用户名: 密码: 验证码:
基于数字流域模型的珠江补淡压咸水库调度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咸潮灾害是珠江河口近年来影响地区枯季供水的主要原因之一,保障枯季供水安全已经成为关系到地区经济和人民生活的重大社会问题。科学、合理地调度珠江上游水库,增加河口枯季径流作用,是解决珠江三角洲枯季供水危机的重要手段和途径。然而,珠江河口水动力过程和上游流域的水资源系统都十分复杂,上游水库调水压咸具有线路长、范围广、持续时间久、影响因素多、精度要求高的特点。因此,将珠江河口和上游流域作为一个整体系统,寻求科学、合理的枯季补淡压咸水库调度方法是当前迫在眉睫、急需深入研究的一个重要课题。基于此,论文进一步研究和认识珠江河口咸潮的发展规律和特点,建立和应用珠江数字流域模型分析和预测流域枯季水文过程,进而研究补淡压咸水库调度的科学方法。论文主要研究工作和创新成果有:
     1.分析研究磨刀门河口径流对咸潮的作用特点,明确提出将上游来流划分为3个不同范围考虑梧州补淡压咸控制流量;分析研究了盐度对潮汐变化的响应关系,提出以三灶站日加权潮位曲线谷值对应时间为参考起点的最佳集中补水时机选取方法。
     2.通过对数字流域模型原理和区间流域地质地貌水文特点的具体分析,阐明了模型在区间流域应用的适用性;首次建立起适用于龙滩-梧州区间的数字流域模型,作为区间流域径流分析的专业技术手段。
     3.分析梧州枯季径流变化规律和特点,运用模型数值试验,揭示了枯季梧州流量对龙滩泄流的响应规律。
     4.建立了基于数字流域模型进行区间径流预报的调度方案综合预测模式:即分水平年调度预案、月旬中长期调度预测和实时降雨修正短期调度预测3个层次,由粗到精、由远到近、相互结合、逐层修正。
     5.模拟分析研究了不同水平年枯季调度预案和调度水量,提出月、旬调度预测方法,并给出相关具体方案和控制要点;进一步通过模型实现了根据实时降雨资料对调度方案的短期滚动修正;初步建立起一套适用于珠江口补淡压咸水库合理调度的科学方法和分析工具。
Saline water intrusion is one of main factors impacting water supply in dry season at the Pearl River estuary. Safeguarding water supply has become a significant social problem concerning economy development and people’s living standards in this region. Rational reservoir operation, which is designed to increase runoff at estuary in dry season, is a key approach to solve water shortage problem in dry season at the Pearl River delta. However, both the dynamic processes at the Pearl River estuary and water resource system of its upstream basin are very complex. Dispatching water from upstream reservoirs to suppress saline water faces many complex problems such as long route, large span, wide range, long duration, numerous influence factors and high precision requirement. Therefore, searching rational reservoir operation method in dry season for supplementing freshwater to repulse saline water by considering the Pearl River estuary and its upstream basin as a whole, is an extremely urgent problem. Based on this, further summarizing of rules and characteristics of slat tide at the Pearl River estuary is present in this paper. A digital watershed model of the Pearl River basin is proposed and applied on discussing its hydrological characteristics in dry season. Rational reservoir operation method is studied for optimized the result of supplementing freshwater to suppress saline water. The main conclusion and innovative achievement of this paper are listed as follows:
     1. The characteristics of runoff effecting on saline water intrusion at Modaomen estuary were analyzed firstly. And then, we clearly propound that the upstream runoff should be divided into three regions to investigate the dominant discharge of freshwater supplement. The response relationship of salinity to tide variation is also analyzed, a selection method searching for the best opportunity to begin water supplement is proposed. A methodology of science was suggested that the best time to begin water supplement is the time corresponding with weighted daily lowest tidal level at Sanzao hydrological station.
     2. The applicability of the model at sectional watershed was illustrated and demonstrated basing on the integrated analysis of digital watershed model principle and particular geological, geomorphologic and hydrological conditions of the sectional watershed. A digital watershed model, which is suitable for Longtan-Wuzhou section, is built up for the first time, and can be applied on runoff analysis in these areas.
     3. The rules and characteristics of runoff variation at Wuzhou in dry season are studied. The response pattern of the runoff discharge at Wuzhou to Longtan discharge at dry season is obtained by using numerical experiment.
     4. A comprehensive prediction model of dispatching scheme is established basing on regional runoff forecast by using the digital watershed model. The prediction model is composed of three levels; those are dispatching preparedness for different level years, long-period prediction for month or ten-days and short-period modification for real-time rainfalls. These three different scale models are mutual combined with each other and cascade modified layer-by-layer.
