用户名: 密码: 验证码:
凡纳滨对虾集约化养殖水质管理决策支持系统的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集约化养殖带来巨大经济效益的同时,也给自身的可持续发展和生态环境带来了严峻的挑战。对养殖企业而言,关键水质因子快速监测和对水质异常情况的及时识别,是养殖安全的重要保障。目前养殖水质管理的主要内容是对水质监测数据进行整理和汇总,然后分析水质的变化情况。但目前凡纳滨对虾养殖的水质管理大多是针对养殖水质的当前或历史数据进行的,得到的结果只能反映水质的历史状况,水质管理处于一种滞后和被动的局面,往往造成严重后果时才发现水质状况恶化严重,所以必须改变传统的管理方式,在对水质进行实时监测、现状评价的基础上对水质进行预测,最终对其恶化趋势进行预警,并制定相应的应急措施减缓或阻止水质恶化,实现真正意义上水质管理。
     本研究以凡纳滨对虾集约化养殖生产实际为基础,在分析了凡纳滨对虾集约化养殖水质特征基础上,首先建立了凡纳滨对虾集约化养殖水质评价模型,克服了以往评价方法的不足,能够对养殖水质做出综合评价。然后以人工神经网络(ANN)为手段,建立了凡纳滨对虾集约化养殖水质预测模型,实现了养殖关键水质因子与预测对象之间的映射,解决了养殖水体变化过程中存在的非线性、多变量和模糊性问题,提高了水质预测的精度。第三,建立了凡纳滨对虾集约化养殖水质快速预警模型,将单因子预警与多因子预警相结合,对集约化养殖过程中潜在的危险进行快速准确预警。第四,完成凡纳滨对虾集约化养殖水质管理决策支持系统,实现水质科学管理的可视化,能够为养殖管理者进行水质调控和实现科学管理提供有效的技术手段。本文的主要研究结果如下:
     1.凡纳滨对虾集约化养殖水质特征
     本实验主要研究了凡纳滨对虾集约化养殖水质相关的各水质因子的特征。实验共监测了11项水质指标,在对实测数据进行显著性检验和统计处理后,确定了影响对虾集约化养殖水质的主要因子,然后采用多元逐步回归分析了凡纳滨对虾集约化养殖主要水质因子与其它水质因子间的相关关系,并用回归方程的形式予以表示。结果表明,多元回归模型能够给出某水质因子受其它水质因子影响的定量公式。此外,与一般的多元线性回归模型相比,多元逐步回归模型能够分辨出与需描述变量显著相关的变量及其干扰变量,只将对水质因子影响最大的因子列入回归模型,提高了模型的可靠性。
     2.凡纳滨对虾集约化养殖水质评价模型
     本部分主要介绍了因子分析模型建立的一般步骤以及凡纳滨对虾集约化养殖水质评价模型的建立及应用。以水质实测数据为基础,结合我国《渔业水质标准》和国内外各相关养殖水质标准,确定了凡纳滨对虾集约化养殖水环境质量分类标准。以因子分析为基础,建立了凡纳滨对虾集约化养殖水质评价模型,并对模型进行了应用,模型表达式为:zF=W_1*F_1-W_2*_F2-¨¨-W_n*F_n。结果显示,本模型不仅能够体现水质因子之间的相互关系,客观反映水质的真实状况,还能够在某一指标特别恶化时对水质做出准确评价,弥补了以往评价方法必须结合单因子评价方法的不足。
     3.凡纳滨对虾集约化养殖水质预测模型
     本部分主要介绍了BP神经网络的原理、建立模型的一般步骤以及凡纳滨对虾集约化养殖水质预测模型的建立及仿真过程。将第二章确定的九项水质因子作为凡纳滨对虾集约化养殖水质BP预测的输入向量;根据预测目的,确定BP预测网络的输出变量为水质预测值;网络采用三层结构,隐含层的神经元数为7;tansig和purelin分别作为网络隐含层和输出层神经元的传递函数。在确定了凡纳滨对虾集约化养殖水质BP预测模型的结构后,对模型进行训练,选择trainlm作为网络的训练函数,最后通过仿真实验对模型进行验证。结果显示,两组数据相关分析显示系数是0.9921,预测误差率结果显示平均的预测误差率是2.9%,最大的是12.55%,最小是0.038%,总体预测结果较好。BP神经网络能够以较高的精度对养殖水质状况进行预测,使得集约化养殖水质预测成为可能,能够实现水质恶化的早期预报,减少养殖损失,保证养殖的安全。
     4.凡纳滨对虾集约化养殖水质预警模型
     根据对虾养殖水质的特征,建立了凡纳滨对虾集约化养殖水质单因子预警模型和水质综合预警模型。在确定了预警指标体系和预警级别的基础上,以凡纳滨对虾养殖水环境质量分类标准为基础,建立了水质单因子预警模型,并在传统的单因子预警模型基础上,以第二章建立的多元逐步回归模型为手段,建立了对虾养殖水质单因子预警回归模型,其不仅继承了传统单因子预警模型简单直观的特点,而且还能客观的能够反映出某水质因子与其它水质因子之间的关系。建立了凡纳滨对虾集约化养殖水质综合预警模型,并将状态预警与趋势预警相结合,在水质评价模型基础上建立了状态预警模型,模型的表达式为::E=W_1×F_1-W_2×_F2-¨¨-W_n×F_n
     。在预测模型基础上建立了趋势预警模型,BP神经网络预警模型的结构为9-7-1,网络隐含层和输出层神经元的传递函数分别为tansig和purelin, trainlm为网络的训练函数,最后通过仿真实验对模型进行验证,趋势预警结果显示,预警结果与实际结果数据相关分析系数为0.991,说明总体预警效果较好。
     5.凡纳滨对虾集约化养殖水质决策支持系统
     在上述模型建立的基础上,设计并实现了凡纳滨对虾集约化养殖水质决策支持系统。系统使用的是基于模型的辅助决策系统,在确定了框架和运行结构后,结合实验实际情况,通过随机抽取的水质数据,验证DSS在用于水质评价和预警这两个模块中的应用。
The intensification of aquaculture has brought substantial economic benefits, aswell as promoted waste production and disease outbreak. In recent years, deterioratingwater quality has caused massive financial losses to farmers, and has become one ofthe major bottlenecks to production output. For aquaculture enterprises, consideringthe innumerable and complicated variations in water quality, monitoring programsand the reliable estimation of water quality play important roles in culturemanagement to provide a thorough understanding of the degree of contamination andto limit its effect. The data were collected and analyzed, which was the presentcontext of water quality management. Traditional approaches for water qualitymanagement do not provide a comprehensive view of overall water quality. By thetime we'd scoped out the problem, it was too late. It requests that the water qualitymanagement must change the pattern of the traditional management and make thealternative into the way of the real-time monitoring, current situation evaluation andin time alarming.
