用户名: 密码: 验证码:
光散射信号统计规律及在尘埃粒子计数中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着雾霾天气的增多,公众越来越关注空气中悬浮颗粒的污染,同时,科技的发展对洁净度的要求也越来越高,因此,对于悬浮颗粒的测量研究和尘埃粒子测量仪器的改进显得尤为重要。本文通过对典型光散射法颗粒粒径测量过程的分析,建立了光散射颗粒随机测量过程统计模型,结合随机脉冲信号的双参数分析方法,研究光散射信号特征量统计规律和统计自相似性,为光散射颗粒测量仪器的设计与优化提供理论指导。
     根据本文光散射随机脉冲信号测量系统的特殊性,采用以幅度和宽度为基础参量的双参数法,并且从理论分析和数值模拟的角度研究了传感器的光场分布。通过分析光散射信号测量过程中各种独立随机因素,建立了光散射颗粒随机测量过程统计模型,推导得到光散射随机信号测量中对统计分布函数的约束关系,而以自然数为自变量的对数正态分布函数很好的满足该约束关系要求,为实验研究提供了理论指导。
     基于实验测量,研究了同一光散射颗粒测量系统中的不同测量对象,如标准颗粒、空气中随机悬浮颗粒、本底噪声以及本底噪声不同性质特征量的统计分布规律。实验数据表明,在大样本和高精度条件下,光散射随机信号群的幅度、宽度、信号子集以及不同性质特征量的统计分布均能很稳定地服从以自然数为白变量的对数正态分布。通过卡方分布拟合检验和相关系数定量比较发现,在对测量结果的解释和评价方面,对数正态分布比正态分布更加精确,置信度更高,相关系数达到0.95以上,可接受显著水平高达0.995,实验结果与理论分析很好的吻合。
     在研究不同测量对象统计规律的基础上,运用统计分形理论,推导得出不同物理量统计分布之间的非线性变换公式。从光散射信号统计分布的角度,发现了一种简单准确计算不同粒径范围随机颗粒分形维数的新方法。
     最后,结合理论分析和实验研究,分别从照明系统、光敏区、背景噪声、探测系统和气路系统等方面对粒子计数器传感器进行了优化设计并获得发明专利授权。将对数正态分布应用到测量仪器计数通道优化中,节省了计数通道,可将传感器的测量范围扩大1/3;同时也应用到粒径分辨率优化中,相对于正态分布拟合粒径分辨率提高了9%。改进后的传感器在大流量的基础上计数效率和粒径分辨率等性能均达到国际水平,而且具有体积小,价格低和性能稳定等优点。
With the increase of hazy days, the public is paying more attention to the pollution of the micro-particles suspended in the air. Besides, with the development of science and technology, the requirements for cleanliness is becoming higher and more strict. Therefore, the study of suspended particles and its measuring instruments turns into an important research spot these days. In order to improve the laser scattering particle counter, this Ph.D thesis establishes an analysis model of light scattering particle random measuring process based on the analysis of the process of measuring the particle diameter by light scattering method. Combining with dual-parameter analysis of random pulse signal, this Ph.D thesis also studies the amount of statistical regularity and self-similarity which provides theoretical guidance for the design and optimization of the light scattering particle counter.
     Firstly, this Ph.D thesis studies optical field distribution of sensor with theoretical analysis and numerical simulation. With the research on kinds of independent random factors using dual-parameter analysis method according to the basic parameters as amplitude and width, analysis model of light scattering particle random measuring process is proposed. Moreover, the nonlinear constraint relation on statistical distribution functions in light scattering particles random measuring process is derived. The results show lognormal distribution function with natural numbers as the independent variables satisfies the nonlinear constraint relation.
     Then, in order to understand light scattering particle measuring system better, statistical distribution law of different measuring factors as standard particles, random air suspend particles, the background noise and different characteristics of background noise in the same light scattering particle measuring system are studied. The experimental results indicate that the amplitude and width distribution of light scattering random signal group, the distribution of signal subset and other statistical distribution of factors with different characteristics fit well with lognormal distribution function with natural numbers as the independent variables. Tested by chi-square distribution fitting and correlation coefficient, lognormal distribution is more accurate than normal distribution with a higher correlation coefficient of0.95and acceptable significant level of0.995. Besides, on the basis of studying statistical laws of different measuring factors, the nonlinear transformation relations between statistical distribution of different physical factors are deduced using statistical fractal theory which could simplify the calculation procedures of the fractal dimension of random particle.
