用户名: 密码: 验证码:
新型微生物多糖WL-26的结构与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从实验室保藏的菌株中筛选出一株Sphingomonas sp. ZJ01发酵生产微生物多糖WL-26,以发酵液粘度和多糖产量为目的,优化并获得了最佳培养基组成和发酵条件;在摇床和3L发酵罐水平,从合成的代谢特点、培养方式和培养条件等多角度出发,实施一系列过程强化和调控策略,实现了微生物多糖WL-26的高水平发酵;并对分离纯化得到的多糖WL-26的高级结构进行了分析和结构鉴定。主要研究内容如下:
     (1)研究确定发酵培养基组成中,蔗糖为碳源,硝酸钠和牛肉膏为氮源,在此基础上对发酵条件进行优化,确定培养基组成和发酵条件为:50g/L蔗糖,4g/L复合氮源(20%硝酸钠和80%牛肉膏),2g/L KH2PO4,0.1g/L MgSO4,初始pH7.0,接种量5%,装液量50mL/250mL三角瓶,转速200r/min,30℃恒温培养58h,微生物多糖WL-26产量达到22g/L。
     (2)在摇瓶和3L发酵罐水平上分别考察了转速和溶氧浓度对微生物多糖WL-26发酵的影响,发现微生物多糖WL-26的合成和代谢适宜在较高的溶氧条件下;通过考察不同转速对微生物多糖WL-26合成的影响,提出了多阶段搅拌的策略;通过降低磷酸盐浓度,使用0.2mmol/L氢氧化钠调控pH的策略,将初始磷酸盐的浓度降低到0.8g/L,大大降低了后续分离纯化以及废水处理的难度和成本。在3L发酵罐中,通过多阶段搅拌转速控制、碳质元素的补料分批控制和氢氧化钠控制pH等策略逐步优化,使微生物多糖WL-26的产量达到27g/L,比摇床水平提高了23%。
     (3)利用静态和动态流变学方法研究WL-26溶液的粘度与剪切速率、溶液浓度、温度、酸碱度、冻融、冷藏和盐离子等因素的关系,并和工业中常用的黄原胶的流变特性进行比较。结果证明WL-26溶液的流体特征表现为高假塑性,适用于高温、高盐和宽pH范围的复杂环境,具有很好的应用前景。
     (4)对微生物多糖WL-26部分酸水解,Sephacryl S100凝胶柱分离纯化,获得一个不含蛋白质和核酸的均一组分F21。对该组分进行了单糖组成分析、甲基化分析、电喷雾质谱分析和核磁共振(一维,二维)分析,基本确定了F21的单糖组成、结构单元中所含糖残基的构型和个数、糖残基之间的链接方式和连接顺序。结果表明,寡糖组分F21中含有鼠李糖、葡萄糖、甘露糖、半乳糖和葡萄糖醛酸,摩尔比为3:1.7:1:1:0.7;甲基化分析结果表明,半乳糖以端基形式存在,葡萄糖主要以1,4,6和1,3连接形式存在,鼠李糖则以1,4连接方式存在,甘露糖以1,4连接方式存在,并存在少量1,3鼠李糖残基、鼠李糖和葡萄糖末端,结合电喷雾质谱和核磁共振技术确定其为分子量1280Da的酸性寡糖,结构为:
     以上结果为开发新型微生物多糖WL-26提供了可靠的科学依据,并为其在工业上的应用打下了良好的基础。
Microbial polysaccharide WL-26was produced by submerged fermentation of strainsSphingomonas sp. ZJ01and the fermentation condition was optimized on the basis of solutionviscosity and yield of WL-26. The effect of rotational speed and dissolved oxygenconcentration on fermentation were evaluated in shake flasks and3L bioreactor respectively.In order to release the high efficiency production of microbial polysaccharide WL-26, a seriesof strategies was carried out including culture conditions, culture methods and metaboliccharacteristics. After purification the structure and characteristics of WL-26was analyzed.
     The main contents in this study are as follows:
     (1) Sucrose, NaNO3and beef extract were the optimal carbon and complex nitrogen sourcesrespectively and the optimal medium consisted of50g/L sucrose,4g/L complex nitrogen(20%NaNO3and80%beef extract),2g/L KH2PO4and0.1g/L MgSO4. Yield ofmicrobial polysaccharide WL-26reached22g/L under the following conditions: mediuminitial pH7.0,5%inoculation volume,1:5aeration ratio (medium volume: flask volume,50mL medium in250mL flask), cultured at200r/min,30oC for58h.
