用户名: 密码: 验证码:
碱矿渣胶凝材料耐高温性能及其在工程中应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,粘贴碳纤维布加固技术,已被纳入国家标准《混凝土结构加固设计规范》(GB50367-2006)和行业标准《碳纤维片材加固混凝土结构技术规程》(CECS146:2003)。碳纤维丝在绝氧条件下具有良好的耐高温性能,其强度在1000℃以内不随温度升高而降低。加固所用的常规环氧树脂胶的玻璃态转化温度Tg仅为60℃~82℃,其燃点为600℃。由于火灾是一种高频灾种,火灾发生时环境温度高达数百度至上千度,这严重制约了粘贴碳纤维布加固技术的发展。鉴于耐高温环氧树脂胶价格昂贵,且在粘贴碳纤维布过程中需在高温环境中进行,难以大规模推广应用,研发耐高温的无机胶凝材料成为行业的一种迫切需求。同时也可考虑耐高温无机胶凝材料替代混凝土,用于高温环境的工程建设。从相关文献了解到地聚物具有良好的耐高温性能,定性判断碱矿渣胶凝材料(AASCM)应具有与地聚物类似的性能。因此,我们以AASCM作为一个着力点,开展研究工作。
     (1)尝试进行了粒化高炉矿渣与钾水玻璃,粒化高炉矿渣与氢氧化钠,粒化高炉矿渣与水泥和少量碳酸钠,粒化高炉矿渣和粉煤灰分别与钾水玻璃、氢氧化钠、水泥和少量碳酸钠等六种方案试配,获得了AASCM两种较优配比,即以矿渣为原料,模数Ms=1.0的钾水玻璃为碱性激发剂,水玻璃用量占矿渣质量的12%,用水量分别占矿渣质量的35%和42%的两种配比。按优选配比配制的AASCM养护龄期为28d时,当用水量占矿渣质量35%时40mm×40mm×160mm胶砂件抗压强度为90.16MPa,边长70.7mm的立方体试件抗压强度为71.75MPa,70.7mm×70.7mm×228mm棱柱体试件轴心抗压强度为48.44MPa,哑铃型试件抗拉强度为3.47MPa。当用水量占矿渣质量42%时40mm×40mm×160mm胶砂件抗压强度为80.88MPa,边长70.7mm的立方体试件抗压强度为64.53MPa,70.7mm×70.7mm×228mm棱柱体试件轴心抗压强度为44.90MPa,哑铃型试件抗拉强度为3.24MPa。AASCM强度相对较高,单方造价约合330元,价格相对较低。两种较优配比中用水量占矿渣质量42%时AASCM工作性能较好。因此,选择用水量占矿渣质量42%配比的AASCM为后续研究对象。
     (2)为考察AASCM的常温下力学性能,完成了60个40mm×40mm×160mm胶砂件、60个边长为70.7mm的立方体、60个70.7mm×70.7mm×228mm棱柱体的抗压试验,完成了60个40mm×40mm×160mm试件的抗折试验,完成了60个哑铃型试件的抗拉试验,完成了60个边长为70.7mm立方体试件的劈拉试验。AASCM胶砂件抗压强度最高可达121.18MPa,边长为70.7mm立方体抗压强度最高可达96.43MPa,轴心抗压强度最高可达59.86MPa,抗折强度最高可达16.56MPa,抗拉强度最高可达4.45MPa,劈拉强度最高可达4.15MPa。通过对36个70.7mm×70.7mm×228mm的棱柱体试件进行单轴抗压试验,得到了AASCM受压应力-应变全曲线方程。对比分析可知,AASCM受压应力-应变曲线方程上升段与普通混凝土相似,均为二次抛物线形式,AASCM考虑应变梯度影响的下降段呈斜直线形式。通过采用SEM扫描电镜和XRD衍射分析技术,确定了AASCM的水化产物为水化硅酸钙凝胶、水滑石和水化铝酸四钙等非晶质物相。
     (3)为对比粘贴效果,采用双剪试验方法对90个用AASCM在混凝土表面粘贴纤维布试件(边长为100mm的混凝土立方体试块,两对面粘贴宽度为70mm,长为100mm的纤维布条带),进行常温双剪试验,获得了与胶层毗邻混凝土撕裂剥离的破坏形式,双剪试件的面内剪切强度在1.09~1.61MPa之间,与常规环氧树脂胶基本持平。通过在160mm×160mm×1000mm混凝土棱柱体两对面粘贴宽70mm,长120mm至300mm,相邻试件粘贴长度相差20mm碳纤维布条带的20个试件粘结锚固性能试验,量测了在各级荷载下碳纤维布与混凝土间剪应力的分布及有效粘结长度,获得了碳纤维布被拉断的同时混凝土被撕裂剥离时的碳纤维布的粘贴长度(即锚固长度),拟合得到了常温下碳纤维布有效粘结长度和锚固长度的计算公式。有效粘结长度计算公式考虑了破坏荷载,碳纤维布轴向刚度bfEftf和碳纤维布加载端滑移量的影响;锚固长度计算公式考虑了碳纤维布抗拉强度,计算厚度以及碳纤维布与混凝土间粘结应力的影响。
     (4)为考察AASCM高温下和高温后力学性能,完成了96个40mm×40mm×160mm胶砂件和96个边长为70.7mm立方体在100℃~800℃高温下和高温后抗压试验,完成了96个40mm×40mm×160mm试件在100℃~800℃高温下和高温后的抗折试验,完成了96个哑铃型试件在100℃~800℃高温下和高温后的抗拉试验。试验结果表明,在600℃高温下和600℃高温后,AASCM胶砂件抗压强度分别为常温时的81.5%和103.5%,AASCM边长70.7mm立方体抗压强度分别为常温时的85.2%和105.5%,AASCM试件抗折强度分别为常温时的44.6%和52.5%,AASCM哑铃型试件抗拉强度分别为常温时的40.1%和48.3%。在800℃高温下和800℃高温后,AASCM立方体抗压强度分别为常温时的61.3%和66.7%。相同尺寸和养护条件下的水泥石立方体抗压强度分别为常温时抗压强度的33%和42%,证明AASCM的耐高温性能明显优于水泥石。通过回归分析,拟合得到AASCM的抗压强度、抗折强度和抗拉强度等各项力学指标随温度变化的计算公式。可知在20℃~200℃高温下,胶砂件和立方体抗压强度随温度升高而降低;200℃~500℃时,抗压强度有所回升,500℃~800℃时,抗压强度随温度升高再次降低。在20℃~400℃高温后,胶砂件和立方体抗压强度随温度升高而增大;400℃~800℃高温后,抗压强度随温度升高而降低。在100℃~800℃高温下和100℃~800℃高温后,40mm×40mm×160mm试件的抗折强度和哑铃型试件的抗拉强度均随温度升高而降低。对比分析可知,高温下AASCM各项力学指标比高温后的略低。采用SEM扫描电镜和XRD衍射分析技术,揭示了AASCM在600℃~800℃之间时,其水化产物—水化硅酸钙凝胶逐渐分解,并伴有镁黄长石生成,物相组成由非晶相转变为晶相,这是AASCM高温力学性能下降的根本原因。
     (5)为考察高温下和高温后用AASCM作胶粘剂和密封绝氧层时碳纤维布与混凝土间的粘结锚固性能,通过在160mm×160mm×1500mm棱柱体两对面粘贴宽70mm,长225mm至400mm,相邻试件粘贴长度相差25mm碳纤维布条带的20个试件在100℃~500℃高温下的双剪试验,呈现出粘结破坏(混凝土被撕裂剥离,或部分混凝土被撕裂剥离部分胶层滑脱)但碳纤维布未被拉断,碳纤维布被拉断但未发生粘结破坏以及碳纤维布被拉断的同时发生粘结破坏。获得了高温下试件的破坏荷载和锚固长度,拟合得到高温下碳纤维布锚固长度计算公式。可知20℃~100℃高温下,碳纤维布锚固长度随温度升高而增加;100℃~500℃时,锚固长度随温度升高而降低。为考察高温后的粘结锚固性能,通过在160mm×160mm×1500mm棱柱体两对面粘贴宽70mm,长200mm至340mm,相邻试件粘贴长度相差20mm碳纤维布条带的20个试件和长350mm至500mm,相邻试件粘贴长度相差25mm碳纤维布条带的20个试件在100℃~500℃高温后的双剪试验,呈现出粘结破坏但碳纤维布未被拉断,碳纤维布被拉断但未发生粘结破坏以及碳纤维布被拉断的同时发生粘结破坏等破坏形式。在前20个试件中量测了在各级荷载下碳纤维布与混凝土间剪应力的分布和有效粘结长度,获得了高温后相关试件的破坏荷载、有效粘结长度和锚固长度实测值,拟合得到高温后碳纤维布有效粘结长度计算公式和锚固长度计算公式。