     Finally, combining with theoretical analysis and experimental research, based on the design of light scattering particle measuring sensor, lognormal distribution is applied to the optimization of measuring channels with1/3channels cutoff which could expand the measuring range of the sensor. moreover it is also used in the optimization of particle size resolution, and particle size resolution has increased by9%compared to normal distribution. Meanwhile, the light scattering particle measuring sensor is improved in many aspects as lighting system, the photosensitive area, background noise, detection system and gas system, etc. Besides, the invention patent authorization of the sensor is obtained. The systematic parameters as counting efficiency particle size resolution of the light scattering particle device have reached the requirements of international standards at the large flow measuring mode in practical measurement. Moreover, the measuring sensor has the advantages of small size, low cost and stable performance.
引文
[1]刘春雁,蔡来胜,刘刚.药厂洁净室空气洁净度的检测.洁净与空调技术,2003,1 38.
    [2]许钟麟.由集成电路成品率确定空气洁净度级别的理论方法.暖通空调,2003,33(5):24-27.
    [3]T Hattori. Contamination Control and Defect Reduction in Semiconductor Manufacturing Ⅲ. The Electrochemical Society, Pennington,1994,3.
    [4]王阳元.集成电路工业全书:技术·经济·管理.电子工业出版社,1993;83-90.
    [5]王庆祥.航天器的防污染技术.航天器环境工程2000,2 20-28.
    [6]赵兴华.药品生产企业洁净技术与卫生管理.南京:南京大学出版,1993;62-73.
    [7]Stephen S Lim,Theo Vos,Abraham D Flaxman,Goodarz Danaei,Kenji Shibuya,Heather Adair-Rohani,Markus Amann,H Ross Anderson,Kathryn G Andrews,Martin Aryee. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions,1990-2010:a systematic analysis for the Global Burden of Disease Study 2010. The Lancet,2013,380 (9859):2224-2260.
    [8]O Preining. The transverse sensitivity of the Royco aerosol photometer PC200. Staub. Reinhalt. Luft,1968,28 (1):22.
    [9]Derry D Cooke,Milton Kerker. Response calculations for light-scattering aerosol particle counters. Applied Optics,1975,14 (3):734-739.
    [10]J Raymond Hodkinson,Judith R Greenfield. Response calculations for light-scattering aerosol counters and photometers. Applied Optics,1965,4 (11):1463-1474.
    [11]Benjamin Yh Liu,Richard N Berglund,Jugal K Agarwal. Experimental studies of optical particle counters. Atmospheric Environment (1967),1974,8 (7):717-732.
    [12]Baron Klaus Willeke Paul A气溶胶测量原理、技术及应用(原著第2版)北京:化学工业出版社,2007.
    [13]GB 3095-2012环境空气质量标准
    [14]Tuch T.,Brand P.,Wichmann H. E.,Heyder J. Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany.1997,31 (24): 4193-4197.
    [15]Therese F Mar,Gary A Norris,Jane Q Koenig,Timothy V Larson. Associations between air pollution and mortality in Phoenix,1995-1997. Environmental health perspectives,2000, 108 (4):347.
    [16]Sverre Vedal. Ambient particles and health:lines that divide. Journal of the Air & Waste Management Association,1997,47 (5):551-581.
    [17]John G Watson,Ronald E Wyzga,Richard T Burnett,Jaroslav J Vostal,Isabelle Romieu,Judith C Chow,James T Holcombe,Frederick W Lipfert,David Marrack,Richard J Thompson. Ambient particles and health:Lines that divide. Journal of the Air & Waste Management Association,1997,47 (9):995-1008.
    [18]曹强.大气细颗粒物致肺损伤的易感性研究.上海:复旦大学2007.
    [19]徐东群,张文丽,王焱,张玮,覃今胜.大气颗粒物污染特征研究.中国预防医学杂志,2004,(1):7-9.
    [20]Linda H Schmoll,Thomas M Peters,Patrick T O'shaughnessy. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles. Journal of occupational and environmental hygiene,2010,7 (9): 535-545.
    [21]Konradin Weber,Andreas Vogel,Christian Fischer,Guenther Van Haren,Tobias Pohl. Airborne measurements of the Eyjafjallajokull volcanic ash plume over northwestern Germany with a light aircraft and an optical particle counter:first results. In Remote Sensing, 2010;78320P-78320P-15.
    [22]刘柳,梁毅.美国哈希公司尘埃粒子计数器最新动态观察与探讨.机电信息,2012,(14):55-56.
