用户名: 密码: 验证码:
面向小区间干扰抑制的蜂窝网络优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络优化是在蜂窝网络运营过程中,根据外部环境如无线传播条件、业务量分布、用户分布、用户行为特性(潮汐迁移等)、设备运行状态等的变化,对蜂窝网络的资源或参数进行重配置,使得网络与外部环境相适配,从而保证蜂窝网络持续、稳定地提供用户所需的各种移动通信服务。TD-SCDMA是我国拥有自主知识产权的第三代移动通信技术标准,已在我国大规模建设并运营,但是其网络优化技术尚不成熟。TD-SCDMA网络的小区间干扰较强,已经成为影响其性能的一个主要因素。本学位论文中,我们研究了扰码分配、频率分配和覆盖优化这三个面向小区间干扰抑制的蜂窝网络优化关键技术。
     本文系统地研究了TD-SCDMA网络的扰码分配问题。首先给出小区间干扰的模型,反映了TD-SCDMA物理层的干扰产生机制、小区间的无线传播条件以及小区内的业务量分布(用户分布),从而使得小区间干扰能够被准确、合理地度量。详细讨论了TD-SCDMA系统的复值扩频码的定义、数学表达、互相关函数的性质。定义了扰码族,提出并证明了族内扰码的干扰等效性定理。基于该定理,我们将扰码分配问题分解为扰码族分配和族中扰码挑选两个子问题,使计算复杂度较原问题大大降低。将扰码族分配子问题建模为0-1二次规划问题并进行求解。对族中扰码挑选子问题,证明了挑选方案的存在性,并提出了一种贪婪算法进行求解。此外,还给出了基于网络实测数据计算干信比矩阵的具体方法,使得该研究具有工程实用性。数值计算结果表明,我们的算法能够更好地抑制小区间干扰。
     对于频率分配,我们着重研究了基于数据融合的干扰矩阵生成算法。干扰矩阵是频率分配的依据,而生成干扰矩阵的数据源都是信息不完整的。我们提出用测量报告(Measurement Report, MR)数据和路测扫频(Drive Test, DT)数据两种数据源融合,得到包含现网完整信息的新数据源,使生成的干扰矩阵能够完整准确地反映所有小区间潜在的干扰强度。我们提出了载干比谱廓的概念,用载干比谱廓作为地理位置“指纹”,将DT数据提供的载干比谱廓进行聚类,从而把小区覆盖区域分为若干特征区域。再根据MR数据的采集原理使用多元线性回归分析实现MR数据与DT数据的按特征区域匹配,得到了两者的关联模型。基于该关联模型,我们提出了两种数据融合的方法。第一种数据融合是将MR数据中遗漏的强干扰源,利用匹配的DT数据进行补充。第二种方法是用MR数据反映的业务量分布对DT数据进行整形,使得DT数据在特征区域的数量分布与业务量分布一致。将融合后的数据与现网采集的MR数据和DT数据进行对比可以发现,融合后数据包含的信息更完整,可以生成更准确的干扰矩阵。该算法已经集成进商用网络优化软件,并在浙江三城市进行了现网改频,取得了良好的效果。
     对关系到用户接入和服务质量的广播信道(如导频)信号覆盖,我们提出了基于合作波束赋形的多扇区覆盖联合优化模型。在保证保护带扇区不出现新的不良覆盖的约束下,通过待优化域中扇区的联合波束赋形来消除待优化域内的不良覆盖,并最小化待优化域扇区的发射功率和,以减小对网络中其他区域的干扰。进一步地,我们给出了基于扇区覆盖范围更新和联合波束赋形的启发式算法,通过待优化域扇区与保护带扇区覆盖范围的合理划分与更新,保证了算法的收敛性。数值计算结果表明,与联合调整功率方法可能达到的最好覆盖效果相比,利用阵列天线方向选择性和多扇区联合波束赋形能够获得更高的载干噪比和更小的基站发射功率。
Network optimization is to reconfigure resources and parameters of a cellular network according to the external environment, such as radio propagation conditions, traffic distri-bution, user distribution, user behavior characteristics (e.g. tidal migration) and equipment running status. It ensures that the cellular network can continuously and stably provide a variety of mobile communication services to the users. TD-SCDMA is the third gen-eration mobile communication technology standard proposed by China, and a large-scale TD-SCDMA network has being operating in Chinese mainland. However, its network op-timization technology is not yet mature. The inter-cell interference in TD-SCDMA net-works is a serious problem and has become one of the main factors affecting network performance. In this dissertation, three key cellular network optimization techniques for inter-cell interference suppression are investigated, including scrambling code assignment, frequency assignment and coverage optimization.