     In the present study, the water quality of intensive culture tanks of L. vannameiwas analyzed. Firstly, on the basis of analyzing the weekly values of water qualityvariables measured in the shrimp farm, the intensive culture water quality assessmentmodel was established. It was a practical tool for fast and easy data interpretation, andits application in monitoring the quality of the water sources is recommended for themanagement of shrimp farming or other production activities. Secondly, The ANN model is built for forecasting of shrimp water quality in intensive culture tanks. Themodel can describe complex nonlinear effects between water quality variables andwater quality. Thirdly, the early warning model was established. The present studycombined single-factor warning model with multi-factor warning models. Finally, thedecision support system was achieved. The main results are as follows:
     1. The water characteristics of the intensive shrimp culture
     The present study investigated the characteristics of water quality parametersrelated to shrimp water quality. Eleven different water quality parameters wereanalyzed during the experimental period. A stepwise multiple regression model wasused to identify the significant correlation among water quality parameters. The resultshowed that the correlation between the water quality parameter and the otherparameters was studied quantitatively the quantitative formula was fitted. In addition,compared with the multiple linear regression model, stepwise multiple regressionmodel could identify the main variables and interference variables, improved thecredibility and reliability of model.
     2. Water quality assessment model for intensive shrimp tanks
     In the present study, the water quality of intensive culture tanks of L. vannameiwas evaluated using factor analysis model. According to the weekly values of waterquality variables measured in the shrimp farm and fisheries water quality standards athome and abroad, the water quality criteria of Litopenaeus vannamei for intensiveshrimp tanks were determined. The source identification indicated that the variablesresponsible for water quality deterioration in the intensive culture shrimp tanks weremainly related to organic matter, natural condition, and nutrient. The nine waterquality variables remained were chosen and the final equation waszF=W_1*F_1-W_2*_F2-¨¨-W_n*F_n.In summary, the model was a practical toolfor fast and easy data interpretation, and its application in monitoring the quality of the water sources is recommended for the management of shrimp farming or otherproduction activities.
     3. Water quality forecasting model for intensive shrimp tanks
     We used a backpropagation neural network (BP-NN) model to predict the waterquality in intensive Litopenaeus vannamei shrimp tanks. It was developed usingmeasured water quality data that were generated over120days with weeklymonitoring in four different shrimp tanks. Nine parameters were selected as inputvariables: water temperature, pH, total ammonia nitrogen, nitrite nitrogen, nitratenitrogen, dissolved inorganic phosphorus, chlorophyll-a, chemical oxygen demand,and five-day biochemical oxygen demand. The model has a tan-sigmoid transferfunction for the hidden layer and a linear transfer function for the output layer. TheLevenberg–Marquardt algorithm was used to overcome the shortcomings of thetraditional BP algorithm; that is, low computational power and getting stuck in localminima. The number of hidden layer nodes was optimized by a trial and errorapproach, and seven optimal neuron nodes were identified. The computed results forwater quality show good agreement with the experimental values. The correlationcoefficient of the data set is0.9921. The simulation results reveal that the BP-NNmodel efficiently predicts the water quality in intensive shrimp tanks.
     4. Water quality early warning model for intensive shrimp tanks
     The single-factor and multi-factor early warning model were established on thebasis of the characteristics of water quality parameters. After the level of warning hasbeen identified, the single-factor early warning model was established. The modelbased on the water quality criteria of Litopenaeus vannamei for intensive shrimp tanks.In addition, we were modeling the single-factor early warning model based on thestepwise multiple regression. The multi-factor early warning model consisted of twoparts: status early-warning and trending early-warning. The status early-warning established on the basis of the water quality assessment model. The final equationwas=W_1×F_1-W_2×_F2-¨¨-W_n×F_n. The trending early-warning established onthe basis of the water quality forecasting model. All available variables were selectedas input variables. The model has a tan-sigmoid transfer function for the hidden layerand a linear transfer function for the output layer. The Levenberg-Marquardtalgorithm was used to overcome the limitations of the traditional BP algorithm. Thenumber of hidden layer nodes was optimized by trial and error. The computed resultsfor water quality were in good agreement with the experimental values. Thecorrelation coefficient (R2) of the data set was0.991. The simulation results revealthat the BP-NN model efficiently predicts the water quality in intensive shrimp tanks.
     5. The application of decision support system in water quality management
     Based on the above models, the decision support system in water qualitymanagement was designd and established. The paper used supplement decisionsupport which based on model. After the framework and running structure weredetermined, we show several examples of how the DSS is used to water qualityassessment and alarming.
引文
[1] Funge-Smith, Briggs M.R.P. Aquaculture&Environment [J]. Scientific American,1998,9:15~23.
    [2] Boyd C.E., Hargreaves J.A., Clay J.W. Codes of practice and conduct for marine shrimpaquaculture report prepared under the World Bank, NACA, WWF and FAO consortiumprogram on shrimp farming and the environment. Work in progress for public discussion.Published by the Consortium,2002,31.
    [3] Jun Q., Wang W.N., Wang L.J., Liu Y.F., Wang A.L. Oxidative stress, DNA damage andosmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperaturestress. Comparative Biochemistry and Physiology C-Toxicology&Pharmacology,2011,154:6~41.
    [4] FAO,2011. Fishstat. Food and Agriculture Organization, Rome.
    [5]张健.免疫增强剂对凡纳滨对虾幼虾生长、免疫及抗应激的影响[D].中山大学博士学位论文,广州:中山大学,2012,18~19.
    [6] Shang Y.C., Leung P., Ling B.H. Comparative economics of shrimp farming in Asia.Aquaculture,1998,164:183~200.
    [7]李玉全,李健,王清印,等.溶解氧含量和养殖密度对中国对虾生长的影响[J].中国水产科学,2005,12(6):751~756.
    [8]江敏,余根鼎,戴习林,等.凡纳滨对虾养殖塘叶绿素-a与水质因子的多元回归分析[J].水产学报,2010,34(11):1712~1718.
    [9]苗群.南四湖水环境质量评价研究[D].青岛大学博士学位论文,2008.
    [10] William W.S., Jerry L.F. Instream community assessment of aquaculture effluents.Aquaculture,2004,231,149~162.
    [11]程波.对虾封闭循环水养殖系统中Cu2+的生态效应[D].中国科学院海洋研究院博士学位论文,2012,1~4.
    [12]张静.深圳湾水环境综合评价及环境容量研究[D].大连海事大学博士学位论文,2010.