    [23]Alexander A Kokhanovsky,Eleanora P Zege. Local optical parameters of spherical polydispersions:simple approximations. Applied optics,1995,34 (24):5513-5519.
    [24]Paul H Kaye,John E Barton,Edwin Hirst,James M Clark. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Applied Optics,2000,39 (21):3738-3745.
    [25]Apinun Youthapolnavee,Weerapong Chewpraditkul,Ake Chaisawadi. A construction of particle counter by using laser light scattering. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology,2009. ECTI-CON 2009.6th International Conference on,2009; 452-455.
    [26]杨娟,顾芳,卞保民,陆建.尘埃粒子计数器信号传输特性研究.激光技术,2008,32(3):255-258.
    [27]刘俊杰,朱能.尘埃粒子计数器计数损失的分析研究.洁净与空调技术,2002,(2):21-23.
    [28]Michael Quinten,Rainer Friehmelt,K-F Ebert. Sizing of aggregates of spheres by a white-light optical particle counter with 90 scattering angle. Journal of aerosol science,2001, 32 (1):63-72.
    [29]Michael Heim,Benjamin J Mullins,Heinz Umhauer,Gerhard Kasper. Performance evaluation of three optical particle counters with an efficient "multimodal" calibration method. Journal of Aerosol Science,2008,39 (12):1019-1031.
    [30]贺安之,卞保民.微粒光散射理论与测试技术研究.激光杂志,2000,21(3):47-49.
    [31]杨娟,彭刚,顾芳,卞保民,陆建.激光尘埃粒子计数器传感器性能优化设计.仪表技术与传感器,2008,(4).
    [32]Andrei S Dukhin,Philip J Goetz,Vincent Hackley. Modified log-normal particle size distribution in acoustic spectroscopy. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,138 (1):1-9.
    [33]C. G. Granqvist,R. A. Buhrman. Ultrafine metal particles. Journal of Applied Physics, 1976,47 (5):2200-2219.
    [34]Lb Kiss,J Soderlund,Ga Niklasson,Cg Granqvist. The real origin of lognormal size distributions of nanoparticles in vapor growth processes. Nanostructured Materials,1999,12 (1):327-332.
    [35]H Quenzel. Influence of refractive index on the accuracy of size determination of aerosol particles with light-scattering aerosol counters. Applied Optics,1969,8 (1):165-169.
    [36]Alexander A Kokhanovsky. Light Scattering Reviews, Vol.6:Light Scattering and Remote Sensing of Atmosphere and Surface. Springer,2011.
    [37]Jost Heintzenberg,Kikuo Okada,Thomas Trautmann,Peter Hoffmann. Modeling of the signals of an optical particle counter for real nonspherical particles. Applied optics,2004,43 (31):5893-5900.
    [38]Michael I Mishchenko,Joachim W Hovenier,Larry D Travis. Light scattering by nonspherical particles:theory, measurements, and applications. Academic press,1999.
    [39]Rg Pinnick,Dj Hofmann. Efficiency of light-scattering aerosol particle counters. Applied Optics,1973,12(11):2593-2597.
    [40]S Lekhtmakher,M Shapiro. About randomness of aerosol size distributions. Journal of aerosol science,2005,36 (12):1459-1467.
    [41]Shapiro M Lekhtmakher S. Registration probabilities and pulse-height distributions of coincidences in optical particle counters. Aerosol science and technology,2004,38 (2): 155-164.
    [42]任智斌,卢振武,刘玉玲,李凤有,曹召良,孙强.Mie理论归一化散射光强的研究.光电子·激光,2003,14(1).
    [43]任智斌,卢振武,朱海东,孙强.微球体光散射的研究.红外与激光工程,2004,33(4):401-404.
    [44]刘建斌,吴健.球形粒子的散射特性分析.激光杂志,2004,25(6):38-41.
    [45]戴兵,罗向东,王亚伟.椭圆截面非球形颗粒群的多重光散射.物理学报,2009,58(6):3864-3869.
    [46]李学彬,高亦桥,徐青山,胡顺星,胡欢陵.激光光源粒子计数器响应曲线对粒子折射率敏感度及多值性的分析.光学技术,2006,4001.
    [47]刘俊杰,朱能,田喆.尘埃粒子计数器计数损失的分析研究.洁净与空调技术,2002,221.