     The scrambling code assignment (SCA) in TD-SCDMA is systematically studied. A proper inter-cell interference model is first established, where interference generation mechanism in the physical layer, radio propagation conditions and traffic distributions all are taken into consideration so that the interference is accurately modeled. Then the defi-nition and mathematical formation of complex-valued spreading code, as well as its cross correlation functions are discussed in detail. Furthermore, a concept of scrambling code family is proposed and the Interference Equivalence Theorem is proved. Based on the the-orem, SCA problem can be simplified into two subproblems, including scrambling code family assignment (SCFA) and scrambling code selection (SCS), whose computational complexities are much less than that of the original problem. The SCFA problem is mod-eled as a0-1quadratic programming and then solved. As to SCS, the existence of the solution is proved and a greedy algorithm is proposed to solve this subproblem. Besides, a method of calculating the interference-to-signal ratio (ISR) matrix from the measurement report data is developed to ensure that the algorithm is applicable to a practical network. Numerical results show that our algorithm can achieve a much lower inter-cell interference than those of the existing algorithms.
     For frequency assignment (FA), our research focus is on the generation of interference matrix (IM) because IM is the basis of FA. IM is employed to describe the potential inter-ference intensity between any two cells in a cellular network, so that its accuracy has direct influence on the performance of FA. Unfortunately, neither measurement report (MR) data nor drive test (DT) data, which are the data used to generate a IM, contains complete net-work information. In order to generate a more accurate IM, our idea is to make a data fusion from MR data and DT data to obtain a new data containing complete network information. A concept of Carrier-to-interference Spectrum (CIRS) is proposed, and then the coverage of a cell is split into several characteristic regions through clustering analysis of the CIRS derived from DT data. Multiple linear regression analysis is carried out, and the resulted regression model establishes an association between the MR data and DT data in every characteristic region. Based on this model, two data fusion algorithm are proposed. One is to reinforce MR data using the frequency-domain information of DT data. The other is to reshape DT data using the traffic distribution information extracted from MR data. Compared with the MR data and DT data measured from a practical network, the fused data indeed contains more complete information which validates the effectiveness of our algorithm. The algorithm has been integrated into a commercial network optimization soft-ware, and has been utilized for the FA in three cities of Zhejiang province. The results are quite satisfactory.
     Good coverage of the common broadcasting signals (e.g. pilot) is the basis to provide seamless access. A novel coverage optimization model based on multi-sector joint beam-forming is proposed. In the model, poor coverage is eliminated through joint beamforming of several neighboring sectors in the "region to be optimized" under the constraint that no new poor coverage raises in the "region of first ring neighboring sectors", and the inter-ference to the surrounding sectors is minimized through minimization of the total transmit power. Furthermore, a heuristic algorithm is developed based on the iteration of sector coverage updating and antenna array excitation weights optimization. Compared with the existing joint power adjusting algorithm, our algorithm can achieve a much higher carrier-to-interference ratio with a much lower transmit pilot power.
引文
[1]李世鹤.TD-SCDMA第三代移动通信系统标准[M].人民邮电出版社.2002.