Currently, the strengthening techniques with carbon fiber sheets have been incorporated into national standard “Design code for strengthening concrete structure”(GB50367-2006) and industry standard “Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate”(CECS146:2003). Carbon fiber sheet has good high-temperature resistance at1000℃or less in anaerobic conditions, and its strength does not decrease with increasing temperature. But the glass transition temperature (Tg) of conventional epoxy resin adhesive used in strengthening is only60℃~82℃, and its ignition point is600℃. Because the fire is a high-frequency disaster, and the ambient temperature is up to several hundred degrees to thousands of degrees when the fire broke out, which has seriously hampered the development of the strengthening technique with carbon fiber sheets. View of the high-temperature resistance epoxy resin adhesives with expensive price and the process of pasting carbon fiber sheets required in the high temperature environment, it is difficult to large-scale promote and apply high-temperature resistance epoxy resin adhesives in the strengthening techniques with carbon fiber sheets. Designation and development the high-temperature resistance inorganic cementitious materials become an urgent need for the industry. In addition, the high-temperature resistance inorganic cementitious materials may also be considered to substitute for concrete applied to the construction of high-temperature environments. It is learned from the relevant literatures that the geopolymer has good high temperature performance, and it is qualitative judged that Alkali-Activated Slag Cementitious Material (AASCM) should have similar performance with geopolymer. Therefore, AASCM is chosen as a focal point to carry out research work.
     (1)Six kinds of mix schemes were attempted, such as ground granulated blast furnace slag and potassium silicate, ground granulated blast furnace slag and sodium hydroxide,ground granulated blast furnace slag and cement and a small amount of sodium carbonate,slag and fly ash and potassium silicate, slag and fly ash and sodium hydroxide, slag and fly ash and cement and a small amount of sodium carbonate. Two better mix proportions of AASCM were gotten, namely, slag is used as raw material, the potassium silicate with the modulus Ms=1.0is used as alkaline activator, the dosage of potassium silicate accounts for12%of the slag mass, the dosages of water account for35%and42%of the slag mass, respectively. When the better mix proportion with the dosage of water accounting for35%of the slag mass is cured for28d, the compressive strength of cement-mortar specimen in size of40mm×40mm×160mm is90.16MPa, and the compressive strength of cubic specimen in size of70.7mm×70.7mm×70.7mm is71.75MPa, and the compressive strength of prism specimen in size of70.7mm×70.7mm×228mm is48.44MPa, and the tensile strength of dumbbell specimen is3.47MPa. When the better mix proportion with the dosage of water accounting for42%of the slag mass is cured for28d, the compressive strength of cement-mortar specimen in size of40mm×40mm×160mm is80.88MPa, and the compressive strength of cubic specimen in size of70.7mm×70.7mm×70.7mm is64.53MPa, and the compressive strength of prism specimen in size of70.7mm×70.7mm×228mm is44.90MPa, and the tensile strength of dumbbell specimen is3.24MPa. AASCM has relatively high strength, The price of AASCM is about330yuan per cubic meter, so its price is relatively low. The better mix proportion of AASCM with the dosage of water accounting for42%of the slag mass has better working performance. Hence, the better mix proportion of AASCM with the dosage of water accounting for42%of the slag mass is chosen for subsequent applied research object.