     5. Dispatching preparedness and dispatching water amount for different level years in dry season are simulated and discussed. A prediction method of water dispatching for month or ten-days is proposed, detailed scheme and key factors are also provided. Short-period rotational correction on dispatching scheme according to real-time rainfall data is achieved by using our model. Furthermore, a set of scientific methods and analysis tools, which are suitable for rational reservoir operation for supplementing freshwater to suppress saline water at the Pearl River estuary, have been preliminarily established.
引文
[1]包芸,任杰. (2001).采用改进的盐度场数值格式模拟珠江口盐度分层现象.热带海洋学报, 20(4): 28-31.
    [2]包芸,任杰. (2001).盐场高度分层下的三维斜压数值模拟.海洋通报, 20(6): 17-24.
    [3]曹勇,陈吉余,张二凤等. (2006).三峡水库初期蓄水对长江口淡水资源的影响.水科学进展, 17(4): 554-558.
    [4]陈水森等. (2007).珠江口咸潮入侵分析与经验模型—以磨刀门水道为例.水科学进展, 18(5): 751-755.
    [5]陈天铎. (1985).广西岩溶地区概况及水文特征.水文, (4): 51-58.
    [6]陈文彪,李建民. (2007).珠江磨刀门拦门沙的演变分析及治理对策.广东水利水电, (1):1-6.
    [7]陈志祥,王光谦,刘家宏等. (2005).基于遥感图像的数字流域模型参数提取.水资源与水工程学报, 16(4): 49-55.
    [8]程根伟. (1991).新安江岩溶水文模型.水电能源科学, 9(2): 140-145.
    [9]程星,杨子江. (2000).影响喀斯特地下水调蓄功能的因素的探讨.中国岩溶, 19(1): 52-56.
    [10]冯国章,王双银,韦华艳. (1996).多元自回归模型在枯水径流预报中的应用.自然资源学报, 11(2): 184-186.
    [11]符传君,黄国如,陈永勤. (2007).用TOPM ODEL模型模拟流域枯水径流.应用基础与工程科学学报, 15(4):509-516.
    [12]郭纯青,时坚,裴建国. (1985).岩溶地下水系统中快速流与慢速流的模拟.中国岩溶,(4): 315-323.
    [13]郭生练,熊立华,杨井等. (2000).基于DEIVI的分布式流域水文物理模型.武汉水利电力大学学报, 33(6): 1-5.
    [14]韩乃斌. (1981).长江口咸水入侵分析.长江口航道治理研究, 1: 20-26.
    [15]韩乃斌. (1983).长江口南支河段氯度变化分析.水利水运科学研究, 1: 74-81
    [16]韩曾萃,潘存鸿,史英标,徐有成. (2002).人类活动对河口咸水入侵的影响.水科学进展, 13(3): 333-340.
    [17]何治波. (2007). 2006-2007年枯水期珠江骨干水库调度工作回顾.人民珠江, (6): 1-6.
    [18]黄国如,陈永勤. (2005).枯水径流若干问题研究进展.水电能源科学, 23(4): 61-64.
    [19]黄国如,陈永勤. (2006).基于新安江水文模型的东江流域枯水径流模拟.华南理工大学学报(自然科学版), 34(11): 93-98.
    [20]黄国如,陈永勤. (2007).枯水径流若干问题研究进展.生态环境, 16(2): 617-622.
    [21]黄河水利科学研究院. (2006).黄河口模型建设项目初步设计研究报告.郑州.
    [22]黄庆宏,林三益. (1987).湿润地区岩溶流域确定性降雨径流水文模型.成都科技大学学报, (35):129-138.
    [23]黄庆宏等. (1992).湿润地区岩溶流域水文规律与确定性水文模拟.四川水力发电, (3):13-18.
    [24]黄新华等. (1962).西江三角洲的咸害问题.地理学报, 28(2): 137-149.
    [25]季冰,沈灿焱. (1998).北江枯季中期预报的线性响应模型.中山大学学报(自然科学版), 37(1): 18-121.
    [26]贾良文,吴超羽,任杰,雷亚平,周水华. (2006).珠江口磨刀门枯季水文特征及河口动力过程.水科学进展, 17(1): 82-88.
    [27]贾良文等. (2005).珠江口磨刀门枯季表层沉积物特征.海洋工程, 23 (1): 62-68.
    [28]贾良文等. (2006.)珠江口磨刀门枯季水文特征及河口动力过程.水科学进展, 17(1): 82-88.