    [2]Hsiao-Hwa Chen, Chang-Xin Fan, and W.W. Lu. China's perspectives on 3G mo-bile commuunications and beyond:TD-SCDMA technology[J]. IEEE Wireless Communications,2002,9(2):48-59.
    [3]Mugen Peng and Wenbo Wang. Key techniques and radio network planning in TD-SCDMA systems[J]. International Journal of Mobile Network Design and Innovation, 2006,1(3):258-268.
    [4]Guangyi Liu, Jianhua Zhang, and Zhang Ping. Evolution from TD-SCDMA to future B3G TDD[C]. In Proceedings of the 62nd IEEE Vehicular Technology Conference (VTC-2005-Fall). Dallas, USA,2005:766-770.
    [5]Mugen Peng and Wenbo Wang. A framework for investigating radio resource man-agement algorithms in TD-SCDMA systems [J]. IEEE Communications Magazine, 2005,43(6):12-18.
    [6]3GPP. Technical specification group radio access network; spreading and modulation (FDD).3GPP TS 25.213 version 6.0.0, December 2003.
    [7]3GPP. Technical specification group radio access network; spreading and modulation (TDD).3GPP TS 25.223 version 10.1.0, September 2011.
    [8]Y.H. Jung and Y.H. Lee. Scrambling code planning for 3GPP WCDMA systems[C]. In Proceedings of the 53rd IEEE Vehicular Technology Conference (VTC-2001-Fall). Rhodes, Greece,2001:2431-2434.
    [9]戈玲,邱杰,杨明帅,石岩.TD-SCDMA的频率及扰码规划方法探讨[J].移动通信,2009,33(10):70-74.
    [10]Clint Smith.3G wireless networks, second edition[M]. McGraw-Hill Osborne Media, 2006.
    [11]张传福,彭灿,李巧玲,胡敖.TD-SCDMA通信网络规划与设计[M].人民邮电出版社,2009.
    [12]王亚峰,杨大成.TD-SCDMA及其增强及演进技术[M].人民邮电出版社,2009.
    [13]罗建迪,朱东照,姚棋.TD-SCDMA系统中的扰码规划[J].电信工程技术与标准化,2008,21(10):21-25.
    [14]翟海涛,冯心睿.一种基于延时特征的码分多址系统扰码分配方法[P].中国专利CN 101110603A,2006.
    [151彭涛,王文博,李维娜.一种降低码分多址蜂窝移动通信系统干扰的码资源分配方法[P].中国专利CN 1815934A,2006.
    [16]张孟,冯心睿.TD-SCDMA系统小区码字规划方法及其搜索复合码字组合方法[P].中国专利CN 100382464C,2004.
    [17]翟海涛,冯心睿,秦飞,毕海.降低码分多址移动通信系统同频干扰的扰码分配方法[P].中国专利CN 101030828A,2006.
    [18]李娟,李俊.实现优化码分多址系统码规划的方法[P].中国专利CN 1787414A,2004.
    [19]毛磊,冯心睿,毕海.时分-同步码分多址系统中分配基扰码的实现方法[P].中国专利CN 101047424A,2006.
    [20]X. Chen Y. Hu. A relativity analysis and planning suggestion of TD-SCDMA system scrambling codes[J]. Journal of Shanghai University of Electric Power,2007,23(3): 265-268.
    [21]B. Wu L. Huang. Code planning based on correlation of composite codes in TD-SCDMA system[C]. In Proceedings of International Conference on Ad-vanced Research on Electronic Commerce, Web Application, and Communication (ECWAC2011). Guangzhou, China,2011:248-253.
    [22]翟海涛,冯心睿.时分-同步码分多址系统中分配基扰码的实现方法[P].中国专利CN 101047424A,2006.
    [23]庞国莉,高焕芝,刘庆杰,王小英.TD-SCDMA中的扰码性能分析及分配算法[J].计算机工程.2009,35(23):102-108.