     (2) Base on the characteristics of Sphingomonas sp. fermentation processes in shake flask and3-L B. Braun Biostat C stainless steel reactor, through optimization of pH control strategy,the concentration of KH2PO4is reduced from2g/L to0.8g/L. This result is significantlyreduced the problem faced on the follow-up step of isolation and purification of WL-26and wastewater treatment, WL-26yield reached27g/L which was increased23%compared with yield in shake flask through multi-stage agitation speed control, carbonfed-batch fermentation, and low concentration of phosphate by adjusting the buffer pH7.0using0.2mmol NaOH.
     (3) The relations between viscosity and shear rate, concentration, temperature, pH, highpressure, freezing-thawing, cold stored, and salt were evaluated by determining thedynamic and static viscosity. Results showed that the water solution of microbialpolysaccharide WL-26is a typical pseudoplastic liquid, having high viscosity at lowconcentrations. Novel Microbial exopolysaccharides WL-26has been shown attractiveapplication prospect due to its high temperature stability, pH tolerance, and environmentfriendly properties. More and more researches have been focused on production andapplication of it.
     (4) A new oligosaccharide F21was obtained by microbial polysaccharide WL-26hydrolyzedby0.2M trifuluoroacetic acid and applied on gel-filtration chromatography column(Sephacryl S100). UV scan showed no proteins and nucleic acids and detection of infrared spectra indicated sugar characteristic group in F21.
     The molecular weight of F21was1280Da evaluated by Esi and F21was composed ofL-rhamnose, D-glucose, D-mannose, D-galactose,and glucuronic acid in a molar ratio of3:1.7:1:1:0.7determined by HPAEC-PAD. Methylation analysis of F21showed that the1,4,6-tri-substituted glucose,1,4-di-substituted rhamnose,1,3-di-substituted glucose and1,4-di-substituted mannose are the main chain, with minor amounts of1,3-di-substitutedrhamnose, terminal glucose and rhamnose residues. The galactose residues arecompletely distributed at non-reducing terminals, and possibly with a glucuronic acidresidue at the other non-reducing terminal by NMR analysis. The proposal structure asfollows:
     These results provide new soliol scientific data and for further develpment ofpolysaccharide WL-26from Sphingomonas sp.ZJ01and laid a good foundation for the futuredevelpment and application based on the polysaccharide.
引文
1宋绍富,崔吉,罗一菁,等.微生物多糖研究进展[J].油田化学,2004,21(5):91-96
    2王玲燕,李元.微生物胞外多糖生物合成研究进展.药物生物技术,2002,9(6):369-37
    3李浪.淀粉科学与技术[M].郑州:河南科学技术出版社,1994.297-333
    4陈今朝,贺稚非.黄原胶的生产与应用研究.四川食品与发酵,2006,42(4):12-15
    5Morris E R. Synergistic xanthan gels In:Sandford P A,Laskin A, eds. Extracellularmicrobial polysaccharides: a symposium/co-sponsored by the Division of CarbohydrateChemistry and the Division of Microbial and Biochemical Technology at the172ndmeeting of the American Chemical Society. Washington: The Society,1977.81-89
    6中国市场调查研究中心.2010-2011年中国黄原胶市场发展研究报告.http://www.zdreport.com/ZD2011-12/ZDanjiaoxingyeshichang214.html,2012-7-18
    7魏培莲.微生物胞外多糖研究进展[J].浙江科技学院学报,2002,14(2):8-14
    8Baird J K, Talashek T A, Chang H. Gums and Stabilisers for the Food Industry. Oxford:Oxford University Press,1992.
    9Francois P, Andre M, Pierre M. Microbial polysaccharides with actual potential industrialapplications. Biotechnology Advances,1986,4(2):245-259.
    10刘清泉.几种极具商业价值的新型微生物多糖的功能及应用[J].中国食品添加剂,2004,(6):7-13
    11Griffin AM, Morris VJ, et al. The cpsABCDE genes involved in polysaccharideproduction in Streptococcus salivarius ssp. thermophilus strain NCBF2393[J]. Gene,1996,183(2):23-27.
    12Jaya A J, Colquhouna I J, Ridouta M J. Analysis of structure and function of gellans wlthdiferent substitution patterns [J]. Carbohydrate polymers,1998,35:179-188.