     (2)In order to investigate the mechanical properties of AASCM at room temperature, the compression tests about60cement-mortar specimens in size of40mm×40mm×160mm and60cubic specimens in size of70.7mm×70.7mm×70.7mm and60prism specimens in size of70.7mm×70.7mm×228mm were completed, the flexural tests about60cement-mortar specimens in size of40mm×40mm×160mm were completed, the tensile tests about60dumbbell specimens were completed, and the splitting tensile tests about60cubic specimens in size of70.7mm×70.7mm×70.7mm were completed. The highest compressive strength of cement-mortar specimens is121.18MPa, and the highest compressive strength of cubic specimens is96.43MPa, and the highest axial compressive strength of specimens is59.86MPa, and the highest flexural strength of specimens is16.56MPa, and the highest tensile strength of dumbbell specimens is4.45MPa, and the highest splitting tensile strength of cubic specimens is4.15MPa. The uniaxial compression tests about36prism specimens in size of70.7mm×70.7mm×228mm were completed, and the compressive stress-strain curve equation of AASCM is gotten. Comparative analysis shows that, the ascending part of the compressive stress-strain curve equation of AASCM is similar to that of ordinary concrete, they are both quadratic parabola. The descending part of the compressive stress-strain curve equation of AASCM is oblique line form, which has considered strain gradient effects. By using SEM and XRD analysis technique, the amorphous phases calcium silicate hydrate gel, hydrotalcite and tetracalcium aluminate hydrate were determined as the hydration products of AASCM.
     (3)In order to contrast pasting effects,90concrete cubic specimens were strengthened with fiber sheets bonded with AASCM on the concrete surface (Two opposite sides of concrete cubic specimens in size of100mm×100mm×100mm were strengthened with70mm width and100mm length fiber strips), and double-shear tests of90specimens were completed by double-shear test methods at room temperature. The failure modes that the concrete adjacent adhesive layer was torn and stripped were obtained, the interfacial shear strength of double-shear specimens is1.09~1.61MPa, and the strengthening effects of AASCM are comparable to that of conventional epoxy resin adhesive.20concrete prism specimens in size of160mm×160mm×1000mm were strengthened on two opposite sides with70mm width,120mm to300mm length carbon fiber strips, and the carbon fiber strips of adjacent specimens had20mm length difference. By the bond anchorage properties tests, the distribution of shear stress between carbon fiber sheets and concrete at all levels of loading and effective bond length were measured, the bond lengths during carbon fiber sheets are pulled off at the same time when the concrete is torn and stripped were obtained (ie anchorage length), the calculated formulas of effective bond length and anchorage length were obtained by fitting. The effects of failure load, the effects of axial stiffness of carbon fiber sheets bfEftf and the effects of loaded end slip were considered in calculated formula of effective bond length. The effects of tensile strength and calculated thickness of carbon fiber sheets, and the effects of bond stress between carbon fiber sheets and concrete were considered in calculated formula of anchorage length.
     (4)In order to investigate the mechanical properties of AASCM at high temperature and after high temperature, the compression tests about96cement-mortar specimens in size of40mm×40mm×160mm and96cubic specimens in size of70.7mm×70.7mm×70.7mm were completed at100℃~800℃and after100℃~800℃, the flexural tests about96cement-mortar specimens in size of40mm×40mm×160mm were completed at100℃~800℃and after100℃~800℃high temperature, the tensile tests about96dumbbell specimens were completed at100℃~800℃and after100℃~800℃high temperature. Experimental results show that the compressive strengths of cement-mortar specimens at600℃and after600℃are81.5%and103.5%of compressive strength at room temperature, respectively; the compressive strengths of cubic specimens at600℃and after600℃are85.2%and105.5%of compressive strength at room temperature, respectively; the flexural strengths of specimens at600℃and after600℃are44.6%and52.5%of flexural strength at room temperature, respectively; the tensile strengths of dumbbell specimens at600℃and after600℃are40.1%and48.3%of tensile strength at room temperature, respectively; the compressive strengths of cubic specimens at800℃and after800℃are41.3%and66.7%of compressive strength at room temperature, respectively. The AASCM and Ordinary Portland Cement (OPC) were prepared in same size of70.7mm×70.7mm×70.7mm at same curing conditions, the compressive strengths of cubic specimens of OPC at800℃and after800℃are41.3%and66.7%of compressive strength of OPC at room temperature, respectively. It is proven that AASCM has superior high-temperature resistance than OPC. By regression analysis, the calculated formulas about compressive strength, flexural strength and tensile strength and other mechanical indexes variation with temperature were fit. It is seen that the compressive strengths of cement-mortar specimens and cubic specimens decrease with increasing temperature at20℃~200℃, the compressive strengths rebound at200℃~500℃, the compressive strengths decrease with increasing temperature at500℃~800℃again. The compressive strengths of cement-mortar specimens and cubic specimens increase with increasing temperature at20℃~400℃, the compressive strengths decrease with increasing temperature at400℃~800℃. The tensile strengths of dumbbell specimens and the flexural strengths of specimens in size of40mm×40mm×160mm decrease with increasing temperature at100℃~800℃and after100℃~800℃. Comparison analysis shows that the mechanical indexes of AASCM at high temperature are slightly lower than that of AASCM after high temperature. By using SEM and XRD analysis technique, it is revealed that the hydration product calcium silicate hydrate gradual decomposes and akermanite generates between600℃~800℃, and the phase composition translates from amorphous phase to crystalline phase, which is the root causes of mechanical properties of AASCM decline.
     (5)In order to investigate the bond-anchorage properties between carbon fiber sheets and concrete using AASCM as adhesive and anaerobic sealing layer at high temperature and after high temperature,20concrete specimens in size of160mm×160mm×1500mm were strengthened on two opposite sides with70mm width,225mm to400mm length carbon fiber strips, and the carbon fiber strips of adjacent specimens had25mm length difference. By double-shear tests at100℃~500℃, the bond failure (concrete is torn and stripped, or some concrete is torn and stripped and some adhesive layer slips) is shown but carbon fiber sheets are not pulled off, carbon fiber sheets are pulled off but bond failure is not shown, carbon fiber sheets are pulled off at the same time when the bond failure is shown and so on. The failure loads and anchorage lengths were measured, and the calculated formulas of anchorage length were obtained by fitting at high temperature. It is seen that the anchorage lengths of carbon fiber sheets increase with increasing temperature at20℃~100℃, the anchorage lengths of carbon fiber sheets decrease with increasing temperature at100℃~500℃. In order to investigate bond-anchorage properties after high temperature,20concrete prism specimens in size of160mm×160mm×1500mm were strengthened on two opposite sides with70mm width,200mm to340mm length carbon fiber strips, and the carbon fiber strips of adjacent specimens had20mm length difference; and20concrete prism specimens in size of160mm×160mm×1500mm were strengthened on two opposite sides with70mm width,350mm to500mm length carbon fiber strips, and the carbon fiber strips of adjacent specimens had25mm length difference. By double-shear tests after100℃~500℃, the bond failure is shown but carbon fiber sheets are not pulled off, carbon fiber sheets are pulled off but bond failure is not shown, carbon fiber sheets are pulled off at the same time when the bond failure is shown. The distribution of shear stress between carbon fiber sheets and concrete at all levels of loading and effective bond length were measured from first20specimens. The failure loads of related specimens, effective bond length and anchorage length measured values after high temperature were obtained. The calculated formulas of effective bond length and anchorage length were obtained by fitting after high temperature.