    [29]金元欢,孙志林. (1992).中国河口盐淡水混合特征研究.地理学报, 47(2): 165-173.
    [30]李春红,任立良,达卫特等. (2002).数字流域水系构建方法浅析.水文, 22(6): 1-4.
    [31]李素琼,敖大光. (2000).海平面上升与珠江口咸潮变化.人民珠江, (6): 42-44.
    [32]李铁键,王光谦,刘家宏. (2006).数字流域模型的河网编码方法.水科学进展, 17(5): 658-664.
    [33]李铁键. (2008).流域泥沙动力学机理与过程模拟[博士学位论文],北京:清华大学.
    [34]梁虹,杨明德. (1992).喀斯特峰丛洼地(谷地)流域产汇流特性分析.贵州师范大学学报(自然科学版), 10(1): 10-17.
    [35]梁虹. (1997).喀斯特流域空间尺度对洪、枯水水文特征值影响初探.中国岩溶, (2): 121-128.
    [36]廖喜庭. (1987).珠江三角洲河口区的咸潮活动规律.人民珠江, (2): 31-34.
    [37]刘昌明等. (2006).流域水循环分布式模拟.郑州:黄河水利出版社.
    [38]刘德地,陈晓宏,柴苑苑. (2007).广东省枯水径流时间演化规律的研究.生态环境, 16(2): 617-622.
    [39]刘德地,陈晓宏. (2007).基于偏最小二乘回归与支持向量机耦合的咸潮预报模型.中山大学学报(自然科学版), 46(4): 89-92.
    [40]刘家宏,王光谦,李铁键. (2006).黄河数字流域模型的建立和应用.水科学进展, 17(2): 186-195.
    [41]刘家宏,王光谦,王开. (2004).大流域DEM数据存取关键技术研究.清华大学学报(自然科学版), 44(12): 1646-1649.
    [42]刘家宏,王光谦,王开. (2006).数字流域研究综述.水利学报, 37(2): 240-246.
    [43]刘家宏,王光谦. (2006a).基于数字流域的淤地坝规划减水减沙效果模拟.中国水土保持, (8):20-22.
    [44]刘家宏,王光谦. (2006b).基于数字流域的淤地坝规划水沙关系分析.中国水土保持, (5):4-6.
    [45]刘家宏. (2005).黄河数字流域模型[博士学位论文],北京:清华大学.
    [46]刘家宏等. (2007).基于数字流域模型的多沙粗沙区侵蚀产沙计算.中国科学E辑:技术科学, 37(3): 446-454.
    [47]卢卫中. (1993).广西岩溶流域水文模型研究.广西大学学报(自然科学版), 18(2): 1-6.
    [48]卢卫中. (1993).广西岩溶流域水文模型研究.广西大学学报(自然科学版), 18(2): 1-6.
    [49]卢卫中. (1995).岩溶流域水文模型初步研究.水文, (2): 29-33.
    [50]鲁小清,冯平. (1993).用自回归模型预报枯季径流初探.水土保持通报, 13(6): 34-38.
    [51]吕海滨,吴超羽,任杰,刘斌. (2007).四十年来磨刀门河口水动力对地形的响应.海洋通报, 26(1): 20-27.
    [52]吕振光. (1986).广西岩溶地区水文特性及产汇流参数初步分析.水文, (5): 23-27.
    [53]罗宪林,季荣耀,杨利兵. (2006).珠江三角洲咸潮灾害主因分析.自然灾害学报, 15(6):146-148.
    [54]罗小峰,陈志昌. (2004).长江口水流盐度数值模拟.水利水运工程学报, (2):29-33.
    [55]罗小峰,陈志昌. (2005).径流和潮汐对长江口盐水入侵影响数值模拟研究. 24(3):1-6.
    [56]马钢峰,刘曙光,戚定满. (2006).长江口盐水入侵数值模型研究.水动力学研究与进展, Ser. A, 21(1):53-61.
    [57]茅志昌,沈焕庭,徐彭令. (2000).长江河口咸潮入侵规律及淡水资源利用.地理学报, 55(2): 243-250.
    [58]茅志昌,沈焕庭. (1994).长江径流变化对南港盐水入侵影响分析.海洋科学, (2): 60-63.
    [59]茅志昌,沈焕庭. (1995).潮汐分汉河口盐水入侵类型探讨—以长江口为例.华东师范大学学报(自然科学版), (2):77-85.
    [60]茅志昌. (1995).长江口南港河段咸潮入侵分析.地理研究, 14(1): 27-35.
    [61]缪韧,林三益. (1995).非均匀下垫面流域径流模拟与径流分析-岩溶地区水资源研究之一.四川水力发电, (2): 17-23.