    13Michiko F, Teramoto A. Texture and structure of high pressure frozen gellan gum ge1[J].Food Hydroeolloids,2003,17:895-899.
    14Landis W D. Rapid purification of commercial gellan gum to highly soluble and gellablemonovalent cation salts [J]. Carbohydrate polymers,1997,32(3-4):245-247.
    15卓训文,粱兰兰.新型微生物多糖-结冷胶[J].粮食与油脂,2001,9:34-35.
    16Hember M W, Richardson R K, Morris E R. Native ordered structure of Welanpolysaccharide: conformational transitions and gel formation in aqueous dimethylsulphoxide [J]. Carbohydrate Research,1994,252(15):209-221.
    17陈芳,李建科,徐昶.新型微生物多糖-韦兰胶的流变特性影响因素研究[J].食品科学,2007,(9):49-51.
    18Allen F L, Best G H. Welan gum in cement compositions [P]. U.S Patent,4963668.1990-10-16.
    19李莉.用于高温高盐油藏注水井调剖的生物聚合物[J].油气采收率技术,1997,4(1):75-80.
    20郭建军,李建科,陈芳等.韦兰胶的特性、生产和应用研究进展[J].中国食品添加剂,2008,287-291.
    21Winston P E, Swazey J M. An aqueous alkaline solution comprising at least a caustic anda viscosity stabilizing amount of diutan gum [P]. U.S Patent,6620775.2003-9-16.
    22Peik, Jerry A, Steenbergen, et al. Heteropolysaccharide S-194[P]. U.S Patent,4401760,1988-8-30.
    23Mazuel, Claude. Pharmaceutical and/or cosmetic composition for local use containingrhamsan gum [P]. Canadian Patents, CA1333566,1994-12-20.
    24Skaggs C B, John M, Swazey. Scleroglucan as a rheological modifier for thermalinsulation fluids [P]. U.S Patent,5876619,1999-3-2.
    25Vaussard Alain, Ladret Alain, Donche, et al. Scleroglucan based drilling mud [P]. U.SPatent,5612294,1997-3-18.
    26Singh P P, Whistler R L, Tokuzen R, Nakahara W. Scleroglucan, an antitumorpolysaccharide from Sclerotium glucanicum [J]. Carbohydrate Research,1974,37(1):245-247.
    27Harding N E, Cleary J M, Cabanas D K, et a1. Genetic and physical analyses of a clusterof genes essential for xanthan gum biosynthesis in Xanthomonas campestris [J]. Journalof Bacteriology,1987,169(6):2854-2861.
    28Letissea F, Chevallereaub P, Simon J L, Lindley N. The influence of metabolic networkstructures and energy requirements on xanthan gum yields [J]. Journal of Biotechnology,2002,99(3):307-317
    29Sá-Correia I, Fialho A M, Videira P, et al. Gellan gum biosynthesis in Sphingomonaspaucimobilis ATCC31461: genes, enzymes and exopolysaccharide production engineering[J]. Journal of Industrial Microbiology&Biotechnology,2002,29:170-176.
    30Li Hui, Xu Hong, Hao Xu, et al. Biosynthetic pathway of sugar nucleotides essential forwelan gum production inAlcaligenes sp. CGMCC2428[J]. Applied Microbiology&Biotechnology.2010,86(1):295-303.
    31Vandamme E J.生物大分子(第5卷)[M].陈代杰,金飞燕译.北京:化学工业出版社,2004:250-254.
    32蔡谨,孙章辉,王隽,等.补料发酵工艺的应用及其研究进展[J].工业微生物,2005,35(1):42-48.
    33姚仕义,王金生.野油菜黄单胞菌重组克隆plXU9278对黄原胶生物合成的影响[J].南京农业大学学报,1998,21(1):36-40.
    34洪厚胜,万红贵,欧阳平凯.气升环流反应器用于黄原胶的发酵[J].南京化工大学学报,2000,22(6):23-26.
    35李艳.微生物多糖黄原胶高粘度发酵的搅拌系统特性研究[D]:[硕士学位论文].无锡:江南大学生物工程学院,2008.
    36马立伟.微生物多糖热凝胶高生产强度发酵工艺研究[D]:[硕士学位论文].无锡:江南大学生物工程学院,2008.
    37Chan T W D, Chan P K, Tang K Y. Determination of molecular weight profile for abioactiveβ-(1→3) polysaccharides(Curdlan)[J]. Analytica Chimica Acta,2006,556(1):226-236.