    [48]高永锋,邹丽新,黄惠杰,梁春雷,凌卫锋,张耀明.尘埃粒子计数器中光源对传感器光通量的影响分析.应用光学,2005,26(3):45-49.
    [49]杨玲,程晓飞,卞保民,贺安之.尘埃粒子光散射信号传输特性的研究.光电子.激光,2000,11(1):89-91.
    [50]杨玲,何幼权,卞保民,曾世清,贺安之.尘埃粒子计数器单粒子散射光幅值概率分布.光电子.激光,2002,12(2):178-181.
    [51]杨娟,赖晓明,彭刚,卞保民,陆建.悬浮颗粒计数信号等效体积的分形测度.物理学报,2009,58(5):3008-3013.
    [52]彭刚,赖小明,闰振纲,王春勇,卞保民,陆建.颗粒群光散射脉冲信号统计参数分形特征.光学学报,2010,(6):1693-1696.
    [53]William C Hinds. Aerosol technology:properties, behavior, and measurement of airborne particles.1982.
    [54]R. N Berglund. Basic aerosol standards and optical measurements of aerosol particles. University of Minnesota 1972.
    [55]Kyu-Tae Park,Dongho Park,Sang-Gu Lee,Jungho Hwang. Design and performance test of a multi-channel diffusion charger for real-time measurements of submicron aerosol particles having a unimodal log-normal size distribution. Journal of Aerosol Science,2009,40 (10):858-867.
    [56]D Park,M An,J Hwang. Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. Journal of aerosol science,2007,38 (4):420-430.
    [57]梁春雷,黄惠杰,任冰强,赵永凯,杜龙龙.激光尘埃粒子计数器微型光学传感器的研究.光学学报,2005,25(9):1260-1264.
    [58]李学彬,高亦桥,纪玉峰,胡欢陵.LED光源光学粒子计数器的研制[J].光学精密工程,2008,16(3):406-409.
    [59]张敏,周鑫玲,王向军,高玉成.基于光散射原理的尘埃粒子检测仪.仪器仪表学报,2005,26(12):1299-1301.
    [60]卞保民,贺安之.01μm尘埃粒子计数器光学传感器.仪表技术与传感器,1997, (11):1-4.
    [61]祖健苹.粒度分析仪器选型参考.现代科学仪器,1993,3.
    [62]杜伟巍.基于光散射的尘埃粒子计数器设计与实现.苏州大学2011.
    [63]纪运景,卞保民,贺安之.不同光源对激光尘埃粒子计数器性能的影响.In红外与激光工程,2004;Vol.33,5.
    [64]Dl Turcotte. Fractals and fragmentation. Journal of Geophysical Research:Solid Earth (1978-2012),1986,91 (B2):1921-1926.
    [65]Briant L Davis,Guo Jixiang. Airborne particulate study in five cities of China. Atmospheric environment,2000,34 (17):2703-2711.
    [66]郭永彩,何振江.基于分维计算的颗粒粒度分析方法.重庆大学学报:自然科学版,1998,21(1):7-11.
    [67]郁可,郑中山.粉体粒度分布的分形特征.材料研究学报,2009,9(6):539-542.
    [68]邵龙义,沈蓉蓉,杨书申,孙珍全.北京市PM10粒度分布分形维数特征.中国矿业大学学报,2008,37(3):407-411.
    [69]刘君霞,邵龙义,周林,杨书申.2008年北京市PM_(10)的粒度分布分形维数变化特征.中国环境监测,2010,(4):68-73.
    [70]Benoit B Mandelbrot. How long is the coast of Britain. Science,1967,156 (3775): 636-638.
    [71]Benoit B Mandelbrot,大自然的分形几何学.陈守吉,凌复华译.大自然的分形几何学.上海:上海远东出版社,1998.
    [72]Benoit B Mandelbrot. The fractal geometry of nature. Times Books,1982.
    [73]P.H.西登汉姆.测量科学手册上册.机械工业出版社,1990;36-38.
    [74]Heinz-Otto Peitgen,Dietmar Saupe,Michael Fielding Barnsley,Yuval Fisher,Michael Mcguire. The science of fractal images. Springer New York etc.,1988.
    [75]Vicsek,Tamas. Fractal growth phenomena. World Scientific Publishing Company Incorporated,1992; 76-92.
    [76]Kenneth J Falconer. The geometry of fractal sets. Cambridge university press,1986.
    [77]张青,邓小玖,张启兴,李耀东,张永明.火灾烟颗粒分形模型和球形模型光散射的比较研究.物理学报,2010,59(10):7442-7446.