    [13]田炜,王平,谢湉,等.地表水质模型应用研究现状与趋势[J].现代农业科技,2008(3):192~195。
    [14]郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展[J].重庆建筑大学学报,2002,24(2):109~205.
    [15] Chen G.N. Assessment of environmental water with fuzzy cluster analysis and fuzzyrecognition. Analytica Chimica Acta.1993,271:115~124.
    [16]崔永华,左其亭.基于Hopfield网络的水质综合评价及其matlab实现[J].水资源保护,2007,23(3):14~16.
    [17]方红卫,孙世群,朱雨龙,等.主成分分析法在水质评价中的应用及分析[J].环境科学与管理,2009,34(12):152~154.
    [18]蒋同斌,李继玲.基于多元统计分析的水环境质量评价及趋势分析[J].南昌师范大学学报,2010,10(4):52~56.
    [19]李文生.基于因子分析的水质综合指标评价法及其应用[J].中北大学学报,2011,32(2):207~211.
    [20]金腊华,邓家泉,吴小明.环境评价方法与实践.化学工业出版社.北京. ISBN7-5025-6314-8.37~39.
    [21]李媛媛.鄱阳湖星子—蛤蟆石段水质评价与水质预测研究[D].南昌大学硕士学位论文,2007.
    [22]徐新阳.环境评价教程.化学工业出版社.北京. ISBN7-5025-5586-2.64~77.
    [23]张征.环境评价学.高等教育出版社.北京. ISBN7-04-014472-7.51~69,97~98.
    [24]陆雍森.环境评价.同济大学出版社.上海ISBN7-5608-2085-9.135~140.
    [25]马太玲,朝伦巴跟,高瑞忠,等.水质模糊贴近度模型中权值的遗传算法解[J].环境工程,2006,5:77~79.
    [26]陈秋玲.我国主要流域水体污染评价、预警管理及污染原因探究[J].上海大学学报(自然科学版),2004,10(4):420~425.
    [27]谢洪波.焦作市地下水质量综合评价及污染预警研究[D].长安大学博士学位论文,2008,34~44.
    [28]徐良骥.煤矿塌陷水域水质影响因素及其污染综合评价方法研究[D].安徽理工大学博士学位论文,2009,36~49.
    [29]刘晴.渔业环境评价与生态修复.海洋出版社.北京ISBN978-7-5027-7999-3.97~106.
    [30]徐祖信.我国河流单因子水质标识指数评价方法研究[J].同济大学学报(自然科学版),2005,33(3):321~325.
    [31]张微微,孙丹峰,李红,等.北京密云水库流域1980-2003年地表水质评价[J].环境科学,2010,31(7):1483~1491.
    [32]牟春友,徐坤.在评价微污染水体中均值污染指数评价方法和活性污染指数评价方法的比较[J].中国环境监测,2009,25(3):104~106.
    [33]王维,纪枚,苏亚楠.水质评价研究进展及水质评价方法综述[J].科技情报开发与经济.2012,22(13):129~131.
    [34]陈仁杰,钱海雷,袁东,等.改良综合指数法及其在上海市水源水质评价中的应用[J].环境科学学报,2010,30(2):431~437.
    [35]单玉芳.模糊综合评价在水环境质量评价中的应用研究[D].河海大学硕士学位论文,2006,12~28.
    [36]刘荣珍,赵军.模糊评价模型在长江水质评价中的应用[J].兰州交通大学学报(自然科学版),2007(6):50~52.
    [37] Mpimpas H., Anagnostopoulos P., Ganoulis J. Modelling of water pollution in theThermaikos Gulf with fuzzy parameters. Ecological Modelling,2001,142:91~104.
    [38]李祚泳. B-P网络用于水质综合评价方法的研究[J].环境工程,1995,13(2):51~53.
    [39]王瑞梅,傅泽田,何有缘,等.渔业水域水质模糊综合评价模型研究[J].中国农业大学学报,2005,10(6):51~55.
    [40] Icaga Y. Fuzzy evaluation of water quality classification. Ecological Indicators,2007,7:710~718.
    [41]吴开亚,金菊良,魏一鸣.流域水安全预警评价的智能集成模型[J].水科学进展,2009,20(4):518~525.
    [42]孟祥宇,徐得潜.流域水质评价模糊综合评判模型及其应用[J].环境保护科学,2009,35(2):92~94.
    [43] Wang Q., Xu J.C., Fu T., et al. A Fuzzy Analytic Hierarchy Process Application inComprehensive Evaluation of Artificial Landscape Water Health, Bioinformatics andBiomedical Engineering, ICBBE2009.3rd International Conference on, pp.1~4,11~13.
    [44] GarfìM., Ferrer-MartíL., Bonoli A., et al. Multi-criteria analysis for improving strategicenvironmental assessment of water programmes. A case study in semi-arid region of Brazil.Journal of Environmental Management,2011,92:665~675.
    [45] Simeonov V., Stratis J.A., Samara C., et al. Assessment of the surface water quality inNorthern Greece. Water Research,2003,37:4119~4124.
    [46] Kazi T.G., Arain M.B., Jamali M.K., et al. Assessment of water quality of polluted lake usingmultivariate statistical techniques: A case study, Ecotoxicology and Environmental Safety,2009,72:301~309.
    [47]刘威,尚金城.主成分分析在近年来松花江吉林段水质研究中的应用[J].北方环境,2010(22):45~48.
    [48] Ferreira N.C., Bonetti C., Seiffert W.Q. Hydrological and water quality indices asmanagement tools in marine shrimp culture. Aquaculture,2011,318:425~433.
    [49] Karmakar S., Mujumdar P.P. A two-phase grey fuzzy optimization approach for water qualitymanagement of a river system. Advances in Water Research,2007,30:1218~1235.
    [50] Nickerson D.M., Madsen B.C. Nonlinear regression and ARIMA models for precipitationchemistry in East Central Florida from1978to1997. Environmental Pollution,2005,135:371~379.
    [51] Maier H.R., Jain A., Dandy G.C., et al. Methods used for the development of neural networksfor the prediction of Water Resource variables in river systems: Current status and futuredirections. Environmental Modelling&Software,2010,25(8):891~909.
    [52] Carbajal-Hernández J.J., Sánchez-Fernández L.P., Carrasco-Ochoa J.A., et al. Immediatewater quality assessment in shrimp culture using fuzzy inference systems. Expert Systems withApplications,2012,39:10571~10582.
    [53] Shu J. Using neural network model to predict water quality. Northern Environmental,2006,31:44~46.
    [54] Hanbay D., Turkoglu I., Demir Y. Prediction of wastewater treatment plant performancebased on wavelet packet decomposition and neural networks. Expert Systems with Applications,2008,34:1038~1043.