    38黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发,1999,1l(5):90-98.
    39董群,方积年.寡糖及多糖甲基化的发展及现状[J].天然产物开发与研究,1995,7(2):60-65.
    40方一苇.具有药理活性多糖的研究现状[J].分析化学,1994,22(9):955-960.
    41Blackwell J. Infrared and Raman Spectroscopy of Polysaccharide [C]. American ChemicalSociety: Washington D C,1977,103-113.
    42叶立斌.灵芝子实体多糖(缀合物)的纯化、结构鉴定、分子改性和生物活性研究[D]:[博士学位论文].南京农业大学博士论文,2010:20-21.
    43Reinhold V N, Reinhold B B, Chan S. Carbohydrate sequence analysis by electrosprayionization-massspectrometry [J]. Methods in Enzymology,1996,271:377-402.
    44Duffin K L, Welply J K, Huang F, et a1. Characterization of N-linked oligosaccharides byelectrospray and tandem mass spectrometry [J]. Analytical Chemistry,1992,64(13):1440-1448.
    45姚新生.天然药物化学D [M].第二版.北京:人民卫生出版社,1999:100-103.
    46Faber E J, Haaster D J, Kamerling J K, et al. Characterization of the exopolysaccharideproduced by Streptococcus thermophilus85containing an open chain nonionic acid[J].European Journal of Biochemistry,2002,269:5590-5598.
    47Bergstr ma N, NairbG.B, Weintraub A, et al. Structure of the O-polysaccharide from thelipopolysaccharide from Vibrio cholerae O6[J]. Carbohydrate Research,2002,337(9):813-817.
    48Jachymek W, Czaja J, Niedziela T, et al. Structural studies of the O-specificpolysaccharide of Hafnia alvei strain PCM1207lipopolysaccharide [J]. EuropeanJournal of Biochemistry,1999,266(1):53-61.
    49Kogan G, Uhrín D, Brisson J R, et al. Structural and Immunochemical Characterization ofthe Type VIII Group B Streptococcus Capsular Polysaccharide [J]. Journal of BiologicalBiochemistry,1996,271(16):8786-8790.
    50Staaf M, Urbina F, Weintraub A, et al. Structure elucidation of the O-antigenicpolysaccharide from the enteroaggregative Escherichia coli strain62D1[J]. EuropeanJournal of Biochemistry,1999,262(1):56-62.
    51Reddy G P, Hayat U, Xu Q W, et al. Structure determination of the capsularpolysaccharide from Vibrio vulnificus strain6353[J]. European Journal of Biochemistry,1998,255(1):279-288.
    52Nikolay P, David B, Minnie R, et al. Structure analysis of the polysaccharide from thelipopolysaccharide of Porphyromonas gingivalis strain W50[J]. European Journal ofBiochemistry,2001,268:4698-4707.
    53Drzewieckaa D, Toukachb P V, Arbatsky N P, et al. Structure of the O-specificpolysaccharide of Proteus penneri103containing ribitol and2-aminoethanol phosphates [J].Carbohydrate Research,2002,337(17):1535-1540.
    54Kondakovaa A N, Senchenkovaa S N, Gremyakova A I, et al. Structure of theO-polysaccharide of Proteus mirabilisO38containing2-acetamidoethyl phosphate andN-linked D-asparticacid [J]. Carbohydrate Research,2003,338(22):2387-2392.
    55Molinaro A, Piscopo V, Lanzetta R, et al. Structural determination of the complexexopolysaccharide from the virulent strain of Cryphonectria parasitica [J]. CarbohydrateResearch,2002,337(19):1707-1713.
    56Agrawal P K. NMR Spectroscopy in the structural elucidation of oligosaccharides andglycosides [J]. Phytochemistry,1992,31(10):3307-3330.
    57Stroopa C J M, Xu, Q W, Retzlaff M, et al. Structuralanalysis and chemicaldepolymerization of the capsular polysaccharide of Streptococcuspneumoniaetype1[J].Carbohydrate Research,2001,337(4):335-344.
    58Leslie M R, Parolis H, Parolis L A S. The structure of the O-antigen of EscherichiacoliO116:K+:H10[J]. Carbohydrate Research,1999,321(3-4):246-256.