    [62]缪韧,林三益. (1996).应用流域水文模型评估黔中高原分水岭地区地下水资源的探索-岩溶地区水资源研究之二.四川水力发电, (2):22-25.
    [63]缪韧. (2007).水文学原理.北京:中国水利水电出版社.
    [64]任立良,刘新仁. (2000).基于DEM的水文物理过程模拟.地理研究, 19(4): 369-376.
    [65]任立良,刘新仁. (2000).基于数字流域的水文过程模拟研究.自然灾害学报, 9(4): 45-52.
    [66]沈灿焱,陈俊鸿,高海风. (1988).喀斯特地区降雨径流三个模型.中山大学学报自然科学论丛, 7(2): 1-7.
    [67]沈汉塑等. (2007).珠江河口BP神经网络的咸潮预报模型研究.珠江现代建设, (139):4-8.
    [68]沈焕庭,茅志昌,谷国传,徐彭令. (1980).长江口盐水入侵的初步研究一兼谈南水北调.人民长江, (3)20-26.
    [69]沈焕庭,茅志昌,顾玉亮. (2002).东线南水北调工程对长江口咸水入侵影响及对策.长江流域资源与环境, 11(2):150-154.
    [70]索立涛,万军伟,卢学伟. (2007). TOPMODEL模型在岩溶地区的改进与应用.中国岩溶, 26(1):67-70.
    [71]汤君友,高峻峰. (2003).数字流域研究与实践.地域研究与开发, 22(6):49-51.
    [72]王光谦,刘家宏. (2006).黄河数字流域模型.水利水电技术, 37(2): 15-21.
    [73]王光谦,刘家宏. (2006).数字流域模型.北京:科学出版社.
    [74]王光谦等. (2006).黄河流域多沙粗沙区植被覆盖变化与减水减沙效益分析.泥沙研究, (2):10-6.
    [75]王光谦等. (2008).黄土丘陵沟壑区沟道的水沙运动模拟.泥沙研究, (3):19-25.
    [76]王萍. (2007).珠江流域枯水期流量周期特征及影响因素分析.水利学报, (10p): 379-382.
    [77]王在高,梁虹. (2002).基于GIS分析喀斯特流域下垫面因素对枯季径流的影响-以贵州省河流为例.中国岩溶, 21(1):55-60.
    [78]闻平,杨晓灵. (2006). 2004-2005年冬春珠江三角洲咸潮预警的评价分析.人民珠江,(3):10-12.
    [79]闻平等. (2007).磨刀门水道咸潮入侵及其变异分析.水文, 27(3): 65-67.
    [80]吴辉,朱建荣. (2007).长江河口北支倒灌盐水输送机制分析.海洋学报, 29(1):17-25.
    [81]夏军,王纲胜,谈戈等. (2004).水文非线性系统与分布式时变增益模型.中国科学D辑, 34(11): 1062-1071.
    [82]肖成猷,沈焕庭. (1998).长江河口盐水入侵影响因子分析.华东师范大学学报(自然科学版), (3):74-80.
    [83]肖成猷,朱建荣,沈焕庭. (2000).长江口北支盐水倒灌的数值模型研究.海洋学报, 22(5):124-132.
    [84]胥加仕,罗承平. (2005).近年来珠江三角洲咸潮活动特点及重点研究领域探讨.人民珠江, (2):21-23.
    [85]徐峰俊,黄胜伟等. (2003).珠江河口区潮流泥沙及含盐度耦合数学模型研究珠江水利委员会报告.2003.8
    [86]徐建益,袁建忠. (1994).长江口南支河段盐水入侵规律的研究.水文, 83(5): 1-6.
    [87]严启坤,黄敬熙,周维新. (1986).论岩溶地下水系统中的快速流与慢速流.中国岩溶, 5(4): 319-326.
    [88]严启坤,罗春玲. (1987).漓江枯季径流分析与航运补水讨论.广西水利水电, (2): 2-12.
    [89]严启坤. (1985).桂林岩溶区的水量转化问题.中国岩溶, (1-2) :58-65.
    [90]严启坤. (1988).一个岩溶地下河流域模型及其应用.中国岩溶, 7(2): 111-110.
    [91]严启坤. (1993).概念性岩溶水文模型中几个疑难问题的探讨.中国岩溶, 12(4): 295-303.
    [92]严启坤等. (1986).论岩溶地下水系统的快速流与慢速流.中国岩溶,5(4):319-326.
    [93]殷福才,王在高,梁虹. (2004).枯水研究进展.水科学进展, 15(2): 250-255.