    [55] Yabunaka K.I., Hosomi M., Murakami A. Novel application of back-propagation artificialneural network model formulated to predict algal bloom. Water Science and Technology,1997,36(5):89~97.
    [56] Wei B., Sugiura N., Maekawa T. Use of artificial neural network in the prediction of algalblooms. Water Resource,2001,35(8):2022~2028.
    [57]杨琴,谢淑云. BP神经网络在洞庭湖氨氮浓度预测中的应用[J].水资源与水工程学报,2006(1):65~70。
    [58] Memon N.A., Unar M.A., Ansari A.K., et al. Prediction of Parametric Value of DrinkingWater of Hyderabad City by Artificial Neural Network Modeling. WSEAS Transactions onEnvironment and Development,2008,8(4):707~716.
    [59] Palani S., Liong S.Y., Tkalich P. An ANN application for water quality forecasting. MarinePollution Bulletin,2008,56(9):1586~1597.
    [60] RI Son-il,侯德刚,张振家,等.基于BP人工神经网络的生化处理水水质预测[J].现代化工,2009,29(12):66~70。
    [61] May D.B., Sivakumar M. Prediction of urban stormwater quality using artificial neuralnetworks. Environmental Modelling&Software,2009,24:296~302.
    [62] Singh K.P., Basant A., Malik A., et al. Artificial neural network modeling of the river waterquality-A case study. Ecological Modelling,2009,220(6):888~895.
    [63] Rankovi V., Radulovi J., Radojevi I., et al. Neural network modeling of dissolved oxygenin the Gru a reservoir, Serbia. Ecological Modelling,2010,221(8):1239~1244.
    [64]詹海刚,施平,陈楚群.利用神经网络反演海水叶绿素浓度[J].科学通报,2000,45(17):1879~1884.
    [65]邬红鹃,郭生练,胡传林,等.水库浮游植物群落动态的人工神经网络方法[J].海洋与湖沼,2001,32(3):267~273.
    [66] Yu R.F. Feed-forward dose control of wastewater chlorination using on-line pH and ORPtitration. Chemosphere,2004,56:973~980.
    [67] Kuo J.T., Hsieh M.H., Lung W.S., et al. Using artificial neural network for reservoireutrophication prediction. Ecological Modelling,2007,200(1-2):171~177.
    [68] Skogen M.D., Eknes M., Asplin L.C., et al. Modelling the environmental effects of fishfarming in a Norwegian fjord. Aquaculture,2009,298:70~75.
    [69]孙洁.企业财务危机预警的智能决策方法研究[D].哈尔滨工业大学博士学位论文,2007,1~2.
    [70]朱平.区域水资源预警方法研究[D].扬州大学硕士学位论文,2007,1~10.
    [71]何进朝.突发性水污染事故预警应急系统研究[D].四川大学硕士学位论文,2005,7~11.
    [72] Fujita S., Minagawa K., Tanaka G., et al. Intelligent seismic isolation system using airbearings and earthquake early warning. Soil Dynamics and Earthquake Engineering,2011,31(2):223~230.
    [73]董志颖,王娟,李兵.水质预警理论初探[J].水土保持研究,2002,9(3):224~226.
    [74] Botterweg T., Rodda D.W. Danube river basin: progress with the environmental programme.Water Science and Technology,1999,40(10):1~8.
    [75]洪梅,赵勇胜,张博.地下水水质预警信息系统研究[J].吉林大学学报,2002,32(4):364~369.
    [76]陈新军,周应祺.基于BP模型的渔业资源可持续利用预警系统评价[J].中国渔业经济,2003(3):23~25.
    [77]王立刚,王迎春,邱建军,等.中国农区水体环境质量预警体系构建的研究[J].农业工程学报,2008,24(5):217~220.
    [78] Storey M.V., Gaag B., Burns B.P. Advances in on-line drinking water quality monitoring andearly warning systems. Water Research,2011,45(2):741~747.
    [79] Jin D.W., Zheng G., Liu Z.B., et al. Real-Time Monitoring and Early Warning Techniques ofWater Inrush through Coal Floor. Procedia Earth and Planetary Science.2011(3):37~46.
    [80] Van Veen B.A.D., Vatvani D., Zijl F. Tsunami flood modelling for Aceh&west Sumatra andits application for an early warning system. Continental Shelf Research.http://dx.doi.org/10.1016/j.csr.2012.08.020.
    [81] Spielhagen R.F. Hotspots in the Arctic: Natural archives as an early warning system forglobal warming. Geology,2012(40):1055~1056.
    [82] Li N., Wang R.M., Zhang J., et al. Developing a knowledge-based early warning system forfish disease/health via water quality management. Expert Systems with Applications,2009,36(3):6500~6511.
    [83] Xing B., Li D.L., Wang J.Q., et al. An Early Warning System for Flounder Disease. IFIPAdvances in Information and Communication Technology,2009,294:1011~1018.
    [84]王瑞梅,何有缘,傅泽田.淡水养殖池塘水质预警模型[J].吉林农业大学学报,2011,33(1):84~88。
    [85] Maradona A., Marshall G., Mehrvar M., et al. Utilization of multiple organisms in a proposedearly-warning biomonitoring system for real-time detection of contaminants: preliminary resultsand modeling. Journal of Hazardous Materials,2012:219~220,95~102.
    [86]于承先,徐丽英,邢斌,等.集约化水产养殖水质预警系统的设计与实现[J].计算机工程,2009,35(17):268~270.
    [87] Yang H.Q. Biological early warning system for prawn aquiculture. Procedia EnvironmentalSciences,2011,10:660~665.
    [88]计红,韩龙喜,刘军英,等.水质预警研究发展探讨[J].水资源保护,2011,27(5):39~42.
    [89]邓苏,张维明,黄宏斌,等.决策支持系统.电子工业出版社.
    [90] Turban E., Aronson J.E., Liang T.P. Decision Support Systems and Intelligent Systems (7thEdition)(杨东涛,钱峰,译者).北京,机械工业出版社,2009,7~9,153~182.
    [91]姚苏.智能决策支持系统[J].甘肃科技,2011,27(1):22~24.
    [92] Hoang T.H., Mouton A., Lock K., et al. Integrating data-driven ecological models in anexpert-based decision support system for water management in the Du river basin (Vietnam).Environmental Monitoring&Assessment.2012, DOI:10.1007/s10661-012-2580-6.
    [93] Osmond D.L., Cannon R.W., Gale J.A., et al. Watershedss: A decision support system forwatershed-scale nonpoint source water quality problems. Journal of the American WaterResources Association,1997,33(2):327~341.
    [94] Lovejoy S.B., Lee J.G., Randhir T.O., et al. Engel. Research needs for water qualitymanagement in the21st century-A spatial decision support system. Journal of Soil and WaterConservation,1997,52(1):18~22.