引文
[1] Bisby L A. Fire Behaviour of Fibre-reinforced Polymer (FRP) Reinforced orConfined Concrete[D]. Kingston, Ontario:Dissertation of the Queen’sUniversity,2003:10-81.
    [2] Gamage J C P H,Al-Mahaidi R,Wong M B. Bond Characteristics of CFRPPlated Concrete Members under Elevated Temperature[J]. CompositeStructures,2006(75):199-205.
    [3] Bisby L A,Green M F,Kodur V K R. Modeling the Behavior of FiberReinforced Polymer-Confined Concrete Columns Exposed to Fire[J]. Journal ofComposites for Construction,2005(9):15-24.
    [4]吴波,王军丽.碳纤维布加固钢筋混凝土板的耐火性能试验研究[J].土木工程学报,2007(40):26-81.
    [5]高皖扬,胡克旭,陆洲导.碳纤维加固钢筋混凝土梁耐火性能试验研究[J].土木工程学报,2010(43):15-23.
    [6]王英,孙超,郑文忠. CFRP布加固混凝土梁板防火涂料层厚度取值[J].哈尔滨工业大学学报,2008(40):1868-1873.
    [7]吴启鸿,肖学峰,朱东杰.今后若干年内我国火灾发展趋势的探讨[J].消防技术与学科,2003(22):367-370.
    [8]王旻,冯鹏,叶列平,等.用于纤维片材加固混凝土结构的无机粘结材料——地聚物[J].工业建筑(增刊),2004:16-20.
    [9] Purdon A O. The Action of Alkalis on Blast-Furnace Slag[J]. Journal of theSociety of Chemical Industry,1940(59):191.
    [10] Davidovits J. Geopolymers and Geopolymeric Materials[J]. Journal of ThermalAnalysis,1989(35):429-441.
    [11] Davidovits J. Geopolymers,Green Chemistry and Sustainable DevelopmentSolutions[M]. Saint Quentin:Geopolymer Institute,2005:145-232.
    [12] Xu H,Van Deventer J S J. The Geopolymerization of Alumino-SilicateMinerals[J]. International Journal of Mineral Processing,2000(59):247-266.
    [13] Van Jaarsveld J S J,Van Deventer J S J,Lorenzen L. The Potential Use ofGeopolymeric Materials to Immobilise Toxic Metals:Part I. Theory andApplications[J]. Mineral Engineering,1997(10):659-669.
    [14] Palomo A,Macias A,Blanco M T,et al. Physical,Chemical and MechanicalCharacterization of Geopolymers[C]//Proceedings of the9th InternationalCongress on the Chemistry of Cement. New Delhi:National Council for Cementand Building Materials,1992(5):505-511.
    [15] Foden A J. Mechanical Properties and Material Characterization of PolysialateStructural Composites[D].New Brunswick:Dissertation of the RutgersUniversity,1999:38-173.
    [16] Foden A J,Balaguru P,Lyon R E,et al. Flexural Fatigue Properties of AnInorganic Matrix-Carbon Fiber Composite[J]. Evolving Technologies for theCompetitive Edge,1997(42):1345-1354.
    [17] Cheng T W,Chiu J P. Fire-Resistant Geopolymer Produced by Granulated BlastFurnace Slag[J]. Minerals Engineering,2003(16):205-210.
    [18]聂轶苗,马鸿文,杨静,等.矿物聚合材料固化过程中的聚合反应机理研究[J].现代地质,2006(20):341-346.
    [19]吴怡婷,施惠生.制备土聚水泥中若干因素的影响[J].水泥,2003(3):1-3.
    [20]王旻,覃维祖.化学激发胶凝材料用于碳纤维加固混凝土柱的研究[J].施工技术,2007(36):73-75.
    [21] Cwirzen A,Penttala V,Vornanen C. Reactive Powder Based Concretes:Mechanical Properties,Durability and Hybrid Use with OPC[J]. Cement andConcrete Research,2008(38):1217-1226.
    [22] Zhang Y S,Sun W,Liu S F,et al. Preparation of C200Green ReactivePowder Concrete and Its Static-Dynamic Behaviors[J]. Cement and ConcreteComposites,2008(30):831-838.
    [23]屈文俊,秦宇航.活性粉末混凝土(RPC)研究与应用评述[J].结构工程师,2007(23):86-92.
    [24]覃维祖,曹峰.一种超高性能混凝土—活性粉末混凝土[J].工业建筑,1999(29):16-18.
    [25] Jiang W M. Alkali Activated Cementitious Materials:Mechanisms,Microstructure and Properties[D]. Philadelphia:Dissertation of the PennsylvaniaState University,1997:1-18.
    [26] Zhao L Y. Characterizations of RC Beams Strengthened with Carbon FiberSheets[D]. Huntsville,Alabama:Dissertation of the University of Alabama,2005:39-77.
    [27]徐威.粘贴CFRP片材用耐高温无机胶的制备及应用研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:23-76.
    [28] Shi C J,Roy D,Krivenko P. Alkali-Activated Cements and Concretes[M].New York:Taylor and Francis,2006:10-147.
    [29] Glukhovsky V D,Rostovskaja G S,Rumyna G V. High Strength Slag-AlkalineCements[C]//Proceedings of the7th International Congress Chemical Cement,Paris,1982(5):164.
    [30]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐通报.1996(24):209-215.