    [24]张治元.TD-SCDMA系统扰码规划与实现[J].电讯技术.2011,50(1):72-75.
    [25]Box F. A heuristic technique for assigning frequencies to mobile radio nets[J]. IEEE Transactions on Vehicular Technology, July 1978,27(2):57-64.
    [26]W.K. Hale. Frequency assignment:Theory and applications[J]. Proceedings of the IEEE,1980,68(12):1497-1514.
    [27]D. Kunz. Channel assignment for cellular radio using neural networks[J]. IEEE Transactions on Vehicular Technology,1991,40(1):188-193.
    [28]N. Funabikiy and Y. Takefuji. A neural network parallel algorithm for channel as-signment problems in cellular radio networks[J]. IEEE Transactions on Vehicular Technology,1992,41(4):430-437.
    [29]M. Duque-Anton, D. Kunz, and B. Ruber. Channel assignment for cellular radio using simulated annealing[J]. IEEE Transactions on Vehicular Technology,1993, 42(1):14-21.
    [30]R. Mathar and J. Mattfeldt. Channel assignment in cellular radio networks[J]. IEEE Transactions on Vehicular Technology,1993,42(4):647-656.
    [31]W. K. Lai and G.G. Coghill. Channel assignment through evolutionary optimiza-tion[J]. IEEE Transactions on Vehicular Technology,1996,45(1):91-96.
    [32]Sehun Kim and Seong-Lyun Kim. A two-phase algorithm for frequency assignment in cellular mobile systems[J]. IEEE Transactions on Vehicular Technology,1994, 43(3):542-548.
    [33]X.N. Fernando and A.O. Fapojuwo. A viterbi-like algorithm with adaptive clustering for channel assignment in cellular radio networks[J]. IEEE Transactions on Vehicular Technology,2002,51(1):73-87.
    [34]H.M. Elkamchouchi, H.M. Elragal, and M.A. Makar. Channel assignment for cellular radio using particle swarm optimization[C]. In Proceedings of the 23rd National Radio Science Conference (NRSC2006). Menouf, Egypt,2006:1-9.
    [35]M. da Silva Maximiano, M.A. Vega-Rodriguez, J.A. Gomez-Pulido, and J.M. Sanchez-Perez. Solving the frequency assignment problem with differential evolu-tion[C]. In Proceedings of the 15th International Conference onSoftware, Telecom-munications and Computer Networks (SoftCOM2007).2007:1-5.
    [36]T. M. Gill. An automated system for frequency planning of cellular radio net-works[C]. In Proceedings of the 4th IEE Conference on Telecommunications.1993: 1-5.
    [37]S. Ruiz, X. Colet, and J.J. Estevez. Frequency planning optimisation in real mobile networks[C]. In Proceedings of the 50th IEEE Vehicular Technology Conference (VTC-1999-Fall). Amsterdam, Netherlands,1999:2082-2086 vol.4.
    [38]A. De Pasquale, N.P. Magnani, and P. Zanini. Optimizing frequency planning in the GSM system[C]. In Proceedings of 1998 IEEE International Conference on Universal Personal Communications (ICUPC1998). Florence, Italy,1998:293-297.
    [39]Yu Gao, Jingqun Song, Qixun Zhang, Yunfei Ma, Jinlong Wang, and Zhiyong Feng. A novel interference matrix generation algorithm in GSM networks[C]. In Proceedings of the 4th International Conference on Communications and Networking in China (ChinaCOM2009). Xian, China,2009:1-5.
    [40]Chang Yu and S. Subramaniau. Advanced frequency planning techniques for tdma and GSM networks[C]. In Proceedings of 1998 IEEE Global Telecommunications Conference (GLOBECOM1998). Sydney, Australia,1998:934-938.
    [41]Frenkel M., Yu C., and Budiansky V. Method of assigning frequencies for use during wireless system drive testing[P]. US Patent 6,411,798 B1,2002.