    [95]王一军.环境决策支持系统的关键技术研究[D].中南大学博士学位论文,2009,2~14.
    [96] Nasiri F., Maqsood I., Huang G., et al. Water Quality Index: A fuzzy river-pollution decisionsupport expert system. Journal of Water Resources Planning and Management,2007,133(2):95~105.
    [97] Assaf H., Saadeh M. Assessing water quality management options in the Upper Litani Basin,Lebanon, using an integrated GIS-based decision support system. Environmental Modelling&Software,2008,23:1327~1337.
    [98] Argent R.M., Perraud J.M., Rahman J.M., et al. A new approach to water quality modellingand environmental decision support systems. Environmental Modelling&Software.2009,24(7):809~818.
    [99] Tennakoon S., Robinson D., Shen S.Y. Decision support system for temporal trendassessment of water quality data.18th World IMACS/MODSIM Congress, Cairns, Australia13-17July2009.
    [100] Zhang X.D., Huang G.H., Nie X.H., et al. Model-based decision support system for waterquality management under hybrid uncertainty. Expert Systems with Applications,2011,38:2809~2816.
    [101] Semenzin E., Zabeo A., von der Ohe P.C., et al. The role of reference conditions in waterquality assessment: application of a fuzzy logic-based Decision Support System (DSS) in theDanube and Elbe River Basins. River Systems,2012,20(1-2):23~40.
    [102] Mysiaka J., Giupponi C., Rosato P. Towards the development of a decision support systemfor water resource management. Environmental Modelling&Software,2005,20,203~214.
    [103] C. Gu, X. Tang, Y. Dong, The development of decision support systems in China,Computers&Industrial Engineering,27(1–4)(1994)177–180.
    [104] Tian J., Wang Y. L., Li H., et al. DSS development and applications in China. DecisionSupport Systems,2007,42:2060~2077.
    [105] Feng S., Li L.X., Duan Z.G., et al. Assessing the impacts of South-to-North Water TransferProject with decision support systems. Decision Support Systems,2007(42):1989~2003.
    [106]张凯,李明强,姜帆.湖北省突发事件预警应急智能决策支持系统[J].电脑开发与应用,2007,20(4):17~19.
    [107]刘宴辉,申一尘,王绍祥,等.黄浦江水源水质监控与预警系统研究及应用[J].给水排水,2010,36(11):119~121.
    [108]郭羽,贾海峰.水污染预警DSS系统框架下的白河水质预警模型研究[J].环境科学,2010,31(12):2866~2872.
    [109] Matthies M., Giupponi C., Ostendorf B. Environmental decision support systems: Currentissues, methods and tools. Environmental Modelling&Software,2007,22(2):123~127.
    [110] Ahmad S., Simonovic S.P. An intelligent decision support system for management of floods.Water Resources Management,2009,20:391~410.
    [111] Hopkins J.S., Sandifer P.A., Beowdy C.L., et al. Comparison of exchange and no-exchangewater management strategies for the intensive tank culture of marine shrimp. Journal ofShellfish Research,1996,15:441~445.
    [112]马真.凡纳滨对虾集约化养殖水质预警模型的研究[D].中国海洋大学硕士学位论文,2010,3~7.
    [113]丁彦文,艾红.微生物在水产养殖中的应用[J].湛江海洋大学学报,2000,20(1):68~73.
    [114] Moullac G. Le, Haffner P. Environmental factors affecting immune responses in crustacea.Aquaculture,2000,191:121~131.
    [115]张江涛.凡纳滨对虾和青蛤混养池塘水质及地质的研究[D].河北大学硕士学位毕业论文,2004,21~24.
    [116]王娟,曲克明,刘海英,等.不同溶氧条件下亚硝酸盐和氨氮对中国对虾的急性毒性效应[J].海洋水产研究,2007,28(6):1~6.
    [117]张沛东.对虾行为生理生态学的实验研究[D].中国海洋大学博士学位论文,2006,33~38.
    [118] Hernández R.M., Bückle R.L.F., Palacios E., et al. Preferential behavior of white shrimpLitopenaeus vannamei (Boone1931) by progressive temperature–salinity simultaneousinteraction. Journal of Thermal Biology,2006,31:565~572.
    [119] Neal R.S., Coyle S.D., Tidwell J.H., et al. Evaluation of stocking density and light level onthe growth and survival of Pacific white shrimp, Litopenaeus vannamei, reared inzero-exchange systems. Journal of World Aquaculture Society,2010,41:533~544
    [120] Allan E.L., Froneman P.W., Hodgson A.N. Effects of temperature and salinity on thestandard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi. Journal ofExperimental Marine Biology and Ecology,2006,337:103~108.
    [121] Huang Y.C., Xu H.Y., Peng R.Z., et al. Application of plastic shed on securityoverwintering and early-reproduction of Red Tilapia. Chinese Agriculture Science Bulletin,2010,26:403~407.
    [122] Diaz F., Farfan C., Sierra E., et al. Effects of temperature and salinity fluctuation on theammonium excretion and osmoregulation of juveniles of Penaeus vannamei, Boone. Marin andFreshwater Behaviour and physiology,2001,34(2):93~104.
    [123]潘腾飞,齐树亭,武洪庆,等.影响池塘养殖水体溶解氧的主要因素分析[J].安徽农业科学,2010,38(17):9155~9157.
    [124]韩君.黄海物理环境对浮游植物水华影响的数值研究[D].中国海洋大学博士学位论文,2008:1~3.
    [125]彭聪聪,李卓佳,曹煜成,等.虾池浮游微藻与养殖水环境调控的研究概况[J].南方水产,2010,6(5):74~80.
    [126]张智,刘亚丽,段秀举.湖泊底泥释磷模型及其影响显著因素试验研究[J].农业环境科学学报,2007,26(1):45~50.
    [127]何义进,周群兰,刘勃,等.不同增氧方式对中华绒螯蟹养殖池塘水质的影响[J].渔业现代化,2009,36(4):23~26.
    [128]李玉全.工厂化养殖系统分析及主要养殖因子对对虾生长、免疫及氮磷收支的影响
    [D].中国海洋大学博士学位论文,2006,21~27.
    [129] Mishra J.K., Samocha T.M., Patnaik S., et al. Performance of an intensive nursery systemfor the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition.Aquaculture Engineering,2008,38:2~15.
    [130] Krummenauer D., Cavalli.RO., Ballester E.L.C., et al. Feasibility of Pacific white shrimpLitopenaeus vannamei culture in southern Brazil: effects of stocking density and a single or adouble CROP management strategy in earthen tanks. Aquaculture Research,2010,41:240~248.