    [78]Bruce J West,William Deering. Fractal physiology for physicists:Levy statistics. Physics Reports,1994,246 (1):1-100.
    [79]Bruce J. West,David R. Bickel. Fractional-difference stochastic model of evolutionary substitutions in DNA sequences. Physics Letters A,5/31/,1999,256 (2-3):188-196.
    [80]Francis C Moon. Chaotic and fractal dynamics. Wiley-VCH,2008.
    [81]Eric Bruneton,Thierry Coupaye,Matthieu Leclercq,Vivien Quema, Jean-Bernard Stefani. The FRACTAL component model and its support in Java. Software:Practice and Experience, 2006,36(11-12):1257-1284.
    [82]E Bouchaud,G Lapasset,J Planes. Fractal dimension of fractured surfaces:a universal value? EPL (Europhysics Letters),2007,13 (1):73.
    [83]Bruce G Elmegreen,Edith Falgarone. A fractal origin for the mass spectrum of interstellar clouds. The Astrophysical Journal,2009,471 (2):816.
    [84]陈辉,厉青,杨一鹏,申维,赵祥.基于分形模型的城市空气质量评价方法研究.中国环境科学,2012,32(5):954-960.
    [85]王永德,王军.随机信号分析基础.电子工业出版社,2003;22-30.
    [86]沈允春,罗天放,沈东旭.随机信号分析.国防工业出版社,2008;123-125.
    [87]王宏禹.非平稳随机信号分析与处理.1999.
    [88]彭启琮,邵怀宗,李明奇.信号分析.电子工业出版社,2006;105-108 118-119.
    [89]张海勇,李勘.非平稳随机信号的参数模型分析方法.系统工程与电子技术,2003,25(3):386-390.
    [90]苟飞.随机信号处理的新方法.华南理工大学1995.
    [91]Ingrid Daubechies. Ten lectures on wavelets. SIAM,1992.
    [92]周富臣,王生辉,易英.常用数理统计方法及应用实例.中国计量出版社,2006;47-94.
    [93]Box G.E.P.,Hunter W.G.,Hunter J.S. Statistics for Experimenters. New York:Wiley,1978; 130.
    [94]Nist/Sematech.6.3.3.1 Counts Control Charts, e-Handbook of Statistical Methods. In http://www.ltl.nlst.gov/dlv898/handbook/pmc/section3/pmc331.htm,2006.
    [95]Simeon-Denis Poisson. Recherches sur la probabilite des jugements en matiere criminelle et en matiere civile, precedees des Regles generales du calcul des probabilites. 1837. Bachelier, Paris.
    [96]庄军,林奇英.泊松分布在生物学中的应用.激光生物学报,2007,16(5):655-658.
    [97]Abraham De Moivre. The doctrine of chances.1738.
    [98]Abraham De Moivre. The doctrine of chances:or, A method of calculating the probabilities of events in play. Chelsea Pub. Co.,1756.
    [99]Rc Michelini,Gb Rossi. Measurement uncertainty:a probabilistic theory for intensive entities. Measurement,1995,15 (3):143-157.
    [100]Ronald H Dieck. Measurement uncertainty models. ISA transactions,1997,36 (1): 29-35.
    [101]Norman Johnson,Samuel Kotz,Narayanaswamy Balakrishnan. Continuous Univariate Distributions, vol.1-2. In New York:John Wiley & Sons:1994.
    [102]Lothar Sachs. Angewandte statistik:Anwendung statistischer methoden. Heidelberg, Germany:Springer DE,2003.
    [103]Donald Mcalister. The law of the geometric mean. Proceedings of the Royal Society of London,1879,29 (196-199):367-376.
    [104]Edwin L Crow,Kunio Shimizu. Lognormal distributions:Theory and applications. New York:Marcel Dekker,1988; 229-362.
    [105]Anna K Jagodnicka,Tadeusz Stacewicz,Grzegorz Karasinski,Michal Posyniak,Szymon P Malinowski. Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol. Applied optics,2009,48 (4):B8-B16.
    [106]An Kolmogorov. O logariflicheski-normal'nom zakone raspredeleniya razmerov chastits pri droblenii (About a logarithmically normal distribution of particles during the fragmentation). Doclady Akademii Nauk SSSR,1941,31 (2):99-101.
    [107]J.C.Kapteyn. Skew frequency curve in Biology and Statistics. Astronomical Laboratory of Groningen,1903.
