用户名: 密码: 验证码:
原稳轻烃外输泵泵轴的断裂原因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泵是石油化学工业最常见的设备,而泵轴是一个重要的、易出问题的、核心的零部件。正确分析泵轴受力状态,对保证泵安全运行、节约材料以及对整台泵的经济性等起到及其重要的作用。
     综观国内外各类文献资料,很难查到立式多级离心泵及其泵轴断裂研究的相关资料。同时,立式多级离心泵轴的有限元分析还没有人开展。本文以此契机,对断裂的立式多级离心泵轴进行了力学行为的研究。
     在传统的泵轴设计中一般使用相关的计算公式进行设计,准确性不高,安全系数过大,经济性较差。把有限元技术应用于轴类零件的设计、尤其是对零件的强度校核上,具有很强的实用性。COSMOS软件是一个通用性很广、实用性很强、功能强大、应用广泛的工程有限元分析软件,在其大量的应用领域中,主要面向固体零件的强度校核和应力分析。
     本论文的选题是结合生产实践,将COSMOSWorks有限元分析模块和SolidWorks三维建模软件相结合,对失效泵轴的断裂原因进行力学行为的分析。根据立式多级离心泵泵轴的特殊载荷情况,采用有限元的静力分析方法、动力学模态和瞬态分析方法,对其强度、刚度、振动等方面进行理论分析和计算。
     本文重点完成了以下工作:根据受力状况,对泵轴进行了静力分析,得到了在静力状况下的主应力分布,并根据第三和第四强度理论对其进行了校核计算;用COSMOS有限元的模态分析方法,测算得出泵轴的自振频率以及泵轴的振型;用动力学瞬态分析方法,考察泵轴在随时间变化的载荷作用下的变形和应力分布状况,得出了泵轴断裂点的疲劳安全使用系数。
     经过计算和研究,给出了一个基于COSMOS软件、应用有限单元法对泵轴的静力、动力的强度、刚度及振动状况进行分析的方法。经验证,此方法得到的数据相对准确且更符合实际,从而具有较好的实用价值和推广应用前景。
     本文主要从强度、疲劳强度、振动等方面对泵轴断裂原因进行了深入探讨。提出了一种进行立式多级离心泵轴断裂原因和应力分析的新方法。同时,本文提供了大量的分析结果,这对于该类型泵轴的继续研究具有一定的价值。
The pump is the most common equipment in the field of chemical industry.And the pump shaft is an important,which takes problem easily and core component. Analyzing the state of the pump shaft forced correctly is very important to ensure safe operation, saving material pump, and the economy of the pump.
     It is very difficult to find the data of vertical multistage centrifugal pump and fractured pump shaft throughout all kinds of domestic and foreign literature material. At the same time, there is no man research the finite element analysis of vertical multistage centrifugal pump shaft.This paper researches the fractured vertical multistage centrifugal pump shaft.
     In a traditional shaft designs commonly used formulas related to the design, accuracy is not high, the safety factor is too large, the economy is poor. The finite element technique was applied to the design of shaft parts, especially for checking on the strength of parts, with a strong practicality. COSMOS software is a generic which is very broad, very practical, powerful, widely used in engineering finite element analysis software, in its large number of application areas, mainly for checking the strength of solid components and stress analysis.
     The topics of this paper is a combination of production practices, the COSMOSWorks finite element analysis module and the SolidWorks 3D modeling software are applied in this paper to analysis the mechanical behavior for failure causes shaft fracture. According to the specific load conditions of Vertical multi-stage centrifugal pump shaft, the paper use the finite element static analysis, dynamic mode and transient analysis methods to analysis and calculate its strength, rigidity, vibration and so on.
     This paper will focus on performing the following work: According to the situation by force, Carried out on the pump shaft static analysis of, Obtained in the static conditions of the principal stress distribution of, And in accordance with the third and fourth strength theory was checking calculation of its; Using finite element modal analysis method, Estimates derived from the natural frequency of the pump shaft and shaft of the vibration mode; Transient Kinetic Analysis, Inspection shaft at the time-varying loads the deformation and stress distribution of, Reached the breaking point of the pump shaft fatigue usage factor.