    [131] Li E., Chen L.Q., Zeng C., et al. Growth, body composition, respiration and ambientammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at differentsalinities. Aquaculture,2007,265:385~390.
    [132] Varadaraju S., Nagaraj M.K., Badami S.H. Changes in soil and water quality parameters inselected shrimp culture tanks and its influence on shrimp production. Indian Journal of Fishries,2011,57:79~82.
    [133] Liu C.H., Chen J.C. Effect of ammonia on the immune response of white shrimpLitopenaeus vannamei and its susceptibility to Vibrioalginolyticus [J]. Fish Shellfish Immunol,2004,16:321~334.
    [134] Zhang P.D., Zhang X.M., Li J., et al. Effect of salinity on survival, growth, oxygenconsumption and ammonia-N excretion of juvenile white leg shrimp, Litopenaeus vannamei.Aquaculture Research,2009,40:1419~1427.
    [135] Lin Y.C., Chen J.C. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles atdifferent salinity levels. Journal of Experimental Marine Biology and Ecology,2001,259:109~119.
    [136] GB11607-89.中华人民共和国渔业水质标准.国家环境保护局.
    [137] Silva C.A.R., Dávalos P.B., Sternberg L.S.L., et al. The influence of shrimp farms organicwaste management on chemical water quality. Estuarine Coastal and Shelf Science,2010,90:55~60.
    [138]黄翔鹄,李长玲,郑莲,等.亚硝酸盐氮对凡纳滨对虾毒性和抗病相关因子影响[J].水生生物学报,2006,30(4):466~471.
    [139] Khoi C.M., Guong V.T., Drouillon M., et al. Chemical estimation of phosphorus releasedfrom hypersaline tank sediments used for brine shrimp Artemia franciscana production in theMekong Delta. Aquaculture,2008,274:275~280.
    [140]徐立蒲,殷守仁.淡水浮游藻类在池塘养殖中的负面影响[J].中国水产,2002(6):66~67.
    [141] Neill M. A method to determine which nutrient is limiting for plant growth in estuarinewaters-at any salinity. Marine Pollution Bulletin,2005,50:945~955.
    [142]查广才,周昌清,黄建容,等.凡纳对虾淡化养殖虾池微型浮游生物群落及多样性[J].生态学报,2004,24(8):1752~1759.
    [143] GB17378.1-1998海洋监测规范.第4部分:海水分析[S].北京:中国标准出版社,1998,156~178.
    [144]申玉春,张显华,王亮,等.池塘沉积物的理化性质和细菌状况的研究[J].中国水产科学,1998,5(1):113~117.
    [145] Zang W.L., Yang M., Dai X.L., et al. Regulation of water quality and growth characteristicsof indoor raceway culture of Litopenaeus vannamei. Chinese Journal of Oceanology andLimnology,2009,27:740~747.
    [146]杨晓珊.滇池外海COD与叶绿素-a相关关系探讨[J].云南环境科学,1996,15(2):36~37.
    [147] Allan G.L, Maguire G.B. Effect of sediment on growth and acute ammonia toxicity for theschool prawn, Metapenaeus macleayi (Haswell). Aquaculture,1995,113(1-2):59~71.
    [148] Avnimelech Y., Ritvo G. Shrimp and fishtank soils: processes and management.Aquaculture,2003,220:549~567.
    [149]彭希珑.南昌市大气PM10、PM2.5的污染特征及来源解析[D].南昌大学博士学位论文,2009,101~109,123~131.
    [150]徐昶.中国特大城市气溶胶的理化特性、来源及其形成机制[D].复旦大学博士学位论文,2010,112.
    [151]邓义祥,郑丙辉,雷坤,等.水质模型参数识别与验证的探讨[J].环境科学与管理,2008,33(5):42~45.
    [152]卢善龙.基于地质要素的金衢盆地环境数值模型的建立[D].浙江大学博士学位论文,2008,67~73.
    [153]马进军.城市再生水的风险评价与管理[D].清华大学博士学位论文,2008,38~44,49~57.
    [154]邱薇.黑龙江省资源与生态承载力和生态安全评估研究[D].哈尔滨工业大学博士学位论文,2008,76~83.
    [155] Paulo C., Tsuneo T., Toshiharu K. Operation of storage reservoir for water quality by usingoptimization and artificial intelligence techniques. Mathematics and Computers in Simulation,2004,67:419~432.
    [156] Sadiq R., Haji S.A., Cool, G., et al. Using penalty functions to evaluate aggregation modelsfor environmental indices. Journal of Environmental Management,2010,91(3):706~716.
    [157]殷瑞飞.数据挖掘中的聚类方法及其应用[D].厦门大学博士学位论文,2008,4~10.
    [158]吕晋,邬红娟,林济东,等.主成分及聚类分析在水生态系统区划中的应用[J].武汉大学学报,2005,51(4):461~466.
    [159]龚珞军,杨学芬,熊邦喜,等.武汉市夏季湖泊水体理化指标主成份和聚类分析[J].长江流域资源与环境,2009,18(6):550~554.
    [160] Morales M. M., Martih P., Llopis A., et al. An environmental study by factor analysis ofsurface seawater in the Gulf of Valencia (western Mediteranean). Analytica Chimica Acta,1999,394:109~117.
    [161]盛周君,孙世群,王京城,等.基于主成分分析的河流水环境质量评价研究[J].环境科学与管理,2007,32(12):172~175.
    [162]曾金宁,吴国权,徐晓群.多元聚类分析方法在杭州湾水质分析上的应用[J].浙江工业大学学报,2009,37(1):14~18.
    [163] Corbett C.J., Pan J.N. Evaluating environ-mental performance using statisticalprocesscontrol techniques. European Journal of Operational Research,2002,139:68~83.
    [164] Meixler M.S., Bain M.B. A water quality model for regional stream assessment andconservation strategy development. Environmental Management,2010,45(4):868~880.
    [165] Singh N.O., Joshi C.B., Paul A.K. Non-linear statistical models on estimation of maximumsize of Tor putitora (Hamilton) in different aquatic environments. India Journal of Fisheries,2009,56(2):103~106.
    [166] Mayer P., Estruch V., MartíP., et al. Use of quantile regression and discriminant analysis todescribe growth patterns in farmed gilthead sea bream (Sparus aurata). Aquaculture,2009,292:30~36.
    [167]田海龙,李岩,高维春.基于因子分析法原理的水环境模糊评价模型[J].吉林化工学院学报,2009,26(2):40~42.
    [168] Hülya B. Utilization of the water quality index method as a classification tool.Environmental Monitoring and Assessment,2010,167:115~124.