    [94]尹小玲,张红武,方红卫. (2008).枯季磨刀门水道咸潮活动与压咸控制分析.水动力学研究与进展, A辑, 23(5): 554-559.
    [95]应秩甫,陈世光. (1983).珠江口伶仃洋咸淡水混合特征.海洋学报, 5(1): 1-10.
    [96]俞鸣同. (1992).闽江河口北支冬季盐水入侵的分析.海洋通报, 11(4): 17-22.
    [97]张福义. (1993).枯季径流预报.水文, (6): 57-61.
    [98]张秋文等. (2001).数字流域整体构架及实现策略.水电能源科学, 19(3): 4-7.
    [99]张勇传,王乘. (2001).数字流域-数字地球的一个重要区域层次.水电能源科学, 19(3): 1-3.
    [100]章程等. (2007).利用SWMM模型模拟岩溶峰丛洼地系统降雨径流过程-以桂林丫吉试验场为例.水文地质工程地质, (3):10-14.
    [101]赵全升,杨天行,邹建峰,吴国宏. (2001).改进的BP算法在黄河下游枯季径流预测中的应用.安全与环境学报, 1(3):30-35.
    [102]郑金海,诸裕良. (2001).长江河口盐淡水混合的数值模拟计算.海洋通报, 20(4): 1-10.
    [103]周文浩. (1998).海平面上升对珠江三角洲咸潮入侵的影响.热带地理, 18(3): 266-270.
    [104]朱建荣,刘新成,沈焕庭,肖成猷. (2003). 1996年3月长江河口水文观测和分析.华东师范大学学报(自然科学版), (4):87-93.
    [105]朱三华,沈汉塑,林焕新,等. (2007).珠江三角洲咸潮活动规律研究.珠江现代建设, 140(6): 1-8
    [106]珠江水利委员会, (2006).珠江流域2005-2006年干旱及压咸补淡应急调水.人民珠江, (5):46-47.
    [107]珠江水利委员会. (2006).珠江流域2004-2005年干旱与压咸补淡应急调水.人民珠江, (5):45-46.
    [108]庄一瓴等. (1989).新安江模型在岩溶地区的应用.河海大学学报, 17(4): 43-50.
    [109]庄一鸰等. (1989).乌江渡流域水文模型.水文, (3):1-7.
    [110]张红武,江恩惠等. (1994).黄河高含沙洪水模型的相似律.郑州:河南科学技术出版社.
    [111]张红武,李东风,张俊华. (2008).黄河口潮流波浪挟沙能力研究.人民黄河, (07): 23-24.
    [112]张瑞谨,谢鉴衡,王明甫等. (1998).河流泥沙动力学(2版).北京:水利电力出版社.
    [113] Asquith, William H, Mosier J G, Peter W B. (1997). Status, trends and changes in freshwater I nflows to bay systems in the corpus christi bay national estuary program study area. United States Geological Survey, Corpus Christi Bay National Estuary Program CCBNEP-17.
    [114] Bernard C, Leo T, McCarthy. (1963). Salinity of the Delaware estuary. Delaware Geological Survey, BULLETIN NO. 10.
    [115] Bowden K F, Fairbairn L A, Hughes P. (1959). The distribution of shearing stresses in a tidal current. Geophysical Journal of the Royal Astronomical Society, (2): 288-305.
    [116] Bowden K F. (1963). The mixing processes in a tidal estuary. International Journal of Air and Water Pollution, (7):344-356.
    [117] Bowden K F. (1966). Circulation, salinity and river discharge in the Mersey Estuary.Geophysical Journal of the Royal Astrophysical Society, (10):383-400.
    [118] Brockway, Rachel et al. (2006). A note on salt intrusion in funnel-shaped estuaries: Application to the Incomati estuary, Mozambique. Estuarine, Coastal and Shelf Science,66: 1-5.
    [119] California Department of Water Resources. (2000). Management of the California State Water Project. Bulletin 132-00:369.
    [120] Casulli V, Cattani E. (1994). Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput. Math. Appl., 27: 99-112.
    [121] Cayan D R, Peterson D H. (1989). The influence of North Pacific atmospheric circulation on streamflow in the west. In Geophysical Monograph 55. Washington D.C.: American Geophysical Union.
    [122] Cayan D R, Peterson D H. (1993). Spring climate and salinity in the San Francisco Bay estuary. Water Resources Research, 29(2): 293-303.
    [123] Chen X J. Modeling hydrodynamics and salt transport in the Alafia River estuary, Florida during May 1999–December 2001. Estuarine, Coastal and Shelf Science, 61(3): 477-490.