     After calculation and research, Gives a COSMOS-based software, the finite element method to the shaft of static, dynamic strength, stiffness and vibration situation analysis method. Proven, the data obtained from this method is relatively accurate and more realistic, Which has good prospects of practical value and promote the use of.
     In this paper, from the strength, fatigue, vibration, etc. causes fracture of the shaft in-depth discussions. Put forward a progressive multi-stage vertical centrifugal pump shaft fracture and stress analysis of the reasons for a new method of. At the same time, this article provides a great deal of analysis results, This is to continue research on this type of shaft has a certain value.
引文
[1]关醒凡.现代泵设计手册[M].北京:宇航出版社,1995,456~534.
    [2]杨生.泵在石油化工行业中的应用[J].通用机械,2006,7:11~15.
    [3]牟介刚.石油化工用泵的行业现状及技术发展趋势[J].通用机械,2007,5:28~31.
    [4]顾芳珍.化工设备设计基础.北京:石油化工工业出版社,1994:121~123.
    [5]李红,王艳艳,夏长高.纸浆泵泵轴强度的有限元分析[J].机械设备,2006,27(7):66~68.
    [6]彭惠芬.潜油电泵轴的可靠性分析与设计[D].大庆:大庆石油学院,2006.
    [7]蒋晔良.泵轴失效的分析[J].江苏机械制造与自动化.江苏:1999,23(4):26~28.
    [8]张红春,张洪亭.DGMB75/12.5隔膜泵曲轴断裂分析和解决措施[J].流体机械,2006,34(11):40~42.
    [9] B. N. Zotov.Correlation Between Specific Speed and Cavitation Characteristics of Vane Pumps[J].Chemical and Petroleum Engineering, 2005, 41(5-6):329-332.
    [10]Wang Dalun, Zhao Deyin, Zheng Bofang.Failure analysis of axis and retainer[M].Beijing:Machine Press, 1998.
    [11]李煦堂,桑计锁,王利民.多级离心泵泵轴破坏原因分析及措施[J].山西:山西化工,1998,(3):33~36.
    [12] Sawamoto T,Konishi K.The Improvement of High Rigidity Spindle System for Higher Rotational Speed[J].Joumal of JSME,1980,25:119~125.
    [13]贾志广.500MW机组空预器大轴断裂的研究与分析[D].北京:华北电力大学,2003.
    [14] Bert R.Jorgensen, Yung C.Shin.Dynamics of Machine Tool Spindle/Bearing Systems under Thermal Growth[J].Journal of Tribology, 1997, 119(10):875-88.
    [15]施卫东,李伟,王准.水泵轴类零件强度校核的应用程序设计[J].江苏大学学报(自然科学版),2006,27(2):109~112.
    [16] Spur G.等.主轴-轴承系统的计算[J].轴承,1992(1).
    [17] Bert R.Jorgensen,Yung C.Shin.Dynamics of Machine Tool Spindle/Bearing Systems under Thermal Growth[J].Joumal of Tribology,1997,119(10):875~882.
    [18]付华.主轴部件的动态特性分析及动力修改[D].镇江:江苏工学院,1992.
    [19]肖曙红.前支承为三联角接触球轴承的主轴组件的性能分析和简化计算[D].大连:大连理工大学,1994.
    [20]黄旭东,费仁元,杨家华.主轴部件动态特性的实验研究[J].北京工业大学学报,1994,(3):33~38.
    [21]史安娜,李康举,孙斌.主轴部件静动态特性分析[J].机械设计与制造,1999(5):56~58.
    [22]陈全兵,张锡昌,周锦国.超高速角接触球轴承一轴系统动态分析[J].洛阳工学院学报,1999,20(1):42~45.
    [23]刘素华.加工中心用电主轴的研究与设计:[D].北京:北京理工大学,2000.
    [24]蒋兴奇.主轴轴承热特性及对速度和动力学性能影响的研究:[博士学位论文].杭州:浙江大学,2001.