    59Rougeaux H, Kervarec N, Pichon R, et al. Structure of the exopolysaccharide ofVibriodiabolicus isolated from a deep-sea hydrothermal vent [J]. CarbohydrateResearch,1999,322(1-2):40-45.
    60Kitamura S, Hori T, Kurita K, et al. An antitumor, branched (1→3)-β-D-glucan from awater extract of fruiting bodies of Cryptoporus volvatus[J]. Carbohydrate Research,1994,263(1):111-121.
    61钟晶晶.2011年中国原油进口2.5378亿吨.http://www.askci.com/news/201202/22/1022996.shtml,2012-2-22.
    62Han D K, Yang C Z, Zhang Z Q, et al. Recent development of enhanced oil recovery inChina [J]. Journal of Petroleum Science and Engineering,1999,22:181-188.
    63张宏方,王德民,王立军.黄原胶溶液在多孔介质中的渗流规律及其对提高采收率的作用[J].石油勘探与开发,2002,29(3):94-98.
    64Hoskin D H, Mitchell T O, Shu P. Oil reservoir permeability profile control withcrosslinked Welan gum biopolymers [P]. U. S. Patent,4991652,1991.
    65李良雄,白宝君,李宇乡.油田深部驱剂的研究及应用[J].石油钻采工艺,1999,21(6):51-55.
    66Vercaemer C J, Davies S N, Pafitis D G, et al. Selective zonal isolation of oil wells [P]. U.S. Patent,5697441,1997.
    67李利军,孔红星,伍时华等.蔗糖测定的紫外分光光度新方法研究及应用[J].分析科学学报,2003,19(4):367-369.
    68李鸿雁,陈庆森,等.培养条件对冰核生产菌Xanthpmonas ampelina TS206产胶率的影响[J].食品科学,2005,26(9):116-118.
    69Rao Y M, Sureshkumar G K. Improvement in bioreactor productivities using free radicals:HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and itsmechanism [J]. Biotechnology and Bioengineering,2001,72(1):62-68.
    70Cleary P P, Larkin A. Hyaluronic acid capsule: strategy for oxygen resistance in group Astreptococci [J]. Journal of Bacteriology,1979,140(3):1090-1097.
    71Speer R A, Tung, M A. Concentration and temperature dependence of flow behavior ofxanthan gum dispersions[J]. Journal of Food Science,1986,51(1):96-98.
    72Manoj P, Fillery-Travis A J, Watson A D, et al. Characterization of a PolydisperseDepletion-Flocculated Emulsion: III. Oscillatory Rheological Measurements [J]. Journalof Colloid and Interface Science,2000,228(2):200-206.
    73宋宏新,陈合.食用沙篙籽胶流变学特性研究[J].食品科学,2002,23(9):53-55.
    74杨永利,张继,郭守军,等.刺槐豆胶的流变性研究[J].食品科学,2001,22(12):27-29.
    75杨永利,李春,郭小平,等.苦豆子胶的流变性研究[J].食品科学,2003,24(12):49-52.
    76杨永利,郭守军,张继,等.冷水溶胡卢巴胶的流变性研究[J].食品科学,1999,20(6):23-25.
    77孙晓东.新型天然亲水胶体-亚麻籽胶[J].中国食品添加剂,2002,70(4):73-77.
    78胡国华.阿拉伯胶在食品工业中的应用[J].粮油食品科技,2003,11(2):7-8.
    79杨湘庆,沈悦玉.魔芋胶的理化性、功能性、流变性及其在食品中的应用[J].冷饮与速冻食品工业,2002,8(4):29-33.
    80朱杰.超声波及其在食品科学中的应用[J].食品研究与开发,2005,26(2):101-103.
    81付陈梅,赵国华,阚健全,等.超声作用对食品中大分子物质的影响[J].食品与机械,2002,5:39-40.
    82Kardos N, Jean-Louis L. Sonochemistry of carbohydrate compounds [J]. CarbohydrateResearch,2001,332(2):115-131.
    83Wojtasz P A, Kolodziejska I, Debogorska A, et al. Enzymatic, physical and chemicalmodification of krill chitin[J]. Bull Sea Fish Inst,1998,143:29-39.
    84Price G J, Smith P F. Ultrasonic degradation of polymer solutions:2. the effect oftemperature, ultrasound intensity and dissolved gases on polystyrene in toluene [J].Polymers,1993,34:4111-4117.