    [124] Cheng R T, Casulli V, Gartner J W. (1993), Tidal, residual, intertidal mudflat (TRIM) Model and its applications to San Francisco Bay. Estuarine, Coastal and Shelf Science, 36:235-280.
    [125] Cloern J E. (1984). Temporal dynamics and ecological significance of salinity stratification in an estuary (south San Francisco Bay, USA). Oceanologica Acta, 7: 137-141.
    [126] Dettinger M D, Cayan D R. (1995). Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California: Journal of Climate 8:606-623.
    [127] Dettinger M D, Cayan D R. (2003). Interseasonal covariability of Sierra Nevada streamflow and San Francisco Bay salinity. Journal of Hydrology, 277( 3/4): 164-181.
    [128] Edward D, Santoro. (2004). Delaware estuary monitoring report covering monitoring developments and data collected or reported during 1999-2003. Delaware River Basin Commission.
    [129] Emad H, et al. (2008). Effect of rainfall spatial variability and sampling on salinity prediction in an estuarine system. Journal of Hydrology, 350(1-2):56-67.
    [130] Enrique Reyeset, et al. (2004). Assessing coastal management plans using watershed spatial models for the Mississippi delta, USA, and the Ususmacinta–Grijalva delta, Mexico. Ocean & Coastal Management, 47(11-12): 693-708.
    [131] Fischer H B. (1972). Mass transport mechanisms in partially stratified estuaries. J. Fluid Mech., 53: 671-687.
    [132] Fischer H, List E, Koh R, Imberger J, Brooks N. (1979). Mixing in Inland and Coastal Waters,. San Diego, CA: Academic Press.
    [133] Fox J P, Mongan T R, Miller W J. (1991). Long-term annual and seasonal trends in surface salinity of San Francisco Bay. Journal of Hydrology, 122(1-4):93-117.
    [134] Fox J P, Morgan T R, Miller W J. (1991). Reply to discussion by D. R. Helsel and E. D. Andrews of "Trends in freshwater inflow to San Francisco Bay from the Sacramento-San Joaquin Delta." Water Resources Bulletin 27:327-330.
    [135] Geyer W R, Smith J D. (1987). Shear instabilitv in a high stratified estuary. J Phys Ocean, 17: 1668-1679.
    [136] Geyer W R. (1988). The advance of a salt wedge front: observations and dynamical model. In: Physical procssses in estuaries. Springer-Verlag Berlin Heidelberg.
    [137] Gross E S, Koseff J R, Monismith S G. (1999). Three-dimensional salinity simulations of South San Francisco Bay. J. Hydraul. Eng., 25: 1199-1209.
    [138] Hansen D V, Rattray M. (1966). New dimensions in estuary classification. Limnology and Oceanography, (1):319-326.
    [139] Hansen D V. (1965). Currents and mixing in the Columbia River Estuary. Transactions of a Joint Conference of Ocean Science and Ocean Engineering, 943-955.
    [140] Helsel D R, Andrews E D. (1991). Discussion of "Trends in freshwater inflow to San Francisco Bay from the Sacramento-San Joaquin Delta," by J. P. Fox, T. R. Morgan and William J. Miller. Water Resources Bulletin 27:317-319.
    [141] Hull C H J, Titus J G. (1986). Greenhouse Effect, Sea Level Rise, and Salinity in the Delaware Estuary. Report from the US Environmental Protection Agency and the Delaware River Basin Commission.
    [142] Jassby A D, Kimmerer W J, Monismith S G, Armor C, Cloern J E, et al. (1995). Isohaline position as a habitat indicator for estuarine populations. Ecological Applications, 5: 1662-1677.
    [143] Jurgen G, Lawrence W M. (1999). TOPAZ overview. USDA ARS, Grazinglands Reasearch Laboratory.
    [144] Kennish, M J. (2000). Estuary restoration and maintenance—the national estuary program. Washington DC: CRC Press.
    [145] Kernell G R, et al. (2007). The National Streamflow Statistics Program: A Computer Program for Estimating Streamflow Statistics for Ungaged Sites. U.S. GEOLOGICAL SURVEY, Techniques and Methods 4-A6
    [146] Kernell G. R. (2006). Selected streamflow statistics for streamgaging stations in Northeastern Maryland. U.S. Department of the Interior, U.S. Geological Survey, Open-File Report 2006–1335.
    [147] Knowles, Cayan N D, Ingram L, Peterson D H, Uncles R J. (1997). Diagnosing the flood of 1997 in San Francisco Bay with observations and model results. Interagency Ecol. ProgramNewsl. 10, Dep. of Water Resour., Environ. Serv. Office, Sacramento, Calif.