    [42]Y. Timner and M. Bergenlid. Estimating the inter cell dependency matrix in a GSM network[C]. In Proceedings of the 50th IEEE Vehicular Technology Conference (VTC-1999-Fall). Amsterdam, Netherlands,1999:3024-3028.
    [43]Kuurne A. Mobile measurement based frequency planning in GSM network[D]. Ph. D Thesis, Helsinki University of Technology,2001.
    [44]V. Wille, H. Multimaki, and S. Irons. A practical approach to channel borrowing for microcells in GSM systems[C]. In Proceedings of the 48th IEEE Vehicular Technol-ogy Conference (VTC-1998-Fall). Ottawa, Canada.1998:144-148.
    [45]F. Luna, A. J. Nebro, E. Alba, and J. J. Durillo. Solving largescale real-world telecommunication problems using a grid-based genetic algorithm[J]. Engineering Optimization,2008,40(11):1067-1084.
    [46]M. da Silva Maximiano, M.A. Vega-Rodriguez, J.A. Gomez-Pulido, and J.M. Sanchez-Perez. A hybrid differential evolution algorithm to solve a real-world fre-quency assignment problem[C]. In Proceedings of 2008 International Multicon-ference on Computer Science and Information Technology (IMCSIT2008). Wisla, Poland,2008:201-205.
    [47]R. Barco, F. J. Canete, L. Diez, R. Ferrer, and V. Wille. Analysis of mobile measurement-based interference matrices in GSM networks[C]. In Proceedings of the 54th IEEE Vehicular Technology Conference (VTC-2001-Fall). Atlantic City, USA,2001:1412-1416.
    [48]A. M J Kuurne. On GSM mobile measurement based interference matrix genera-tion[C]. In Proceedings of the 55th IEEE Vehicular Technology Conference (VTC-2002-Spring). Birmingham, USA,2002:1965-1969.
    [49]P. Calegari, F. Guidec, P. Kuonen, and D. Wagner. Genetic approach to radio net-work optimization for mobile systems[C]. In Proceedings of the 47th IEEE Vehicular Technology Conference (VTC-1997-Fall). Phoenix, USA,1997:755-759.
    [50]Jin kyu Han, Byoung-Seong Park, Yong Seok Choi, and Han-Kyu Park. Genetic approach with a new representation for base station placement in mobile commu-nications[C]. In Proceedings of the 54th IEEE Vehicular Technology Conference (VTC-2001-Fall). Atlantic City, USA,2001:2703-2707.
    [51]K. Jaffres-Runser, Jean-Marie Gorce, and S. Ubeda. Qos constrained wireless LAN optimization within a multiobjective framework[J]. IEEE Wireless Communications, 2006,13(6):26-33.
    [52]Y. Jading, P. Varbrand, and D. Yuan. Automated optimization of service cover-age and base station antenna configuration in UMTS networks[J]. IEEE Wireless Communications,2006,13(6):16-25.
    [53]R. Whitaker and S. Hurley. On the optimality of facility location for wireless trans-mission infrastructure[J]. Comput. Ind. Eng.,2005,46(1):171-191.
    [54]A. R. Mishra. Advanced cellular network planning and optimisation[M]. Wiley, 2007.
    [55]D. Fagen, P.A. Vicharelli, and J.A. Weitzen. Automated wireless coverage optimiza-tion with controlled overlap[J]. IEEE Transactions on Vehicular Technology,2008, 57(4):2395-2403.
    [56]H. Eckhardt, S. Klein, and M. Gruber. Vertical antenna tilt optimization for LTE base stations[C]. In Proceedings of the 73rd IEEE Vehicular Technology Conference (VTC-2011-Spring). Budapest, Hungary,2011:1-5.
    [57]Y. Jading and Di Yuan. Enhancing HSDPA performance via automated and large-scale optimization of radio base station antenna configuration[C]. In Proceedings of the 67th IEEE Vehicular Technology Conference (VTC-2008-Spring). Marina Bay, Singapore,2008:2061-2065.