    [31]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐通报.1996(24):459-465.
    [32] Smith M A,Osborne G J. BFS/Fly Ash Cements[J]. World CementTechnology,1997(8):223-233.
    [33] Bijen J,Waltje H. Alkali Activated Slag-Fly Ash Cements[J]. ACI SpecialPublication,1989(114):1565-1578.
    [34] Dai L,Cheng J. An Investigation on BFS-Fly Ash-Alkali Systems[J]. Bulletinof the Chinese Silicate Society,1988(16):25-32.
    [35] Shi C J,Qian J S. High Performance Cementing Materials from Industrial Slags-A Review[J]. Resources,Conservation and Recycling.2000(29):195-207.
    [36] Bakharev T,Sanjayan J G,Cheng Y B. Alkali Activation of Australian SlagCements[J]. Cement and Concrete Researeh.1999(29):113-120.
    [37]李永德,孙尧.关于碱一矿渣净浆体固化材料的研究[J].混凝土,2001(6):41-43.
    [38]李立坤,唐修仁.碱一矿渣胶凝材料水化机理及动力学特征[J].硅酸盐通报,1994(3):49-52.
    [39]吴其胜.水玻璃模数对碱矿渣水泥性能的影响[J].水泥工程,1999(5):10-11.
    [40]唐美红,周萍等.水玻璃激发矿渣胶凝材料的研究[J].粉煤灰,2002(5):22-26.
    [41]于霖.碱激发矿渣胶凝材料的制备及其性能研究[D].郑州:郑州大学学位论文,2010:25-70.
    [42]赵永林.水玻璃激发矿渣超细粉胶凝材料的形成及水化机理的研究[D].西安:西安建筑科技大学学位论文,2007:12-91.
    [43]孙家瑛,诸培南,吴初航.矿渣在碱性溶液激发下的水化机理探讨[J].硅酸盐通报,1988(6):16-25.
    [44]袁润章,高琼英,欧阳世翁.矿渣结构与水硬活性及其激发机理[J].武汉工业大学学报,1987(3):285-297.
    [45] Taleing B,Brandstetter J. Present State and Future of Alkali-Activated SlagConcrete. Fly Ash,Silica Fume,and National Pozzonson Concrete[C]//Proceedings of3th International Conference. Trondheim,Norway,1989(4):56-59.
    [46] Krivenko P V. Alkali-Activated Aluminosilicates;Past,Present and Future [J].Chemical Physics,2008(102):273-277.
    [47] Zhou H H,Xu Z,Tang M. Kinetic Study on Hydration of Alkali ActivatedSlag[J]. Cement and Concrete Research,1993(232):1253-1258.
    [48]徐彬,蒲心诚.矿渣玻璃体微观分相结构研究[J].重庆建筑大学学报,1997(4):53-60.
    [49]马保国,朱平华,黄立付.固体碱激发制备碱一矿渣一高钙粉煤灰渣胶凝材料的研究[J].粉煤灰,2001(4):4-6.
    [50]钟白茜,杨南如.水玻璃一矿渣水泥的水化性能研究[J].硅酸盐通报,1994(1):4-8.
    [51]禹尚仁,王悟敏.无熟料硅酸钠矿渣水泥的水化机理[J].硅酸盐学报,1990(18):104-106.
    [52] Malolepszy J,Nocun-Wczelik W. Microcalorimetric Studies of Slag AlkalineBinders[J]. Journal of Thermal Analysis and Calorimetry,1988(33):431-434.
    [53] Fernandez-Jimenez A,Palomo J G,Puertas F. Alkali-Activated Slag Mortars:Mechanical Strength Behaviour[J]. Cement and Concrete Research,1999(29):1313-1321.
    [54] Fernández-Jiménez A,Puertas F. Structure of Calcium Silicate Hydrates Formedin Alkaline-Activated Slag:Influence of the Type of Alkaline Activator[J]. TheJournal of American Ceramic Society,2003(33):2031-2036.
    [55] Sofi M,Van Deventer J S J,Mendis P A,et al. Engineering Properties ofInorganic Polymer Concretes (IPCs)[J]. Cement and Concrete Research,2007(37):250-257.
    [56] Yang K H,Song J K,Ashour A F,et al. Properties of Cementless MortarsActivated by Sodium Silicate[J]. Construction and Building Materials,2008(22):1981-1989.
    [57]姜奉华.碱激发矿渣微粉胶凝材料的组成、结构和性能的研究[D].西安:西安建筑科技大学学位论文,2008:10-97.
    [58]王聪.碱激发胶凝材料的性能研究[D].哈尔滨:哈尔滨工业大学学位论文,2006:22-24.
    [59] Shi C J. Strength, Pore Structure and Permeability of Alkali-Activated SlagMortars[J]. Cement and Concrete Research,1996(26):1789-1799.
    [60] Al-Otaibi S. Durability of Concrete Incorporating GGBS Activated by Water-Glass[J].Construction and Building Materials,2008(22):2059-2067.
    [61] Bobrowski A,Gawlicki M,Malolepszy J. Analytical Evaluation ofImmobilization of Heavy Metals in Cement Matrices[J]. Environmental Scienceand Technology,1997(37):745-749.
    [62] Deja J. Immobilization of Cr6+、Cd2+、Zn2+and Pb2+in Alkali-Activated SlagBinders[J]. Cement and Concrete Research,2002(32):1971-1979.
    [63]焦贞贞.含钙地质聚合物的制备与性能研究[D].哈尔滨:哈尔滨工业大学学位论文,2013:7-89.
    [64]安明喆,杨新红,王军民,等. RPC材料的耐久性研究[J].建筑技术,2007(38):367-368.
    [65] Roux N,Andrade C,Sanjuan M A. Experimental Study of Durability ofReactive Powder Concretes[J]. Journal of Materials in Civil Engineering,1996(8):1-6.
    [66] Hardjito D,Wallah S E,Sumajouw D M J,et al. On the Development of FlyAsh-Based Geopolymer Concrete[J]. ACI Materials Journal,2004(101):467-472.
    [67] Wang S D,Scrivener K L,Pratt P L. Factors Affecting the Strength of Alkali-Activated Slag[J]. Cement and Concrete Research,1994(24):1033-1043.