    [148] Knowles, Cayan N D, Peterson D H, Uncles R J. (1998). Simulated effects of delta outflow on the Bay: 1998 compared to other years, Interagency Ecol. Program Newsl. 11: 29-31.
    [149] Langland M J, et al. (2006). Changes in Streamflow and Water Quality in Selected Nontidal Basins in the Chesapeake Bay Watershed, 1985-2004. U.S. Geological Survey Scientific Investigations Report 2006-5178.
    [150] Longley W L. (2002). Freshwater inflows to texas bays and estuaries: Ecological Relationships and Methods for Determination of Needs. Texas Water Development Board (TWDB) and the Texas Parks and Wildlife Department (TPWD). TEXAS WATER CODE 16.058(a)
    [151] Lucas L V, Cloern J E, Thompson J K, Monsen N E. (2002). Functional variability of habitats within the Sacramento-San Joaquin Delta. Restoration implications, Ecological Applications, 12:1 528-1547.
    [152] MacCready P, Robert D H, Rockwell G W. (2002). Long-term isohaline salt balance in an estuary. Continental Shelf Research, 22:1591–1601.
    [153] Magness, Angélica L, Raffensperger J P. (2003). Development, calibration and analysis of a hydrologic and water-quality model of the delaware inland bays watershed. U.S. GEOLOGICAL SURVEY, Water-Resources Investigations Report 03-4124.
    [154] Masamichi I, et al. A high-resolution integrated hydrology–hydrodynamic model of the Barataria Basin system. Environmental Modelling & Software, 23(9): 1122-1132.
    [155] Monismith S G, Kimmerer W, Burau J R, Stacey M T. (2002). Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. American Meteorological Society: 3003-3019.
    [156] Monsen N E, Cloern J E, Lucas L V, Monismith S G. (2002). A comment on the use of flushing time, residence time, an dage as transport time scales. Limnology and Oceanography, 47(5): 1545-1553.
    [157] Monsen N E. (2001), A study of sub-tidal transport in Suisun Bay and the Sacramento-San Joaquin Delta [PhD thesis]. California: Stanford Univ.
    [158] Mulrennan M E, Woodroffe C D. (1998). Saltwater intrusion into the coastal plains of the Lower Mary River, Northern Territory, Australia. Journal of Environmental Management, 54(3): 169-188.
    [159] Nguyen Anh Duc, et al. (2008). Using salt intrusion measurements to determine the freshwater discharge distribution over the branches of a multi-channel estuary: The Mekong Delta case. Estuarine, Coastal and Shelf Science, 77: 433-445.
    [160] Nichols F H, Cloern J E, Luoma S N, Peterson D H. (1986). The modification of an estuary: Science, 231:567-573.
    [161] Nichols F H, Cloern J E, Luoma S N, Peterson D H. (1986). The modification of an estuary: Science, 231: 567-573.
    [162] Noah K. (2002). Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales. Water Resour. Res., 38(12): 1289-1299.
    [163] Park D H. (2002). Hydrodynamics and Freshwater Dispersion within Barataria Basin [PhD Thesis]. Baton Rouge, Louisiana: Louisiana State University.
    [164] Peterson D H, Carlson P. (1968). Influence of runoff on seasonal changes in salinity in San Francisco Bay, California: Fall meeting abstracts, Transactions American Geophysical Union 49:704.
    [165] Peterson D H, Cayan D R, DiLeo, J, Noble M, Dettinger M D. (1995). The role of climate in estuarine variability: American Scientist 83: 58-67.
    [166] Peterson D H, et al. (1989). Climatic variability in an estuary: Effects of river flow on San Francisco Bay. In Geophysical Monograph 55. Washington, D.C.: American Geophysical Union.
    [167] Powell T M, Cloern J E, Huzzey L M. (1989). Spatial and temporal variability in south San Francisco Bay (USA), Part I- Horizontal distributions of salinity, suspended sediments, and phytoplankton biomass and productivity. Estuarine, Coastal and Shelf Science, 28: 583-597.
    [168] Prandle D. (1981). Salinity intrusion in estuaries. Journal of Physical Oceanography, 11: 1311-1324.
    [169] Prandle D. (2004). Saline intrusion in partially mixed estuaries. Estuarine, Coastal and Shelf Science, 59(3): 385-397.
    [170] Pritchard D W. (1952). Salinity distribution and circulation in the Chesapeake Bay estuarine system. Marine Research, (11):106-123.
    [171] Pritchard D W. (l954). A study of the salt balance of a coastal plain estuary. Marine Research, (13):133-144.