    [58]A. Awada, B. Wegmann, I. Viering, and A. Klein. Optimizing the radio network parameters of the long term evolution system using taguchi's method[J]. IEEE Trans-actions on Vehicular Technology,2011,60(8):3825-3839.
    [59]A. Awada, B. Wegmann, I. Viering, and A. Klein. A joint optimization of antenna pa-rameters in a cellular network using taguchi's method[C]. In Proceedings of the 73rd IEEE Vehicular Technology Conference (VTC-2011-Spring). Budapest, Hungary, 2011:1-5.
    [60]F. Rashid-Farrokhi. K. J R Liu, and L. Tassiulas. Transmit beamforming and power control for cellular wireless systems[J]. IEEE Journal on Selected Areas in Communications,1998.16(8):1437-1450.
    [61]C. Farsakh and J.A. Nossek. Spatial covariance based downlink beamforming in an SDMA mobile radio system[J]. IEEE Transactions on Communications,1998, 46(11):1497-1506.
    [62]A. Alexiou and M. Haardt. Smart antenna technologies for future wireless systems: trends and challenges [J]. IEEE Communications Magazine,2004,42(9):90-97.
    [63]A.B. Gershman, N.D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and B. Ot-tersten. Convex optimization-based beamforming [J]. IEEE Signal Processing Magazine,2010,27(3):62-75.
    [64]M. Bengtsson and B. Ottersten. Handbook of antennas in wireless communications, chapter 18. Optimal and suboptimal transmit beamforming. CRC Press,2001.
    [65]Wei Yu and Tian Lan. Transmitter optimization for the multi-antenna downlink with per-antenna power constraints [J]. IEEE Transactions on Signal Processing,2007, 55(6):2646-2660.
    [66]Yongwei Huang and D.P. Palomar. Rank-constrained separable semidefinite program-ming with applications to optimal beamforming [J]. IEEE Transactions on Signal Processing,2010,58(2):664-678.
    [67]G. Dartmann, Xitao Gong, and G. Ascheid. Cooperative beamforming with multiple base station assignment based on correlation knowledge[C]. In Proceedings of the 72nd IEEE Vehicular Technology Conference (VTC-2010-FaⅡ). Ottawa. Canada, 2010:1-5.
    [68]M. Jordan, M. Senst, G. Ascheid, and H. Meyr. Long-term beamforming in single fre-quency networks using semidefinite relaxation[C]. In Proceedings of the 67th IEEE Vehicular Technology Conference (VTC-2008-Spring). Marina Bay, Singapore, 2008:275-279.
    [69]N.D. Sidiropoulos and T.N. Davidson. Broadcasting with channel state informa-tion[C]. In Proceedings of Sensor Array and Multichannel Signal Processing Work-shop. Barcelona, Spain,2004:489-493.
    [70]N.D. Sidiropoulos, T.N. Davidson, and Zhi-Quan Luo. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing,2006,54(6): 2239-2251.
    [71]Lin Du, J. Bigham, and L. Cuthbert. Towards intelligent geographic load balancing for mobile cellular networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2003,33(4):480-491.
    [72]L. Du, J. Bigham, L. Cuthbert, C. Parini, and P. Nahi. Cell size and shape adjust-ment depending on call traffic distribution[C]. In Proceedings of 2002 IEEE Wireless Communications and Networking Conference (WCNC2002). Orlando, USA,2002: 886-891.
    [73]Jiayi Wu, Peng Jiang, and J. Bigham. Adaptive cellular coverage for radio re-source management in mobile communications[C]. In Proceedings of the 4th Interna-tional Conference on Wireless Communications, Networking and Mobile Computing (WiCOM2008). Dalian, China,2008:1-4.