    [68] Wang S D,Pu X C,Scrivener K L,et al. Alkali-Activated Slag Cement andConcrete:A Review of Properties and Problems[J]. Advances in CementResearch,1995(27):93-102.
    [69] Collins F,Sanjayan J G. Effect of Pore Size Distribution on Drying Shrinking ofAlkali-Activated Slag Concrete[J]. Cement and Concrete Research,2000(30):1401-1406.
    [70] Roy D M. Alkali-Activated Cements Opportunities and Challenges[J]. Cementand Concrete Research,1999(29):249-254.
    [71] Brough A R,Atkinson A. Sodium Silicate-Based,Alkali-Activated SlagMortars Part Ⅰ:Strength,Hydration and Microstructure[J]. Cement andConcrete Research,2002(32):865-879.
    [72] Escalante-Garcia J I,Fuentes A F,Gorokhovsky A,et al. Hydration Productsand Reactivity of Blast-Furnace Slag Activated by Various Alkalis[J]. The Journalof American Ceramic Society,2003(86):2148-2153.
    [73]马鸿文,杨静,任玉峰,等.矿物聚合材料:研究现状与发展前景[J].地学前缘,2002(9):397-407.
    [74] Pacheco-Torgal F,Castro-Gomes J,Jalali S. Alkali-Activated Binders:AReview Part I:Historical Background,Terminology,Reaction Mechanismsand Hydration Products[J]. Construction and Building Materials,2008(22):1305-1314.
    [75] Richardson I.G,Brough A.R,Groves G.W,et al. The Characterization ofHardened Alkali-Activated Blast-Furnace Slag Pastes and the Nature of theCalcium Silicate Hydrate (C–S–H) Paste[J]. Cement and Concrete Research,1994(24):813-829.
    [76] Lothenbach B,Gruskovnjak A. Hydration of Alkali-Activated Slag:Thermodynamic Modelling[J]. Advances in Cement Research,2007(19):81-92.
    [77] Puertas F,Fernández-Jiménez A,Blanco-Varela M.T. Pore Solution in AlkaliActivated Slag Cement Pastes. Relation to the Composition and Structure ofCalcium Silicate Hydrate[J]. Cement and Concrete Research,2004(34):139-148.
    [78] Song S,Jennings H M. Pore Solution Chemistry of Alkali-Activated GroundGranulated Blast-Furnace Slag[J]. Cement and Concrete Research,1999(29):159-170.
    [79] Gruskovnjak A,Lothenbach B,Holzer L,et al. Hydration of Alkali ActivatedSlag:Comparison with Ordinary Portland Cement[J]. Advances in CementResearch,2006(18):119-128.
    [80] Sajedi F,Razak H A. The Effect of Chemical Activators on Early Strength ofOrdinary Portland Cement-Slag Mortars[J]. Construction and BuildingMaterials,2010(24):1944-1951.
    [81] Zuda L,Pavlik Z,Rovnanikova P,et al. Properties of Alkali ActivatedAluminosilicate Material after Thermal Load[J]. International Journal ofThermophysics,2006(27):1250-1263.
    [82] Zuda L,Rovnanik P,Bayer P,et al. Thermal Properties of Alkali-ActivatedSlag Subjected to High Temperature[J]. Journal of Building Physics,2007(30):337-350.
    [83] Zuda L,Cerny R. Measurement of Linear Thermal Expansion Coefficient ofAlkali-Activated Aluminosilicate Composites up to1000℃[J]. Cement andConcrete Composites,2009(31):263-267.
    [84] Zuda L,Drchalova J,Rovnanik P,et al. Alkali-Activated AluminosilicateComposite with Heat-Resistant Lightweight Aggregates Exposed to HighTemperature:Mechanical and Water Transport Properties[J]. Cement andConcrete Composites,2010(32):157-163.
    [85] Guerrieri M,Sanjayan J,Collins F. Residual Compressive Behavior of Alkali-Activated Concrete Exposed to Elevated Temperature[J]. Fire and Materials,2009(33):51-62.
    [86] Won J P,Kang H B,Lee S J,et al. Eco-Friendly Fireproof High-StrengthPolymer Cementitious Composites[J]. Cement and Concrete Composites,2012(30):406-412.
    [87]杨南如.何谓一类新的胶凝材料[J].中国水泥,2005(10):18-20.
    [88]郑文忠,陈伟宏,王英.碱矿渣胶凝材料的耐高温性能[J].华中科技大学学报,2009(37):96-99.
    [89] ACI440.2R-08. Guide for the Design and Construction of Externally BondedFRP Systems for Strengthening Concrete Structures[S]. ACI Committee440,American Concrete Institute,USA,2008:1-49.
    [90] Carolin A. Carbon Fiber Reinforced Polymers for Strengthening of StructuralElements[D]. Lulea:Dissertation of the Lulea University of Technology,2003:13-45.
    [91]蔡正华.高温下碳纤维-混凝土界面受剪性能研究[D].上海:同济大学学位论文,2008:6-56.
    [92] Bourbigot S,Flambard X. Heat Resistance and Flammability of HighPerformance Fibers:A Review[J]. Fire and Materials,2002(26):155-168.
    [93] Bisby L A,Green M F,Kodur V K R. Response to Fire of Concrete Structuresthat Incorporate FRP[J]. Progress in Structural Engineering and Materials,2005(7):136-149.
    [94] Deng Y. Static and Fatigue Behavior of RC Beams Strengthened with CarbonFiber Sheets Bonded by Organic and Inorganic Matrices[D]. Huntsville,Alabama:Dissertation of the University of Alabama,2002:23-97.
    [95] Toutanji H,Deng Y. Comparison between Organic and Inorganic Matrices forRC Beams Strengthened with Carbon Fiber Sheets[J]. ASCE-Journal ofComposites for Construction,2007(11):507-513.
    [96] Toutanji H,Deng Y,Zhang Y,et al. Static and Fatigure Performances of RCBeams Strengthened with Carbon Fiber Sheets Bonded by InorganicMatrix[C]//Proceedings of47th International SAMPE Symposium,2002:1354-1367.
    [97] Kurtz S,Balaguru P. Comparison of Inorganic and Organic Matrices forStrengthening of RC Beams with Carbon Sheets[J]. Journal of StructuralEngineering,2001(127):35-42.