    [25]杨曼云,孙希平.TH6350卧式加工中心主轴系统静、动态特性分析.计算机辅助设计与制造,2001(4):48~50.
    [26]杨光,王玉丹.传递矩阵法进行电主轴的动力学特性分析[J].机械设计与制造,2001(3):50~51.
    [27]蔡英,黄国庆,刘建清等.机床高速主轴系统的动力学特性[J].江南大学学报(自然科学版),2003,2(3):286~288.
    [28]桑一萌.基于有限元法的泵轴强度分析[D].镇江市:江苏大学,2007.
    [29]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003.
    [30]徐芝伦.弹性力学[M].北京:高等教育出版社,1979.
    [31]徐秉业.应用弹塑性力学[M].北京:清华大学出版社,1996.
    [32]杨绪灿,金建三.弹性力学[M].北京:高等教育出版社,1987.
    [33] Oden JT,Ripperger EA.弹性结构力学[M].成文山,程翔云,周义武译.北京:中国建筑工业出版社,1986.
    [34]刘鸿文.高等材料力学[M].北京:高等教育出版社,1985.
    [35] ANSYS,Inc.ANSYS Structural Analysis Guide Release5.4.Third Edition.SAP,IP Icn.,1997.
    [36]龚曙光,ANSYS基础应用及范例解析,北京:机械工业出版社,2004.
    [37]麦雄平.基于COSMOS的振动压路机振动加速度与压实度关系研究[D].重庆:重庆交通大学,2009.
    [38]叶修梓,陈超祥.COSMOS高级教程:COSMOSWORKS DESIGNER.机械工业出版社.2008.
    [39]王亚双.基于有限元的JZH25型均质机曲轴断裂分析及其改进设计[D].天津:天津大学,2006.
    [40]江洪,陈燎,王智等.SolidWorks有限元分析实例解析[M].北京:机械工业出版社,2007.
    [41]姜培正.过程流体机械[M].化学工业出版社,2001,158~161.
    [42]《机械工程材料性能数据手册》编委会.机械工程材料性能数据手册[M].北京:机械工业出版社,1994,232~236.
    [43]龚新跃.进口悬壁式离心泵轴断裂原因分析[J].化工进展,2003,22(8):894~898.
    [44]关醒凡.现代泵设计手册[M].北京:宇航出版社,1998,497~501.
    [45]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987,354~355.
    [46]陈国桓.化工机械基础[M].北京:化学工业出版社,2006,34~86.
    [47]成大先.机械设计手册(第2卷) [M].第3版.北京:化学工业出版社,1993,6~23.
    [48]徐灏.机械设计手册(第3卷) [M].北京:机械工业出版社, 1992. 21~45.
    [49]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003.
    [50]林玉娟,杨达,冯永利.应用Solidwoks进行U型管式换热器管板的应力分析[J].科学技术与工程,2010,10(3):776~779.
    [51]张永庆.浅析COSMOSWorks在有限元分析中的应用[J].机械增刊,2005,32:53~55.
    [52]桑一萌.基于有限元法的泵轴强度分析[D].镇江市:江苏大学,2007,37~40.
    [53]冯光.旋转机械强度校核系统的开发与应用[D].武汉:华中科技大学,2005.
    [54]倪振华.振动力学[M].西安:西安交通大学出版社,1994.
    [55]仇伟德.机械振动[M].北京:石油大学出版社,2001.
    [56] Sines G. Failure of Materials under Complex Static and Alternating Stresses(eds.). MeGraw-Hill,New York,1999.
    [57] WANG DaLun,ZHAODeYin,ZHENG BoFang.Failure analysis of axis and retainer[J]. Beijing:MachinePress,1998.
    [58] TAO ChunHu,ZHONG PeiDao,WANG RenZhi,NIE Jingxu.Failure analy-sis and prevention for rotors in aero-engine[J].Beijing:National Defense Industry Press,2000.
    [59] Waterhouse.R.B Frelting Fatigue Applied Acience Publiahere,1981.
    [60] Lee H J.Dynamics and probabilistic fatigue analysis schemes for high-speed press machines [J].Computers & Structures, 1994, 50(3):11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700