    [108]J. H. Gaddum. Lognormal distributions. Nature,1945,156463-466.
    [109]L. H. Ahrens. The lognormal distribution of the elements (2). Geochimica et Cosmochimica Acta,1954,6 (2-3):121-131.
    [110]John Aitchison,James Alan Calvert Brown. The Lognormal Distribution:With Special References to Its Uses in Economi [sic]. University Press,1963.
    [111]Bv Gnedenko,An Kolmogorov,Bv Gnedenko,An Kolmogorov. Limit distributions for sums of independent. Amer. J. Math.},1954,105 28-35.
    [112]Elliott W Montroll,Michael F Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise:a tale of tails. Journal of Statistical Physics,1983,32 (2):209-230.
    [113]张文学.组成论.合肥:中国科学技术大学出版社,2003;187-188.
    [114]Spratt Jr,John S. The lognormal frequency distribution and human cancer. Journal of Surgical Research,1969,9 (3):151-157.
    [115]Ethan H. Becker,Andrew J. Kerkhoff,Melanie E. Moses. Global Patterns of City Size Distributions and Their Fundamental Drivers. PLoS ONE,2007,2 (9):e934.
    [116]Bruce J West,Michael Shlesinger. The noise in natural phenomena. American Scientist, 1990,40-45.
    [117]Bruce J West,Michael F Shlesinger. On the ubiquity of 1/f noise. International Journal of Modern Physics B,1989,3795-819.
    [118]Eckhard Limpert,Werner A. Stahel,Markus Abbt. Log-normal Distributions across the Sciences:Keys and Clues. BioScience,2001,51 (5):341-352.
    [119]Charlie Zender. Particle size distributions:theory and application to aerosols, clouds, and soils. In 2008.
    [120]Tijana Bojic,Aleksandra Vuckovic,Aleksandar Kalauzi. Modeling EEG fractal dimension changes in wake and drowsy states in humans—a preliminary study. Journal of theoretical biology,2010,262 (2):214-222.
    [121]Ms Wheatland,Pa Sturrock. Avalanche models of solar flares and the distribution of active regions. The Astrophysical Journal,2009,471 (2):1044.
    [122]C Tellambura,D Senaratne. Accurate computation of the MGF of the lognormal distribution and its application to sum of lognormals. Communications, IEEE Transactions on, 2010,58 (5):1568-1577.
    [123]Richard Perline. Zipf's law, the central limit theorem, and the random division of the unit interval. Physical Review E,1996,54 (1):220.
    [124]王祺,李力,胡坚明,邹斌.不同车头间距下交通流的速度分布.清华大学学报:自然科学版,2011,51(3):309-312.
    [125]于晓桦,刘法胜,张波.高速公路车辆出行里程分布.交通标准化,2008,939.
    [126]彭晨,朱霁平,佐藤晃由,李炳华.消防第一出动时间的频次分布规律研究.火灾科学,2010,(001):33-37.
    [127]Michael Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet mathematics,2004,1 (2):226-251.
    [128]谈庆明.量纲分析.中国科学技术大学出版社,2005;15-20.
    [129]Percy Williams Bridgman. Dimensional analysis. Yale University Press,1922.
    [130]Bruce J West. Measurement, information and uncertainty. Mathematics and computers in simulation,1987,29 (3-4):169-189.
    [131]ISO 21501-4 Determination of particle size distribution Single particle light interac-tion methods Part 4:Light scattering airborne particle counter for clean spaces
    [134]朱荣华.物理学基本概念的历史发展.北京:冶金工业出版社,1987.
    [135]瓦尔特·克莱默.统计数据的真相.机械工业出版社,2008;110-132.
    [136]Gb.3095-2012环境空气质量标准.2012.
    [137]黄湘宁.光电探测器的噪声分析.青海师范大学学报(自然科学版),2000,4 48-50.
    [138]郭从良,孙金军,方容川,曾丹,葛仕明.光电倍增管的噪声分析和建模.光学技术, 2003,29(005):636-640.
    [139]疏学明,方俊,申世飞,刘勇进,袁宏永,范维澄.火灾烟雾颗粒凝并分形特性研究.物理学报,2006,55(9):4466-4471.
    [140]Min Xu,Robert R Alfano. Fractal mechanisms of light scattering in biological tissue and cells. Optics letters,2005,30 (22):3051-3053.
    [141]William C Hinds. Aerosol technology:properties, behavior, and measurement of airborne particles. Wiley-interscience,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700