    85Szu S C, Zon G, Schneerson R, et al. Ultrasonic irradiation of bacterial polysaccharides.Characterization of the depolymerized products and some applications of the process[J].Carbohydrate Research,1986,152(1):7-20.
    86Czechowska-Biskup R, Rokita B, Lotfy S, et al. Degradation of chitosan and starch by360-kHz ultrasound [J]. Carbohydrate Research,2005,60(2):175-184.
    87Yanaki T, Nishii K, Tabata K, et al. Ultrasonic degradation of schizophyllum communepolysaccharide in dilute aqueous solution [J]. Journal of Applied Polymer Science,1983,28(2):873-878.
    88Stahmann K P, Monschau N, Sahm H, et a1. Structural properties of native and sonicatedcinerean, aβ(1→3)(1→6)-D-glucan produced by Botrytis einerea[J]. CarbohydrateResearch,1995,266(1): l15-128.
    89Chen R H, Chang J R, Shyur J S. Effects of ultrasonicconditions and storage in acidicsolutions on changes in molecularweight and polydispersity of treated chitosan [J].Carbohydrate Research,1997,299(4):287-294.90张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1994,10.91王玲燕,李元.微生物胞外多糖生物合成研究进展[J].药物生物技术,2002,9(6):369-37.
    92Hestrint S.The reaction of acetylcholine and other carboxylic acid derivatives withhydroxylamine and its analytical application [J]. The journal of Biological Chemistry,1949,180:249-261.93付陈梅,赵国华,阚健全等.超声作用对食品中大分子物质的影响[J].食品与机械,2002,5:39-40.
    94Leslie M R, Parolis H, Parolis L A. The structure of the O-specific polysaccharide ofEscherichia coli O117:K98:H4[J]. Carbohydrate Research,2000,323(1-4):103-110.
    95Szu S C, Zon G, Schneerson R, et al. Ultrasonic irradiation of bacterial polysaccharides.Characterization of the depolymerized products and some applications of the process [J].Carbohydrate Research,1986,152:7-20.
    96Machováa E, Kvapilováb K, Kogana G, et al. Effect of ultrasonic treatment on themolecular weight of carboxymethylated chitin–glucan complex from Aspergillus niger[J].Ultrasonics Sonochemistry,1999,5(4):169-172.
    97Mason T J, Peters D. Practical Sonochemistry: Power Ultrasound Uses and Applications(2nd Ed.)[M]. Ellis Horwood Publishers, Chichester,2002.
    98Nishino T, Nagumo T. Structural characterization of a new anticoagulant fucan sulfatefrom the brown seaweed Ecklonia kurome [J]. Carbohydrate Research,1991,211(1):77-90.
    99Ka uráková M, Capek P, Sasinková V, et al. FT-IR study of plant cell wall modelcompounds: pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43(2):195-203.
    100Barker S A, Bourne E J, Stacey M, et al. Infra-red spectra of carbohydrates. Part I. somederivatives of D-glucopyranose [J]. Journal of the Chemical Society,1954,0:171-176.
    101Cao Q Z, Lin Z B. Ganoderma lucidum polysaccharides peptide inhibits the growth ofvascular endothelial cell and the induction of VEGF in human lung cancer cell[J]. LifeScience,2006,78(13):1457-1463.
    102Park F S. Application of I.R. spectroscopy in biochemistry, biology, and medicine [M].New York, Plenum;1971,100-140.
    103Leslie M R, Parolis H, Parolis L A S. The structure of the O-specific Polysaccharide ofEscherichia coli O117: K98: H4[J]. Carbohydrate Research,2000,323(1-4):103-110.
    104Senchenkova S N, Knirel Y A, Shashkova S, et al. Structure of the O-polysaccharide ofErwinia carotovora ssp. carotovora GSPB436[J]. Carbohydrate Research,2003,338(19):2025-2027.
    105Jansson P E, Kenne L, Widmalm G. Computer-assisted structural analysis ofpolysaccharides with an extended version of casper using1H-and13C-n.m.r. data [J].Carbohydrate Research,1989,188(1):169-191.
    106Duus J, Gotfredsen C H, Bock K. Carbohydrate structural determination by NMRspectroscopy: Modern methods and limitations [J]. Chemical Reviews,2000,100:4589-4614.
    107Hounsell E F.1H NMR in the structural and conformational analysis of oligosaccharidesand glyco-conjugates [J]. Progress in Nuclear Magnetic Resonance Spectroscopy,1995,27:445-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700