    [169] Enrique S., Manuel F.C., Juan V., et al. Use of the water quality index and dissolved oxygendeficit as simple indicators of watersheds pollution. Ecological Indicators,2007,7:315~328.
    [170] Reghunath R., Murthy T.R.S., Raghavan B.R. The utility of multivariate statisticaltechniques in hydrogeochemical studies: an example from Karnataka, India. Water Research,2002,36:2437~2442.
    [171] Singh K.P., Malik A., Mohan D., et al. Multivariate statistical techniques for the evaluationof spatial and temporal variations in water quality of Gomti River (India): a case study. WaterResearch,2004,38:3980~3992.
    [172] Shrestha S., Kazama F. Assessment of surface water quality using multivariate statisticaltechniques: A case study of the Fuji river basin, Japan, Environmental Modelling&Software,2007,22:464~475.
    [173] Qi Z., Li Z., Zeng G., et al. Assessment of surface water quality using multivariate statisticaltechniques in red soil hilly region: a case study of Xiangjiang watershed, China. EnvironmentalMonitoring and Assessment,2009,152:123~131.
    [174] Kunwar P.S., Amrita M., Sarita S. Assessment of the surface water quality in NorthernGreece. Water Research,2003,37:4119~4124.
    [175]刘臣辉,吕信红,范海燕.主成分分析法用于环境质量评价的探讨[J].环境科学与管理,2011,36(3):183~186.
    [176]赵军庆,张彦.主成分分析与聚类分析在白洋淀水质评价中的应用[J].环境科学与技术,2009,32:425~428.
    [177] Nagel J.W. A water quality index for contact recreation. Water Science and Technology,2001,43:285~292.
    [178] Adriano A.B., Rita T., William J.W. A water quality index applied to an international sharedriver basin: The case of the Douro River. Environmental Management,2006,38:910~920.
    [179] Pesce S.F., Wunderlin D.A. Use of water quality indices to verify the impact of CordobaCity (Argentina) on Suquia River. Water Research,2000,34:2915~2926.
    [180] Love D., Hallbauer D., Amos A., et al. Factor analysis as a tool in groundwater qualitymanagement: two southern African case studies. Physics and Chemistry of the Earth,2004,29:1135~1143.
    [181] Sarbu C., Pop H.F. Principal component analysis versus fuzzy principal component analysis.A case study: the quality of Danube water (1985-1996). Talanta,2005,65:1215~1220.
    [182] Unmesh C.P., Sanjay K.S., Prasant R., et al. Application of factor and cluster analysis forcharacterization of river and estuarine water systems-A case study: Mahanadi River (India).Journal of Hydrology,2006,331:434~445.
    [183] Australian Government.2004. Australian drinking water guidelines.http://www.nhmrc.gov.au/_files_nhmrc/file/publications/synopses/adwg_11_06.pdf
    [184] Beltrame E., Bonetti C., Bonetti F.J. Pre-selection of areas for shrimp culture in asubtropical Brazilian lagoon based on multicriteria hydrological evaluation. Journal of CoastalResearch,2006,39:1838~1842.
    [185] Prakash R.K., Lee S., Lee Y., et al. Application of water quality indices and dissolvedoxygen as indicators for river water classification and urban impact Assessment. EnvironmentalMonitoring and Assessment,2007,132:93~110.
    [186] Lin Y., Chen J. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles atdifferent salinity levels. Aquaculture,2003,224:193~201.
    [187] Nilufar I., Rehan S., Manuel J.R., et al. Reviewing source water protection strategies: aconceptual model for water quality assessment. Environmental Reviews,2011,19:68~105.
    [188] Chan C.L., Zalifah M.K., Norrakiah, A.S. Microbiological and Physicochemical Quality ofDrinking Water. The Malaysian Journal of Analytical Sciences,2007,11(2):414~420.
    [189] Liu C.W., Lin K.H., Kuo Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment,2003,313:77~89.
    [190] Subuntith N., Sunisa S., Pongsiri M., et al. Effect of different shrimp tank bottom soiltreatments on the change of physical characteristics and pathogenic bacteria in tank bottom soil.Aquaculture,2008,285:123~129.
    [191] Sookying D., Silva F.S.D., Davis D.A., et al. Effects of stocking density on the performanceof pacific white shrimp Litopenaeus vannamei cultured under tank and outdoor tank conditionsusing a high soybean meal diet. Aquaculture,2011,319:232~239.
    [192] Liao H., Sun W. Forecasting and evaluating water quality of chao lake based on animproved decision tree method. Procedia Environmental Sciences,2010,2:970~979.
    [193] Debels P., Figueroa R., Urrutia R., et al. Evaluation of water quality in the Chillán River(Central Chile) using physicochemical parameters and a modified water quality index.Environmental Monitoring and Assessment,2005,110:301~322.
    [194] Singh K.P., Malik A., Sinha S. Water quality assessment and apportionment of pollutionsources of Gomti river (India) using multivariate statistical techniques: a case study. AnalyticaChimica Acta,2005,538:355~374.
    [195] Gertjan D.G., Mark P. Fitting growth with the von Bertalanffy growth function: acomparison of three approaches of multivariate analysis of fish growth in aquacultureexperiments. Aquaculture Research,2005,36:100~109.
    [196] Lopes J.F., Dias J.M., Cardoso A.C., et al. The water quality of the Ria de Aveiro lagoon,Portugal: From the observations to the implementation of a numerical model. MarineEnvironmental Research,2005,60(5):594~628.
    [197] Melesse A.M., Ahmad S., McClain M.E., et al. Suspended sediment load prediction of riversystems: An artificial neural network approach. Agricultural Water Management,2011,98(5):855~866.
    [198] Tyagi P., Chandramouli V., Lingireddy S., et al. Relative performance of artificial neuralnetworks and regression models in predicting missing water quality data. EnvironmentalEngineering Science,2008,25(5):657~668.
    [199] Zhao Y., Nan J., Cui F.Y., et al. Water quality forecast through application of BP neuralnetwork at Yuqiao reservoir. Journal of Zhejiang University-Science A,2007,8(9):1482~1487.
    [200]楼文高.人工神经网络在水产科学中的应用[J].上海水产大学学报,2001,10(4):347~352.
    [201] Dogan E., Sengorur B., Koklu R. Modeling biochemical oxygen demand of the Melen Riverin Turkey using an artificial neural network technique. Journal of Environmental Management,2009,90(2):1229~1235.
    [202] Shukla M.B., Kok R., Prasher S.O., et al. Use of artificial neural networks in transientdrainage design. Transactions of the ASAE,1996,39(1):119~124.
    [203]张福丽.气象因素对黑龙江省三种病虫害的影响及预测预报[D].东北林业大学博士学位论文,2009,28~34,45~53.