    [98] M’Bazaa I M,Missihoun M,Labossiere P. Strengthening of ReinforcedConcrete Beams with CFRP Sheets[C]//Procceedings of1st InternationalConference on Compos. Arizona,1996:746-759.
    [99]郑文忠,陈伟宏,王明敏.用无机胶粘贴碳纤维布加固混凝土梁受弯试验研究[J].土木工程学报,2010(43):37-45
    [100]陈伟宏.用无机胶粘贴碳纤维布加固混凝土梁受力性能试验研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:33-123.
    [101]赵彤,谢剑,戴自强.碳纤维布加固钢筋混凝土梁的受弯承载力试验研究[J].建筑结构,2000(30):11-15.
    [102]张建华.用碱激发胶凝材料作胶粘剂的植筋性能试验研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:9-38.
    [103]吴波,房帅,冯玮.采用地聚物粘贴碳纤维布加固混凝土梁试验研究[J].建筑结构学报,2012(33):111-118.
    [104] Zheng W Z,Wan F X,Li S G. Experimental Research of RefractoryPerformance of Reinforced Concrete Beams Strengthened with CFRP SheetsBonded with an Inorganic Adhesive[J]. Journal of Harbin Institute of Technology(New Series),2010(17):568-574.
    [105]郑文忠,万夫雄,李时光.用无机胶粘贴碳纤维布加固混凝土板抗火性能试验研究[J].建筑结构学报,2010(31):89-97.
    [106] Gamage J C P H,Wong M B,AI-Mahaidi R. Performance of CFRPStrengthened Concrete Members under Elevated Temperature[C]//Proceedings ofthe International Symposium on Bond Behaviour of FRP in Structures,2005:113-118.
    [107]郑文忠,万夫雄,李时光.无机胶粘贴碳纤维布加固梁火灾后受力性能试验[J].哈尔滨工业大学学报,2010(42):1194-1198.
    [108]郑文忠,万夫雄,李时光.用无机胶粘贴碳纤维布加固混凝土板火灾后受力性能[J].吉林大学学报,2010(40):1244-1249.
    [109]万夫雄.无机胶粘贴碳纤维布加固混凝土梁板抗火性能试验与分析[D].哈尔滨:哈尔滨工业大学学位论文,2010:22-118.
    [110]徐福泉.碳纤维布加固钢筋混凝土梁静载性能研究[D].北京:中国建筑科学研究院学位论文,2001:17-88.
    [111] Glukhovsky V D,Zaitsev Y,Pakhomow V. Slag-Alkaline Cements andConcretes Structures,Properties,Technological and Economical Aspects of theUse[J]. Silicates Industrials,1983(48):197-200.
    [112] Glukhovsky V D. Slag-Alkali Concretes Produced from Fine-GrainedAggregates[M]. Visheha Shkola Kiev,USSR,1981:223.(in Russian)
    [113] Shi C J,Day R L. A Calorimetry Study of Early Hydration of Alkali-SlagCements[J]. Cement and Concrete Research,1995(25):1333-1346.
    [114] Puertas F,Fernández-Jiménez A. Mineralogical and MicrostructuralCharacterisation of Alkali-Activated Fly Ash/Slag Pastes[J]. Cement andConcrete Composites,2003(25):287-292.
    [115] Puertas F,Amat T,Fernández-Jiménez A. Mechanical and Durable Behaviourof Alkaline Cement Mortars Reinforced with Polypropylene Fibres[J]. Cementand Concrete Research,2003(33):2031-2036.
    [116] Vl ek J,Tomková V,Babková P,et al. Alkali-Activated Composites Basedon Slags from Iron and Steel Metallurgy[J]. Construction and BuildingMaterials,2009(48):223-227.
    [117] Aperador W,Mejía de Gutierrez R,Bastidas D M. Steel Corrosion Behaviourin Carbonated Alkali-Activated Slag Concrete[J]. Corrosion Science,2009(51):2027-2033.
    [118] El-Didamony H,Amer A A,Ela-ziz H A. Properties and Durability of Alkali-Activated Slag Pastes Immersed in Sea Water[J]. Ceramics International,2012(38):3773-3780.
    [119] Fernandez-Jimenez A,Puertas F. Effect of Activator Mix on the Hydration andStrength Behaviour of Alkali-Activated Slag Cements[J]. Advances in CementResearch,2003(15):129-136.
    [120] Haha M B,Saout G L,Winnefeld F,et al. Influence of Activator Type onHydration Kinetics,Hydrate Assemblage and Microstructural Development ofAlkali Activated Blast-Furnace Slags[J]. Cement and Concrete Research,2011(41):301-310.
    [121]吴其胜.碱矿渣水泥的研究与发展[J].中国建材科技,1999(1):1-4.
    [122]宋旭艳,杨末丽,韩静云,等.碱激发锰渣矿渣胶凝材料的力学性能及水化过程研究[J].混凝土与水泥制品,2010(3):8-12.
    [123]厉超.矿渣、高/低钙粉煤灰玻璃体及其水化特性研究[D].北京:清华大学学位论文,2011:18-66.
    [124]高飞.碱矿渣胶凝材料的研究与发展[J].丹东纺专学报,2003(11):25-27.
    [125] Atis C D,Bilim C,Celik O,et al. Influence of Activator on the Strength andDrying Shrinkage of Alkali-Activated Slag Mortar[J]. Construction and BuildingMaterials,2009(23):548-555.
    [126] Meto Neto A A,Cincotto M A,Repette W. Drying and Autogenous Shrinkageof Pastes and Mortars with Activated Slag Cement[J]. Cement and ConcreteResearch,2008(38):565-574.
    [127] Pacheco-Torgal F,Castro-Gomes J,Jalali S. Alkali-Activated Binders:AReview Part Ⅱ:About Materials and Binders Manufacture[J]. Construction andBuilding Materials,2008(22):1315-1322.
    [128]孔祥文,王丹,隋智通.矿渣胶凝材料的活化机理及高效激发剂[J].中国资源综合利用,2004(6):22-26.
    [129]成立.三种碱激发胶凝材料的反应机理及其产物[J].荆门职业技术学院学报,2004(19):92-95.
    [130]袁润章.胶凝材料学[M].武汉:武汉理工大学出版社,2003:160-167.