    [172] Ruhl C A, Schoellhamer D H. (2001). Time series of SSC, salinity, temperature, and total mercury concentration in San Francisco Bay during water year 1998: Regional Monitoring Program for Trace Substances contribution number 44, San Francisco Estuary Institute, Richmond, California.
    [173] San Francisco Estuary Project Management Committee. (1994). Comprehensive conservation and management plan. San Francisco Estuary Project: 235.
    [174] Savenije H.H G. (1986). A one-dimensional model for salinity intrusion in alluvial estuaries. Journal of Hydrology, 85: 87-109.
    [175] Savenije H.H G. (1993). Predictive model for salt intrusion in estuaries. Journal of Hydrology, 148: 203-218.
    [176] Schemel L E. (1971). Seasonal distributions of salinity, phytoplankton nutrients, and dissolved organic carbon in south San Francisco Bay[Master's Thesis]. San Jose, Calif.: San Jose State University.
    [177] Schemel L E. (1995). Measurement of salinity, temperature, and tides in southern San Francisco Bay, California, at Dumbarton Bridge: 1990-1993 water years: U.S. Geological Survey Open-File Report 95-326
    [178] Schemel L E. (1998). Effects of delta outflow and local stream flow on salinity in south San Francisco Bay: 1995-1998. Interagency Ecological Program Newsletter, 11(4): 32-33.
    [179] Schemel L E. (2001). Simplified conversions between specific conductance and salinity units for use with data from monitoring stations. Interagency Ecological Program Newsletter, 14(1): 17-18.
    [180] Simmons H B, Brown F R. (1969). Salinity effects on estuarine hydraulic and sedimentation. International Association for Hydraulics Research Proceedings of the 13th, 311-325.
    [181] Uncles R J, Elliott R C A, Weston S A. (1985).Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuarine, Coastal and Shelf Science, 20(2): 147-167.
    [182] Uncles R J, Elliott R C A, Weston S A. (1986). Observed and computed lateral circulation patterns in a partly mixed estuary. Estuarine, Coastal and Shelf Science, 22(4): 439-457.
    [183] Uncles R J, Jordan M B. (1979). Residual fluxes of water and salt at two stations in the Severn Estuary. Estuarine and Coastal Marine Science, 9(3): 287-302.
    [184] Uncles R J, Lewis R E. (2001). The transport of fresh water from river to coastal zone through a temperate estuary. Journal of Sea Research, 46(2):161-175.
    [185] Uncles R J, Ong J E, Gong W K. (1990). Observations and analysis of a stratification- destratification event in a tropical estuary. Estuarine, Coastal and Shelf Science, 31(5): 651-665.
    [186] Uncles R J, Peterson D H. (1993). Modeling the long-term salinity field in San Francisco Bay: submitted to Water Resources Research.
    [187] Uncles R J, Peterson D H. (1995). A computer model of long-term salinity in San Francisco Bay: sensitivity to mixing and inflows. Environmental International, 21:647-656.
    [188] Uncles R J, Peterson D H. (1995). A microcomputer model of long-term salinity in San Francisco Bay, Environment International, in press U.S. Geological Survey, 1994, Water Resources Data California Water Year 1993 Volume 2. Pacific Slope Basins from Arroyo Grande to Oregon State Line Except Central Valley: U.S. Geological Survey Water-Data Report CA-93-2, Sacramento, CA: 391
    [189] Uncles R J, Peterson D H. (1996). The long-term salinity field in San Francisco Bay. Continental Shelf Research, 16(15): 2005-2039.
    [190] Uncles R J, Stephens JA. (1996). Salt intrusion in the tweed estuary. Estuarine, Coastal and Shelf Science, 43(3): 271-293.
    [191] Uncles R J. (2002). Estuarine physical processes research: some recent studies and progress. Estuarine, Coastal and Shelf Science, 55(6): 829-856.
    [192] Uncles R J. (2003). From catchment to coastal zone: examples of the application of models to some long-term problems. The Science of the Total Environment, 314-316(1): 567-588.
    [193] Walters R A, Cheng R T, Conomos T J. (1985). Time scales of circulation and mixing processes of San Francisco Bay waters: In: Temporal Dynamics of an estuary: San Francisco Bay (eds, Cloern J E, Nichols F H). Developments in Hydrobiology, Dr. W. Junk publishers: 13-36.
    [194] Warren P J, James T, Wen Y L, William A. (2002). Freshwater inflow recommented ation for the nueces estuary. Texas Parks and Wildlife Department Resource Protection Division Coastal Studies Program, Report.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700