    [204]周九州.湘江与洞庭湖水体氮素时空变化特征及湘江水体中氮浓度预测方法研究[D].湖南农业大学博士学位论文,2010,20~41.
    [205] Smith J., Eli R.N. Neural-network models of rainfall–runoff processes. Journal of WaterResources Planning and Management,1995,121(6):499~508.
    [206] Muttiah R.S., Srinivasan R., Allen P.M. Prediction of two-year peak stream discharges usingneural networks. Journal of the American Water Resources Association,1997,33(3):625~630.
    [207] Kim M., Choib C.Y., Gerba C.P. Source tracking of microbial intrusion in water systemsusing artificial neural networks. Water Research,2008,42:1308~1314.
    [208] Shamseldin A.Y. ANN model for river flow forecasting in a developing country. Journal ofHydroinformatics,2010,12:22~35.
    [209] Ioannis C., Trichakis I.K., Nikolos G. P., et al. Artificial Neural Network (ANN) BasedModeling for Karstic Groundwater Level Simulation. Water Resource and Management,2011,25:1143~1152.
    [210]楼顺天,施阳.基于MATLAB的系统分析与设计–神经网络.西安电子科技大学出版社,1999,1~3,98~110.
    [211] Daliakopoulosa I.N., Coulibalya P., Tsanis I.K. Groundwater level forecasting usingartificial neural networks. Journal of Hydrology,2005,309:229~240.
    [212]高艳萍,于红,崔新忠.基于优化BP网络的工厂化水产养殖水质预测模型的实现[J].大连水产学院学报,2008,23(3):221~224.
    [213] Bowden G. J., Dandy G. C., Maier H.R. Input determination for neural network models inWater Resources applications. Part1-background and methodology. Journal of Hydrology,2005,301:75~92.
    [214] Chang T. C., Chao R. J. Application of back-propagation networks in debris flow prediction.Engineering Geology,2006,85(3-4):270~280.
    [215] Yue X. Y., Guo Y. G., Wang J. R., et al. Water pollution forecasting model of theback-propagation neural network based on one step secant algorithm. Communications inComputer and Information Science,2011,105(7):458~464.
    [216]郭连喜,邓长辉.基于模糊神经网络的池塘溶解氧预测模型[J].水产学报,2006,30(2):225~229.
    [217]李奎贤,宋桂秋,张东,等. BP神经网络法在产品质量预测中的应用[J].东北大学学报(自然科学版),2001,22(6):682~684.
    [218] Yesilnacar M. I., Sahinkaya E., Naz M., et al. Neural network prediction of nitrate ingroundwater of Harran Plain, Turkey. Environmental Geology,2008,56(1):19~25.
    [219] Chenard J. F., Caissie D. Stream temperature modelling using neural networks: applicationon Catamaran Brook, New Brunswick, Canada. Hydrological Processes,2008,22(17):3361~3372.
    [220] Trichakis I. C., Nikolos I. K., Karatzas G. P. Optimal selection of artificial neural networkparameters for the prediction of a karstic aquifer’s response. Hydrol Process,2009,23:2956~2969.
    [221] Abrahart R. J., Heppenstall A. J., See L. M. Timing error correction procedure applied toneural network rainfall–runoff modeling. Hydrological Sciences Journal-Journal Des SciencesHydrologiques,2007,52(3):414~431.
    [222] Vandenberghe V., Bauwens W., Vanrolleghem P.A. Evaluation of uncertainty propagationinto river water quality predictions to guide future monitoring campaigns. EnvironmentalModelling&Software,2007,22(5):725~732.
    [223] Feng L. H., Huang C. F. A risk assessment models of water shortage based on informationdiffusion technology and its application in analyzing carrying capacity of water resources.2008,Water Resource Management,22:621~633.
    [224]白利平,王业耀,王金生,等.基于数值模型的地下水污染预警方法研究[J].中国地质,2011,38(6):1652~1659.
    [225]李奕雯,曹煜成,李卓佳,等.养殖水体环境与对虾白斑综合症关系的研究进展[J].2008,26(4):532~538.
    [226]肖永辉,王志刚,刘曙照.水体富营养化及蓝藻水华预警模型研究进展[J].环境科学与技术,2011,34(11):152~157.
    [227]危忠,尹海龙,徐祖信.湖泊蓝藻水华数字化预警系统构建探讨[J].四川环境,2009,28(1):33~38.
    [228]王瑞玲.农田土壤环境资粮预警-以郑州市郊区为例[D].2005,中国农业科学院硕士学位论文,11~12.
    [229]张强,薛惠锋,张明军,等.基于可拓分析的区域生态安全预警模型及应用—以陕西省为例[J].生态学报.2010,30(16):4277~4286.
    [230]于佳瀛.天津某中水处理厂污水水质分析及水质预警系统研究[D].2009,天津大学硕士学位论文,36~53.
    [231]李玉,张淑娜.天津滨海新区大气预警模型体系的构建[J].中国环境监测,2012,28(3):127~130.
    [232]张伟红.地下水污染预警研究[D].2007,吉林大学博士学位论文,5~6,43~50.
    [233]刘涛.水库水质参数预测和富营养化预警[D].天津大学硕士学位论文,2005:50~59.
    [234]李京梅,郭斌.我国海水养殖的生态预警评价指标体系与方法[J].海洋环境科学,2012,31(3):448~452.
    [235]刘志辉.基于“3S”技术的新疆融雪洪水预测预警及决策支持研究[D].中国矿业大学博士学位论文,2009,92~93,95~96.
    [236]张红燕,袁永明,贺艳辉,等.水产养殖专家系统的设计与实现[J].中国农学通,2011,27(1):436~440.
    [237] Simonovic, S. P. Reservoir systems analysis: Closing gap between theory and practice,ASCE. Journal of Water Resources Planning and Management,1992,118(3):262~280.
    [238] McKinney, D. C., Maidment, D. R., Tanriverdi, M. Expert geographic information systemfor Texas water planning, ASCE Journal of Water Resources Planning and Management,1993,119(2):170~183.
    [239]胡东波.模型驱动的决策支持系统研究[D].中南大学博士学位论文,2009,111~116.
    [240] Javier M. J. Ruiz-Velazcoa, Alfredo Hernández-Llamasc, Victor M. Gomez-Mu noz.Management of stocking density, tank size, starting time of aeration, and duration of cultivationfor intensive commercial production of shrimp Litopenaeus vannamei. AquaculturalEngineering,2010,43:114~119.
    [241]佟志军.草原火灾应急管理与决策支持集成研究[D].东北师范大学博士学位论文,2009,97~98.
    [242]黄健.城市供水水质监测与预警平台构建及关键技术研究[D].中国地质大学博士学位论文,2011,89~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700