50] M. Misiti, Y. Misiti, G. Oppenheim. Wavelets and their applications[M]. London:ISTE,2007.92-93
    [51] Q. Sun,Y. Tang. Singularity analysis using continuous wavelet transform for bearing faultdiagnosis[J]. Mechanical Systems and Signal Processing,2002,16(6):1025-1041
    [52] J. Rafiee, M. A. Rafiee,P. W. Tse. Application of mother wavelet functions for automaticgear and bearing fault diagnosis[J]. Expert Systems with Applications,2010,37(6):4568-4579
    [53] J. Rafiee, P. Tse, A. Harifi. A novel technique for selecting mother wavelet function usingan intelli gent fault diagnosis system[J]. Expert Systems with Applications,2009,36(3):4862-4875
    [54] F. Khalid. Rolling element bearing fault diagnosis using laplace-wavelet envelope powerspectrum[J]. EURASIP Journal on Advances in Signal Processing,2007,2007(1):70-78
    [55] Z. Li, Z. He, Y. Zi. Customized wavelet denoising using intra-and inter-scale dependencyfor bearing fault detection[J]. Journal of Sound and Vibration,2008,313(1-2):342-359
    [56] N. Nikolaou,I. Antoniadis. Demodulation of vibration signals generated by defects inrolling element bearings using complex shifted Morlet wavelets[J]. Mechanical Systemsand Signal Processing,2002,16(4):677-694
    [57] Y. Xiang. A further study of the kurtosis-based method for bearing diagnostics[J].Mechanical Systems and Signal Processing,2007,21(1):593-595
    [58]沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,2006.315-326
    [59] R. Heng,M. Nor. Statistical analysis of sound and vibration signals for monitoring rollingelement bearing condition[J]. Applied Acoustics.1998,53(1-3):211-226
    [60] J. Cheng, D. Yu,Y. Yang. Application of an impulse response wavelet to fault diagnosis ofrolling bearings[J]. Mechanical Systems and Signal Processing,2007,21(2):920-929
    [61] J. Proakis,D. Manolakis. Digital signal processing: principles, algorithms, andapplications,4th Edition[M]. New Jersey: Prentice Hall,2006.624-724
    [62] R. Storn,K. Price. Differential evolution-a simple and efficient heuristic for globaloptimization over continuous spaces[J]. Journal of global optimization.1997,11(4):341-359
    [63] K. Price, R. Storn,J. Lampinen. Differential evolution: a practical approach to globaloptimization[M]. New York:Springer Verlag,2005.37-130
    [64] P. Bergey,C. Ragsdale. Modified differential evolution: a greedy random strategy forgenetic recombination[J]. Omega,2005,33(3):255-265
    [65] D. Mayer, B. Kinghorn,A. Archer. Differential evolution-an easy and efficientevolutionary algorithm for model optimisation[J]. Agricultural Systems,2005,83(3):315-328
    [66] H. Fan,J. Lampinen. A trigonometric mutation operation to differential evolution[J].Journal of global optimization,2003,27(1):105-129
    [67] F. Diekmann, P. Heinlein, J. Drexl. Visualization of microcalcifications by full-fielddigital mammography using a wavelet algorithm[J]. International Congress Series,2001,1230:526-530
    [68] S. Imaeda, S. Kobashi, Y. T. Kitamura. Wavelet-based hemodynamic analyzing method inevent-related fMRI with statistical processing[J]. International Congress Series,2004,1270:138-141
    [69] K. B. Murray, D. Gorse,J. M. Thornton. Wavelet transforms for the characterization anddetection of repeating motifs[J]. Journal of Molecular Biology,2002,316(2):341-363
    [70] J. Xiang, Z. Xiao, Y. Wang. Detection of subtle structural abnormality in tuberoussclerosis using MEG guided post-image processing[J]. International Congress Series,2007,1300:693-696
    [71] J. Ma,G. Plonka. A review of curvelets and recent applications[J]. IEEE Signal ProcessingMagazine,2010
    [72] D. Donoho,M. Duncan. Digital Curvelet Transform: Strategy, Implementation andExperiments[R]. Stanford:Dept. of Statistics, Stanford University,2000
    [73] E. Candes,D. Donoho. Curvelets: A Surprisingly Effective Nonadaptive Representationfor Objects with Edges[A]. In Curve and surface fitting[C]. Saint-Malo: Albert Cohen,2000:105-115
    [74] E. Candes,D. Donoho. New tight frames of curvelets and optimal representations ofobjects with C2singularities[J]. Comm. Pure Appl. Math,2004,56:219-266
    [75] E. Candes, L. Demanet, D. Donoho. Fast discrete curvelet transforms[J]. Multiscalemodeling and simulation,2007,5(3):861-899
    [76] E. Candes, D. Donoho, L. Demanet. Curvelab: Fast discrete curvelet transform[R].Stanford:Stanford University,2005
    [77] C. Bishop. Pattern recognition and machine learning[M]. New York:Springer,2006
    [78] S. Theodoridis,K. Koutroumbas. Pattern recognition[M]. New York: AcademicPress,2003.291-319
    [79] J. B. Tenenbaum, V. Silva,J. C. Langford. A global geometric framework for nonlineardimensionality reduction[J]. Science,2000,290(5500):2319-2323
    [80] H.-W. Cho. Nonlinear feature extraction and classification of multivariate data in kernelfeature space[J]. Expert Systems with Applications,2007,32(2):534-542
    [81] R. Duin, M. Loog,R. Haeb-Umbach. Multi-class linear feature extraction by nonlinearPCA[A], In IEEE Proceedings,15th International Conference on Pattern Recognition[C],Barcelona:IEEE,2000,398-401.
    [82] L. M. R. Baccarini, V. V. Rocha e Silva, B. R. de Menezes. SVM practical industrialapplication for mechanical faults diagnostic[J]. Expert Systems with Applications,2011,38(6):6980-6984
    [83] B. Scholkopf, R. Williamson, A. Smola. Support vector method for novelty detection[J].Advances in neural information processing systems,2000,12:582-588
    [84] V. Franc. Optimization algorithms for kernel methods[J]. Centre for Machine Perception,Czech Technical University,2005
    [85] D. Tax. One-class classification; Concept-learning in the absence of counter-examples[D].Delft: Delft University of Technology,2001.
    [86] F. van der Heijden, R. Duin, D. De Ridder. Classification, parameter estimation, and stateestimation: an engineering approach using MATLAB[M]. John Wiley&Sons Inc: NewYork,2004.185-187
    [87] B. Sch lkopf, A. Smola,K. Muller. Nonlinear component analysis as a kernel eigenvalueproblem[J]. Neural Computation,1998,10(5):1299-1319
    [88] M. Heath. Scientific computing[M]. McGraw-Hill: New York,2002.206-216
    [89] J. Luo, K. Ying, P. He. Properties of Savitzky-Golay digital differentiators[J]. DigitalSignal Processing,2005,15(2):122-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700