    [74]Peng Jiang, J. Bigham, and M. Anas Khan. Distributed algorithm for real time coop-erative synthesis of wireless cell coverage patterns[J]. IEEE Communications Letters, 2008,12(9):702-704.
    [75]肖良勇.TD智能天线广播波束赋形与网络优化[J].移动通信,2010,24:13-17.
    [76]叶园.波束赋形技术在TD-SCDMA网络优化中的应用[J].通信技术,2009,10:90-93.
    [77]李文利.利用智能天线广播波束赋形实施TD网络优化[J].移动通信,2011,2:3-6.
    [78]李晓明,陈新,金会彬,徐长胜.利用智能天线广播波束赋形实现小区覆盖优化[J].电信科学,2009,25(6):74-80.
    [79]H. Claussen and F. Pivit. Femtocell coverage optimization using switched multi-element antennas[C]. In Proceedings of 2009 IEEE International Conference on Communications (ICC2009). Dresden, Germany,2009:1-6.
    [80]M. Peng, Wenbo Wang, and Hsiao-Hwa Chen. TD-SCDMA evolution[J]. IEEE Vehicular Technology Magazine,2010,5(2):28-41.
    [81]徐德平.TD-SCDMA系统频率规划创新方法研究[J].电信工程技术与标准化,2010,23(9):23-28.
    [82]Patrick M. Fitzpatrick. Advanced calculus[M]. New York:PWS Publishing Company,2009.
    [83]Kai Lai Chung. A course in probability theory[M]. San Diego:Academic Press, 2011.
    [84]G.E. Bottomley, T. Ottosson, and Y.-P.E. Wang. A generalized rake receiver for inter-ference suppression[J]. IEEE Journal on Selected Areas in Communications,2000, 18(8):1536-1545.
    [85]H.L Van Trees. Optimum array processing[M]. New York:John Wiely,2003.
    [86]Leonard E. Miller Jhong S. Lee. CDMA systems engineering handbook[M]. Nor-wood, MA, USA:Artech House Publisher,1998.
    [87]D.S. Johnson M.R. Garey. Computers and intractability:A guide to the theory of np-completeness[M]. New York, USA:W.H.Freeman,1979.
    [88]George B. Dantzig. Linear programming and extensions[M]. Princeton, NJ, USA: Princeton University Presss,1963.
    [89]A. M.C. So Y. Ye Z.Q. Luo, W.K. Ma and S. Zhang. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine,2010,27(3): 20-34.
    [90]J.K. Hao R. Dome. An evolutionary approach for frequency assignment in cellu-lar radio networks[C]. In Proceedings of International Conference on Evolutionary Computation. Perth, Australia.1995:539-544.
    [91]E. Alba F. Luna, C. Blum and A.J. Nebro. ACO vs EAs for solving a real-world frequency assignment problem in GSM networks[C]. In Proceedings of International Conference on Evolutionary Computation.2007:94-101.
    [92]D.E. Goldberg. Genetic algorithms in search, optimizatzon and machine learning[M]. Reading, MA:Addison-Wesley,1989.
    [93]Theodore S. Rappaport. Wireless communications:Principles and practice[M]. En-glewood Cliffs, NJ:Prentic Hall PTR,1996.
    [94]A.E. Jones V. Ponnampalam. On cell parameter ID assignment in UTRA-TDD[C]. In Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC2004). Barcelona, Spain,2004:2051-2054.
    [95]中国移动通信有限公司.2GHz TD-SCDMA数值蜂窝移动通信网无线操作维护中心(OMC-R)测量报告技术标准.中国移动通信企业标准,2011.
    [96]Johnson R.A. and Wichem D.W. Applied multivariate statistical analysis[M]. Pren-tice Hall,2007.
    [97]John D. Kraus and Ronald J. Marhefka. Antennas:For all applications[M]. McGraw-Hill,2008.
    [98]3GPP. Further enhancement for E-UTRA physical layer aspects. TSG RAN TS 36.814 vO.4.1,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700