    [131]杨红彩,郑水林.粉煤灰的性质及综合利用现状与展望[J].中国非金属矿工业导刊,2003(4):38-42.
    [132]陆秋艳.人造矿物聚合物的制备及其应用研究[D].福州:福州大学学位论文,2005:29-44.
    [133]胡宏泰,朱祖培,陆纯渲.水泥的制造和应用[M].山东:山东科学技术出版社,1994:18-200.
    [134] Badanoiu A, Holmgren J. Cementitious Composites Reinforced with ContinuousCarbon Fibers for Strengthening of Concrete Structures[J]. Cement and ConcreteComposites,2003(25):387-394.
    [135]冯巨恩,郭生茂.粉煤灰作充填胶凝材料的应用研究[J].粉煤灰综合利用,2001(5):10-11.
    [136]刘晓明,冯向鹏,孙恒虎.大掺量粉煤灰用于胶凝材料制备研究[J].粉煤灰综合利用,2006(5):20-22.
    [137]戴丽莱,陈建南,芮君渭.碱—矿渣—粉煤灰水泥[J].硅酸盐通报,1988(4):25-32.
    [138]潘群雄,张长森.影响碱—粉煤灰—矿渣基胶凝材料性能因素的探讨[J].水泥工程,1999(2):1-3.
    [139]陈剑雄,张兰芳,李世伟.粉煤灰对碱矿渣混凝土性能的影响[J].粉煤灰综合利用,2006(1):15-17.
    [140]王培铭,金左培,张永明.碱矿渣胶凝材料复合激发剂的研究[J].新型复合材料,2005(8):32-34.
    [141]林鲜.对新型地聚合物材料性能的研究探讨[J].石油工程建设,2005(31):9-11.
    [142]郭文瑛,吴国林.原材料及工艺参数对土壤聚合物性能的影响[J].建筑材料学报,2006(9):586-592
    [143] Rashad A M. A Comprehensive Overview about the Influence of DifferentAdditives on the Properties of Alkali-Activated Slag–A Guide for CivilEngineer[J]. Construction and Building Materials,2013(47):29-55.
    [144] Lee N K,Lee H K. Setting and Mechanical Properties of Alkali-Activated FlyAsh/Slag Concrete Manufactured at Room Temperature[J]. Construction andBuilding Materials,2013(47):1201-1209.
    [145] Wang S D,Scrivener K L. Hydration Products of Alkali-Activated SlagCement[J]. Cement and Concrete Research,1995(25):561-571.
    [146] Sakulich A R. Characterization of Environmentally-Friendly Alkali ActivatedSlag Cements and Ancient Building Materials[D]. Philadelphia:Dissertation ofthe Drexel University,2009:27-38.
    [147]王瑾,宗文,常均,等.低水灰比条件下碱矿渣水泥的水化硬化[J].山东建材,2002(23):12-14.
    [148]王复生,王小莉,王光明,等.高性能矿渣胶凝材料的试验研究[J].山东建材学院学报,1999(13):6-8.
    [149]郑娟荣,姚振亚,刘丽娜.碱激发胶凝材料化学收缩或膨胀的试验研究[J].硅酸盐通报,2009(28):49-53.
    [150]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:265.
    [151]贾艳涛.矿渣和粉煤灰水泥基材料的水化机理研究[D].南京:东南大学学位论文,2005:3-27.
    [152]李楠,顾华志,赵慧忠.耐火材料学[M].北京:冶金工业出版社,2010:305-309.
    [153] Song S J. Hydration Ground Granulated Blast-Furnace Slag[D]. Evanston:Dissertation of the Northwesten University,1998:17-98.
    [154] Ismail I,Bernal S A,Provis J L,et al. Microstructural Changes in AlkaliActivated Fly Ash/Slag Geopolymers with Sulfate Exposure[J]. Materials andStructures,2013(46):361-373.
    [155]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004;33-42.
    [156]李义强,王新敏,陈士通.混凝土单轴抗压应力-应变曲线比较[J].公路交通科技,2005(22):75-78.
    [157]蔡向荣.超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D].大连:大连理工大学学位论文,2010:30-132.
    [158]陆新征.纤维-混凝土界面行为研究[D].北京:清华大学学位论文,2004:5-24.
    [159] Taljsten B. Defining Anchor Lengths of Steel and CFRP Plates Bonded toConcrete[J]. International Journal of Adhesion and Adhesives,1997(17):319-327.
    [160] Teng J G,Chen J F,Smith S T,et al. FRP-Strengthened RC Structures[M].UK:John Wiley and Sons,2002:5-86.
    [161]陆新征,叶列平,滕锦光,等.纤维片材与混凝土粘结性能的精细有限元分析[J].工程力学,2006(23):74-82.
    [162] Chajes M J,Finch W W J,Januszka T F,et al. Bond and Force Transfer ofComposite Material Plates Bonded to Concrete[J]. ACI Structural Journal,1996(93):225-230.
    [163] Taljsten B. Plate Bonding:Strengthening of Existing Concrete Structures withEpoxy Bonded Plates of Steel or Fiber Reinforced Plastics[D]. Lulea:Dissertation of the Lulea University of Technology,1994:3-92.
    [164] Maeda T,Asano Y,Sato Y,et al. A Study on Bond Mechanism of CarbonFiber Sheet[J]. Non-Metallic (FRP) Reinforcement for Concrete Structures,1997(1):279-285.
    [165] Khalifa A,Gold W J,Nanni A,et al. Contribution of Externally Bonded FRPto Shear Capacity of Flexural Members[J]. ASCE-Journal of Composites forConstruction,1998(4):195-203.
    [166] Chen J F,Teng J G. Anchorage Study Models for FRP and Steel Plates Attachedto Concrete[J]. ASCE-Journal of Structural Engineering,2001(127):784-791.
    [167] Dai J G,Gao W Y,Teng J G. Bond-Slip Model for FRP Laminates ExternallyBonded to Concrete at Elevated Temperature[J]. ASCE-Journal of Compositesfor Construction,2012(2):1-32.
    [168] Yuan H,Teng J G,Seracino R. Full-Range Behavior of FRP-to-ConcreteBonded Joints[J]. Engineering Structures,2004(26):553-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700